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Abstract

Antibodies - key molecules of the immune system - are increasingly used as ther-
apeutic drugs. The variable domain of the antibody is responsible for binding to
an antigen and contains polypeptide loops, each referred to as a ‘Complemen-
tarity Determining Region (CDR)’. Five of these loops can be modelled with
acceptable accuracy but so far, the sixth (CDR-H3) remains more difficult for
all but the shortest loops.

Various methods have been attempted to model this CDR, and while accu-
racy has improved, more improvement is still needed. One such method is to
apply machine learning in an attempt to discern which features of a sequence
lead to what final conformation; such an approach was tested in 1995. Since
that time, the number of structures available for learning has increased dra-
matically, as have methods and technologies available for building and training
neural networks.

This work revisits the neural network approach to modelling and scoring
CDR-H3 in light of these advances. We conclude that several common neural
network architectures cannot accurately model CDR-H3 from sequence alone,
but show reasonable performance in selecting a good candidate from a large set.
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Chapter 1

Introduction

1.1 Introduction

1.2 Antibodies

Antibodies are a major component of the adaptive immune systems in higher
vertebrates. In recent times, antibodies have been recognised for their use as
drugs. Antibodies have high specificity - they can target a particular antigen to
the exclusion of other molecules. They also have high affinity - a strong inter-
action with the antigen in question. One of the challenges in using antibodies
in drug design is to ensure that artificial antibodies are not seen as foreign and
therefore targeted by the host immune system. Antibodies can be used in var-
ious ways to benefit the host: helping to direct drugs to the correct location,
activating the immune system to target either host cells or invading cells, and
functioning like a traditional drug (for example, binding to an active site in
order to block it).

1.2.1 Structure

Antibodies have a characteristic ‘Y’ shaped structure. These structures can
be combined into various different isotypes (or classes). In humans and other
placental mammals 5 types exist: IgA, IgD, IgE, IgG and IgM. IgA forms a
dimer, and IgM a pentamer (the ‘Y’ shape can still be seen). Each has its
own class of heavy chain - α, δ, ε, γ and µ respectively. Some other species have
different kinds of antibodies. For example, camelids and sharks have antibodies
consisting only of heavy chain.

IgG, a monomer, is the most common type in humans. Like these antibod-
ies, IgG is built up of ‘light’ and ‘heavy’ chains, featuring the characteristic
‘immunoglobin fold’. Two heavy chains form the ‘stem’ and ‘forks’ of the Y
shaped molecule, with the two light chains attaching to the ‘forks’. Light chains
are approximately 220 amino acids in length (two domains of 110 amino acids in
length), with the heavy chains being approximately 440 amino acids long (four
domains of 110 amino acids each). IgG has 4 human subclasses - IgG1 to IgG4,
with heavy chains γ1 to γ4.

The stem of the antibody is known as the Fc (fragment crystallizable) region,
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and is responsible for interfacing with the host immune system in various ways.
The forks of the ‘Y’ shape are referred to as the Fab (fragment antigen binding)
region; the top-half of these regions are the Fv (Fragment variable) regions (see
figure 1.1)

Figure 1.1: Schematic diagram of the basic unit of immunoglobulin. The
heavy chain (From the N Terminus - VH, CH1, hinge, CH2 and CH3 re-
gions). The light chain (consisting of VL and CL regions: from N-terminus).
The -S-S- labels are disulphide bonds. The notched areas form the antigen
binding site. 1) Fab Region 2) Fc Region 3) Heavy chain in blue 4) Light
chain in green 5) Fv region. https://commons.wikimedia.org/wiki/File:

Immunoglobulin_basic_unit.svg.

1.2.2 Complementarity determining regions

The Fv region contains the antigen binding site. Within this region are the
variable loops connecting to a framework of β strands. These polypeptide loops
are responsible for the high specificity and variability of antibodies. They are
referred to as ‘complementarity determining regions’ (CDRs). The β strands
form part of what is often referred to as the framework region. This region forms
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the scaffold for the CDRs, helping to maintain the overall structure of the Fv
region.

Take-off regions are mentioned by various authors [47][60][68]. Whilst no
formal definition appears to exist, they provide a useful set of constraints for
modelling the CDRs. Somewhat analogous to the term anchor points, the phrase
take-off point implies a direction for the subsequent loop to follow.

There are 6 such CDRs at the end of each antibody fork - three on the light
chain and three on the heavy chain - numbered 1 to 3 with the prefix H or L.
For example, the second heavy loop is referred to as CDR-H2, whereas the first
light CDR is CDR-L1. The conformation of these loops is responsible for which
epitope a particular antibody will attach to. Figure 1.2 shows the loops as they
appear in the model 1hzh taken from the Protein DataBank (PDB).

Figure 1.2: The model 1hzh. The CDR loops are shown as ribbons of different
colours, with CDR-H3 shown in the foreground, in green. The grey and yellow
surfaces are the heavy chains. The orange and red surfaces, the light chains.

CDR definitions

Which amino acids form the CDRs exactly? Different definitions exist.
The Kabat scheme [80] looks for short stretches in the sequence that show

high variability. The Chothia scheme [11] takes a closer look at the actual
structure of the hyper variable area, considering the hyper-variable loops to be
these stretches of amino acids outside the “framework β sheet”.

Oxford Molecular’s AbM program uses a definition based on a compromise
between Kabat and Chothia. It differs in its definitions of H1 (taking the lower
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Loop Kabat AbM Chothia Contact
L1 L24 - L34 L24 - L34 L24 - L34 L30 - L36
L2 L50 - L56 L50 - L56 L50 - L56 L46 - L55
L3 L89 - L97 L89 - L97 L89 - L97 L89 - L96
H1 (Kabat Numbering) H31 - H35B H26 - H35B H26 - H32..34 H30 - H35B
H1 (Chothia Numbering) H31 - H35 H26 - H35 H26 - H32 H30 - H35
H2 H50 - H65 H50 - H58 H52 - H56 H47 - H58
H3 H95 - H102 H95 - H102 H95 - H102 H93 - H101

Table 1.1: The definitions of CDRs according to the various schemes, taken
from http://www.bioinf.org.uk/abs/index.html

bound from Chothia and the upper bound from Kabat) and H2 (the lower bound
of Kabat and an upper bound between the two schemes).

The Contact scheme [49] [41] takes a different approach. It is based on the
residues that are observed to make contact with an antigen, as observed from
analysing crystal structures.

CDR numbering schemes

Numbering reflects which residues are considered to be indels (an insertion or
deletion). Consistent numbering is incredibly useful as it allows one to refer to
certain residues across different structures.

Unfortunately, several methods of numbering the CDR regions exist. One
of the earliest and most widely adopted is the Kabat scheme [34]. Residues are
numbered as normal, with additional indels given an alphabetical suffix.

The Kabat scheme has some problems. Firstly, the positions at which in-
sertions occur in CDR-L1 and CDR-H1 do not match the structural insert po-
sitions. Further analysis of the immunoglobin structures showed that residues
outside of these defined by Kabat showed variation [3]. The Chothia scheme
corrects for this.

The Chothia numbering scheme builds on the Kabat scheme but places
the insertions for CDR-L1 and CDR-H1 in positions that are consistent struc-
turally [3]. This refinement does not extend to these areas outside of the CDR
- the framework regions.

Abhinandan and Martin [1], “have analyzed the numbered annotations in
the widely used Kabat database and found that approximately 10% of entries
contain errors or inconsistencies.” The Kabat numbering scheme was found to
be applied incorrectly in certain cases. One example: Kabat places an insertion
in CDR-H2 at position 82 in HFR3, whereas Abhinandan and Martin found 74
sequences within the Kabat database that should have had this insertion placed
in the CDR-H2, at residue 52.

The new scheme proposed by Abhinandan and Martin [1] (called the Martin
or Chothia-enhanced) is based on the Chothia scheme but provides “corrections
to the positions of the insertions and deletions in the framework regions”. A
program called AbNum was used to perform this re-numbering and analysis
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Canonical Structure
Residue Angle 1 2 3 4
26 φ -71 -80 -87 -5

ψ -16 -20 -22 -15
27 φ -158 -132 -134 -136

ψ 169 166 166 157
28 φ -59 -72 -66 -66

ψ 133 128 139 140
29 φ -113 -112 -95 -103

ψ 151 6 23 9
30 φ -76 56 -77 -86

ψ -38 -120 119 130
30a φ -125 -75 -105

ψ 29 156 107
30b φ -54 -56

ψ -34 -34
30c φ -72 -59

ψ -4 -54
30d φ 1

ψ 8
30e φ 97 47

ψ -18 45
30f φ -81 -132

ψ 156 153
31 φ -117 -102

ψ 107 128
32 φ -157 -88 -89 -95

ψ 160 73 77 74

Table 1.2: An example from the canonical rules of Chothia [3] for the Vκ Light
Chain CDR-L1 structures. Angles given are averages in degrees.

and can be found on the web1.

Complementarity determining region classification

Most of the CDRs fall into one of a limited set of conformations and can therefore
be predicted from their sequence of amino acids and modelled. The exception
to this rule is CDR-H3, which does not readily adopt a particular conformation.

An example canonical rule from the Chothia set [3] for CDR-L1 is given in
table 1.2. For each residue and canonical structure class, an average phi Φ and
psi Ψ angle is given. If the loop identified has backbone torsions that fit these
angles, it belongs in that class.

Since the Chothia rules were published, there have been several improve-
ments made. MacCallum et al [41] define four distinct classes of protein sur-

1made available at http://www.bioinf.org.uk/abs/abnum/.
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faces, applied to antibodies: concave and moderately concave, ridged and pla-
nar. North et al [54] consider a more recent database of structures and use a
conformational clustering technique to derive their classifications. Their dataset
is 15 fold larger than the set used by Chothia. North estimates 85% of non-CDR-
H3 CDR structures can be predicted based on the source of the gene and its
sequence. Chothia defines 12 canonical classes [11], Al-Lazikani et al recognised
25 canonical classes [3] whereas North et al recognise 72 [54].

CDR-H3

One of the reasons for CDR-H3’s variability in structure is the total number of
amino acids varies considerably. Wu et al [80] show the length distribution of
CDR-H3 between 2 and 19 amino acids in Humans. The abYsis database and
antibody resource [71] shows the majority of the lengths are between 9 and 14
amino acids long but lengths can be as short as 1 or as long as 28; longer CDRs
exist in other species. Figure 1.3 illustrates the CDR-H3 length distribution in
three different species.

Figure 1.3: Length Distribution for CDR-H3 (Chothia definition) in humans
(left), mouse (middle) and chicken (right) (images taken from http://abysis.

org/).

CDR-H3 shows the greatest structural diversity (figure 1.4) of the CDRs.
It also appears in the middle of the binding site, and makes the most contacts
with the antigen on average [41].

The variability in the number of amino acids comprising CDR-H3 makes
such classifications more difficult. Shirai et al [66] attempt to classify part of
the CDR-H3 loop using a set of complex rules. They note that the base of the
loop, particularly the first residue and the last three residues (the anchor points
of the loop) conform to either a ‘bulged’ or ‘extended’ shape (bulged is also
referred to as ‘kinked’ in several places — see figure 1.5). Morea et al [52] place
the torso regions as being the 4 residues at the N terminus, and 6 residues at
the C terminus.

However, since the number of experimental structures has increased, the
rules give by Shirai et al and Morea et al do not appear to be accurate. Accord-
ing to North et al [54] a bulged or non-bulged conformation is not dependent
on the presence or absence of ‘key residues’ and the torso regions show lower
variability.
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Figure 1.4: (a) The different distributions of the lengths of the each CDR. CDR-
H3 is in pink at the bottom of the figure, and shows a greater variance than the
other loops. (b) The differences in the structure of the CDRs. CDR-H3 is dark
pink. This figure is derived from the SAbDab database. Taken from the paper
by Marks & Deane [46].

Figure 1.5: (a) An example of an ‘extended’ CDR-H3 loop and (b) a ‘bulged’
CDR-H3 loop. Taken from the paper by Marks & Deane [46]
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Regep et al [61] have suggested that CDR-H3 is quite different to other
polypeptide loops; 75% of CDR-H3 loops do not have a ‘sub-Angstrom struc-
tural neighbour’ outside of other antibodies. The authors go on to note that
despite a computational study suggesting that CDR-H3 is somewhat flexible due
to the lack of stabilising bonds, the CDR-H3 loop is less flexible than other loops
in the PDB. On average, CDR-H3 loops contain 10 times as many unique con-
formations as other loops; grouping CDR-H3 into categories based on structure
is much more difficult.

Finally, the authors state that more than 1000, 4-residue fragments adopt
conformations not seen in any other structures, from the 64,830 4-residue frag-
ments they extracted from their dataset. More than 30% of the CDR-H3 loops
the authors tested contained at least one such structure. These structures are
found in the tip of the CDR-H3 loop and show ‘a high propensity for Tyrosine
and Glycine in unfavourable conformations’. The tip is defined as the residue
that contains the Carbon Alpha (Cα) furthest away from the anchor points of
the loop. This suggests that modelling methods involving restricting torsions to
the Ramachandran map may introduce errors. The uniqueness of the CDR-H3
loops may place some restrictions on template based modelling; the loop to be
modelled may have a unique structure not present in the template database.

1.2.3 Datasets

The number of structures available for analysis has steadily increased. Accord-
ing to the PDB, the rate that entries are added has also increased year-on-year
(with a small number of exceptions). As of 2017, the number of entries in the
PDB exceeds 125,000.

The Summary of Antibody Crystal Structures (SACS ) is a
“self-maintaining web-site containing summary information on antibody
structures in the PDB”[4]. A summary of the structures found by SACS to be
antibodies can be downloaded as an XML file2.

The structural antibody database(SabDab) [14] is an online database, specif-
ically targeting antibody structures. As of 18th July, 2017, it contains 2779
structures 3. 2401 of these contain at least one paired light and heavy chain.
This results in 5257 Fv regions and a search for complete CDR-H3 structures
using the Chothia definition returns 2629 results.

AbDb4is a collection of structures processed from the PDB. The complete
set contains 1184 non-redundant antibodies.

abYsis [72]5 combines data from various sources, including Kabat and the
PDB, along with various discovery tools and utilities. As of 19th July 2017,
there are 131241 non-identical sequences; a search for structures derived from
the PDB returns 4315 results.

The International Immunogenetics Information System is an online
resource6 containing several databases relating to antibody research. The
IMGT/3Dstructure-DB contains 4766 entries, extracted from the PDB [33].

2Available online at http://www.bioinf.org.uk/abs/sacs/
3according to http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/Welcome.php
4http://www.bioinf.org.uk/abs/abdb/
5http://www.abysis.org/
6http://www.imgt.org/
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1.3 Modelling

Given a sequence, generating the structure of a protein can be challenging.
However it is of considerable importance to know this structure as it defines
biological function. Structure is therefore, more conserved than sequence.

At the time of writing, the number of sequences that exist inside UniPro-
tKB/SwissProt is of the order of 550,000. These are manually reviewed and
annotated. However UniProtKB/TrEMBL, which is automatically annotated,
holds 87 million sequences. The PDB contains around 132,000 experimental en-
tries; roughly 0.2% of UniProtKB/TrEMBL and 24% of UniProtKB/SwissProt.
It is expected these percentages will go down as sequencing becomes cheaper.
Until methods such as X-Ray crystallography and NMR are as cheap and
widespread as sequencing, modelling the structure from the sequence alone will
be important.

1.3.1 Current approaches to tertiary structure prediction

Several approaches exist for generating three-dimensional, or tertiary structure,
from a sequence of amino acids. There are broadly two categories: Ab initio
and knowledge-based. More specifically:

1. Ab initio approaches that make use of:

(a) Energy minimisation and conformational search.

(b) Molecular dynamics simulations.

2. Knowledge based approaches including

(a) Comparative modelling.

(b) Threading (as a precursor to the above).

3. Combined approaches.

• using a knowledge based approach combined with a form of machine
learning and / or Ab Initio method.

Molecular dynamics (MD) simulations model individual atoms as spheres
following Newton’s laws of motion. Originally developed within the field of the-
oretical physics, it has since found use in materials science and biology. One
of the more famous examples is the Folding@Home project7. Such simula-
tions require an enormous amount of computing power, even for relatively small
molecules. Anton is a special purpose machine designed to perform MD simula-
tion on biological macro-molecules such as proteins. In their 2008 paper, Shaw
et al, [65] claim that their 512 node Anton machine should be able to simulate
a 1 millisecond, 23,558 atom protein-cancer-drug system, in one month .

Energy minimisation (EM) approaches seek to find the energy minimum of a
force-field — often the same force field equations used in MD. An energy level is
calculated for a particular conformation of atoms and a search algorithm is used
to find which conformation yields the lowest free energy — exploring the free
energy landscape. Techniques such as gradient descent and simulated annealing

7More information is available at http://folding.stanford.edu/about/
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are often used to find a route through the incredibly large number of valid
conformations. The major problem is avoiding local minima and finding which
direction to head in. One recent example by Heo et al [26] calculates the energy
of of a number of decoy loops,selecting the one with the lowest free energy to
provide an initial starting point.

Comparative modelling falls into the category of knowledge based
approaches. An unknown structure may be modelled if a known structure can
be shown to have some relation to it. One such method, called homology
modelling takes into account evolution; if another structure exists that has a
common ancestor to the one being modelled, it might well serve the same
function and therefore have similar structure. Often, homologs are identified
by similarity of sequence.

Comparative modelling doesn’t have to rely on homologs. Through fold
recognition techniques, a suitable template can be found where no evidence of
evolution exists.

Most approaches split the model into conserved and non-conserved regions,
using the template (most likely a homolog) for the structurally conserved regions
(SCR). Once the structural variable regions (SVR) are identified, these are
modelled either by hand, using knowledge based approaches (i.e. selecting a
likely candidate and grafting it onto the template), ab initio approaches (or
some combination of the three).

Programs such as COMPOSER [55] and Swiss-Model [7] are examples
of comparative modellers that follow such an approach. However,
MODELLER [19] takes a slightly different approach. Rather than attempt
to divide the model into conserved and non-conserved regions, the entire
structure is considered and refined at once. The quality of the results, in both
cases, are reliant on how similar the template really is to the model and the
quality of the alignment between template and target sequence.

Despite the enormous number of protein sequences, there are only a small
number of protein folds[85]8. As new structures are submitted to the PDB,
more and more proteins share pre-existing folds, supporting this idea. This has
lead to the approach known as Fold Recognition.

One way of describing fold recognition is that it reverses the problem other
methods are trying to solve. Rather than taking a sequence and modelling the
structure, we consider how well a particular sequence fits one of the known
structures we have in our library of structures. How well is determined by var-
ious scores — a set of statistical potentials is one of the most common scores.
Rather than calculate the full set of free-energy field equations, with possible ap-
proximations (such as using a simple harmonic bond instead of the Scrödinger
Equation), we can use scores based on physical properties and attributes of
model in question; one such program, GenTHREADER [32] uses a set of func-
tions and the resulting scores (such as pair-wise energy, solvation, etc) as inputs
into a neural network. This network derives a score, showing how well a partic-
ular sequence fits the fold.

A sequence is described as being threaded through a series of library folds — a
technique called threading. This has been quite successful in modelling proteins.
Indeed, relationships between proteins with very different sequences have been

8CATH lists 1391 topologies at the time of writing - http://www.cathdb.info/wiki/doku/
?id=release_notes
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uncovered using this method [55] — detecting relationships between proteins
that have < 30% sequence identity Certain classes of proteins have proven to
be more difficult to match using threading (particularly these with many β
structures). The size of the protein and the number of secondary structures it
contains has a bearing on the overall accuracy [55].

Protein modelling techniques compete in The Critical Assessment of Protein
Structure Prediction (CASP)9 — a world-wide experiment assessing the state
of protein structure prediction, taking place every two years since 1994 [53].
CASP is roughly divided into Template Based Modelling (TBM) (i.e. knowledge
based) and Template Free Modelling (FM) (i.e. ab initio) categories. Results are
available on the CASP website, with critical assessments published in scientific
journals the following year.

At the time of writing, assessment for CASP11 (2014) is available, with raw
results available for CASP12 (2016). Some of the methods in CASP12 TBM
techniques managed to place 70% of a protein’s residues to within 1Å accuracy,
for the Cα atoms. Looking briefly at the data, it is clear that TBM greatly
out-performs FM10

1.3.2 Loop Modelling

Loops are so-called as the polypeptide segment does not form into any recognis-
able secondary structure (such as a β sheet or α helix). Loops are often found
on the outside of proteins — therefore often in contact with other molecules
of interest. Loops are difficult to model — the sequence of amino-acids they
are comprised of is quite variable. Some loops are also flexible. Errors in loop
modelling are considered to be the dominate problem in comparative modelling.

Insertions and deletions are modelled as loops. Once an area is identified as
a loop, the anchor points are further identified — usually the two residues either
side of the loop. From this point, there are several modelling approaches one
can take. Much like protein modelling in general, there are three approaches:
Ab initio, knowledge based and a combination of both.

Most approaches start by generating a large number of rough solutions.
These ‘decoys’ are removed via various criteria such as impossible solutions
(these with overlapping atoms), poor side-chain packing, torsion angles in un-
likely regions of the Ramachandran plot and other metrics. The final selection
usually involves scoring a small subset of the possible solutions. Using a set
of force field equations (such as AMBER or CHARMM) to rank the solutions
by the lowest energy, is one approach. Using the aforementioned statistical
potentials as a score is another approach to scoring.

The aforementioned COMPOSER looks for loop structures in homologous
proteins that have a similar sequence of amino acids. The user can choose from
these loops and effectively graft the loop onto the model. Minor adjustments to
the φ and ψ angles are made, often using simulated annealing, so that the loop
fits the anchor points (consisting of 3 residues).

FREAD is an example of a knowledge based approach. Possible solutions
for a loop are selected from a restricted database using a score derived from
how well the template loop fits the anchor points and the similarity between the

9http://predictioncenter.org/
10http://www.predictioncenter.org/casp12/results.cgi
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target and template sequences. The disadvantage with FREAD is if a suitable
template is not found, FREAD will not return a result. Other knowledge based
approaches include SuperLooper [27] and LoopWeaver [30].

Ab initio approaches are used in programs such as MODELLER. Again,
minimising the free-energy by searching conformational space using force-fields
is the method used here. Fiser et al [19] state that “Loops of 8 residues have a
90% chance to be modelled with useful accuracy”. Useful accuracy here is a Root
Mean Squared Deviation (RMSD) of less than 2Å between the Cα atoms that
form the back-bone of the loop, for loops up to 8 residues in length. Loops of up
to 12 residues can be modelled with reasonable accuracy. MODELLER starts
by joining the anchor points with a straight line of residues, then scaling and
adjusting this conformation using energy minimisation. Constraints are placed
on this energy minimisation based on a set of templates from homologous loops.

CODA combines both the knowledge based method FREAD, and the ab
initio program PETRA [12]. The authors report an improvement over using
either method individually.

The Protein Local Optimization Program (PLOP)11 is another example of
using ab initio, force-field based approaches [31]. RMSD accuracy decreases as
the loop lengths increase with an average RMSD of 2.71Å for loops 11 residues
long. LEAP [40] is another example where an initial set of decoys, created
ab-initio, are further refined by modelling side-chains and scoring energies for
every atom. The authors report an average RMSD of 2.1Å over 325, 12 residue
length loops.

One interesting approach to modelling loops uses inverse kinematics; a tech-
nique commonly used to orientate robotic arms, or animate computer game
characters. Rosetta refers to this method as Kinematic closure (KIC) and uses
this in conjunction with Cyclic Coordinate Descent (CCD) [9]. Mandell et al [43]
have refined this approach in the latest version of Rosetta. The authors of both
papers report results on loops of upto 12 residues in length.

1.3.3 Antibody Modelling

The estimation of the total number of possible CDR conformations is huge.
On average, a variable domain is 110 amino acids long. A human can produce
at least 109 different antibodies [58] (more recently, this value has risen to
1013 [46]). Chapter 1.2.3 stated that the number of structures currently available
is of the order 103. Fast and accurate modelling is therefore desired to close this
gap.

Algorithms and services exist for modelling antibodies specifically. Specific
characteristics of antibodies can be taken advantage of, in order to improve
modelling. For example, despite the name, the Fv / variable region has a higher
level of conservation than most proteins. than The constant region, as the name
suggests, does not change. The exceptions are the CDR Loops, specifically
CDR-H3.

One aspect of antibody modelling is how the variable domains of the light
and heavy chains are orientated with respect to each other — the VH -VL packing
angle. Abhinandan et al [2] point out that residues in the framework regions,
relatively distant from the antigen binding site can have a significant effect on

11http://jacobsonlab.org/plop_manual/plop_overview.htm
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affinity. Their analysis of the angle shows a mean of −45.6◦ but varies from
−60.8◦ to −31.0◦.

Perdersen et al [58] make the point that correct position of the two domains,
the VH -VL packing, can have a dramatic effect on the positioning of the CDRs,
particularly the take-off points. Weitzner et al [78] assessed RosettaAntibody,
concluding that VH - VL orientation is a key factor in the rankings of their
generated models.

It has been observed that 5 of the 6 CDRs adopt only a small number of
conformations (as seen in figure 1.4); they fall into a canonical class. CDR-H3
is the exception[11]. The implications for modelling are that knowledge based
approaches for these loops are quite effective. A small number of loops from
other CDRs occasionally do fall outside of the canonical classes [79]; these must
be modelled explicitly.

Current approaches

Martin et al [48] report RMSD scores of less than 2Å for all loop atoms not in
CDR-L3 or CDR-H3, for a model HyHel-5. Similar results are reported for an-
other model, Gloop2. The CDR-H3 loops are 7 and 5 residues long respectively.
The algorithm presented relies on a database of backbone conformations for
loops longer than 5 residues. For these loops longer than 7 residues, the centre
section of the loop is removed and modelled with CONformation GENerator
(CONGEN) — a program that samples possible conformations for these with
the lowest free energy [8]. Side chains are modelled once the backbone is com-
plete. The searches are constrained by Cα-Cα distances within known loops,
with a second filter comparing the torsion angles. The final result is chosen
from the five models with the lowest free energy.

The algorithm for the above is called Combined Antibody Modeling Algorithm
(CAMAL) [58] — an early example of combining both knowledge-based and ab
initio approaches (CAMAL is realised in the program AbM). The rules for
canonical CDRs are consulted but the authors note that whilst the majority
of loops follow these rules, there are exceptions (such as a peptide flip in CDR
L1). If no canonical rules exists, the CDR is constructed using either just
examples from a database search, a conformational search for just the central
section in combination with database examples or a conformational search alone,
depending on the number of database examples found.

The reported results for one case study give RMSD scores between 2.43Å
and 0.8Å. In this case study, the CDR-H3 RMSD is 0.81Å for an 8 residue loop.

WAM: an improved algorithm for modelling antibodies on the WEB [79].
WAM follows the approach of AbM in the main, with some additions. Like
AbM, it searches for templates, builds the apex of the loop with CONGEN and
compares the computed torsion angles with known angles as part of a screening
step. WAM has the following additions

1. Build the canonical loops, minimising the free energy by changing place-
ments of anchor points. Uses the CONGEN program.

2. The results are energy-screened using a program called Eureka.

For CDR-H3 specifically, WAM considers whether or not the loop is pre-
dicted to be ‘kinked’, changing its database search accordingly. WAM also
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considers the side chains when modelling CDR-H3. The accuracy is reported to
be between 1.3 and 2.7 Å RMSD for loops of lengths 10 to 12[79]. The authors
note the lack of examples of longer loops at the time WAM was developed.

The Prediction of Immunoglobulin Structure (PIGS) models CDRs as fol-
lows [44][45]:

1. The target sequence is aligned to known antibodies via the framework
regions. Alignment is performed with a Hidden Markov Model. The user
can optionally select which framework to use and improve the alignment
manually.

2. The closest templates (measured as RMSD distance between Cα backbone
atoms) for each loop are selected and aligned with the target. PIGS uses
the BLOSUM62 [25] score for determining which of the templates are
considered for forming the framework for the eventual loop.

3. Canonical loops are identified via sequence and grafted onto the model.
These loops that are not canonical are modelled by selecting a template
with the same length and highest sequence similarity.

4. The two predicted domains (light and heavy) are packed against each
other, taking into account certain residues that are known to be conserved
at the interface.

5. Side chains are modelled by either copying from the original templates or
predicted with the program SCWRL 4.012.

CDR-H3 loops in PIGS follow a special protocol. PIGS considers the pres-
ence or absence of the β bulge in its prediction of the CDR-H3 structure closest
to the framework region. Templates for CDR-H3 loops are selected from these
with the best BLOSUM score. If the loops have different lengths, insertions are
made between residues 92 and 104, as this has been found to be the location
at which insertions are made when ‘antibodies of known structure and different
CDR-H3 lengths are superimposed’ [44].

ABGEN [42] models all the CDRs in the same way — templates are selected
from a database, based on sequence similarity and length. Residue mismatches
are resolved by replacing side-chains, with clashes being removed by iteratively
changing the torsion angles. ABGEN achieves accuracies of 1.9Å RMSD for
loops up to 10 residues, rising to 3.0Å RMSD for longer loops.

RosettaAntibody, the antibody specific version of the Rosetta program, uses
the following methods to model CDR-H3 loops [78]:

1. Use BLAST to find templates. Reject these with a poor MolProbity
score. These Chothia-numbered, Kabat-defined structures form a set of
constraints for subsequent de novo modelling.

2. Perform de novo modelling with Next Generation Kinematic Closure [68],
whilst refining the VL-VH packing (using the Rosetta docking algorithm.

3. Incorporate the ‘kink ’ or ‘bulge’ prediction. Refine the loops by first set-
ting bond lengths and angles to so-called standard values, then gradually

12http://dunbrack.fccc.edu/scwrl4/
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increase the repulsive term in the Lennard-Jones potential, re-apply the
all-atom constraints and re-pack the side-chains.

Kinematic Closure (KIC) is a method that uses inverse kinematics from the
field of robotics [43]. Having one anchor point in space and one target, the
peptide backbone is modelled in the same way as a robotic arm, with fixed
lengths and restricted degrees of rotation around the joints. The authors report
an improvement in their 12 residue, 25 loop set of 0.8Å RMSD; the original
method in Rosetta averaging 2.0Å RMSD.

Stein et al [68] improve on how the KIC algorithm traverses the ‘rugged
energy landscape’ ; they test different sampling strategies, concluding that in-
tensification and annealing combined yield large accuracy gains. This Next
Generation KIC has been adopted by the latest version of Rosetta.

Messih et al [51] propose a new knowledge based approach to modelling
CDR-H3 using a machine learning approach called Random Forest. This method
chooses a template from a set of existing CDR-H3 loops. The chosen template is
fed to the MODELLER program to model the CDR-H3 loop, whilst the remain-
ing sections of the antibody are built with PIGS. The authors report significant
improvement over RosettaAntibody with ‘75% of cases achieving similar or bet-
ter accuracy’.

The structure-based antibody prediction server (SAbPred) can automati-
cally model the Fv regions using a template selected from SAbDab [15]. CDRs
are modelled using ConFREAD. If this is not possible, SAbPred reverts to using
MODELLER. ConFREAD, a specific version of FREAD also uses information
about the contact points that CDR loops make with their antigens. This in-
creases the accuracy in modelling CDR-H3 from 2.25Å on average, to 1.23Å.
The disadvantage with both methods is coverage. ConFREAD is not guaran-
teed to produce a prediction; the authors report the ‘coverage’ is 70%. The
latest version of SAbPred is known as ABodyBuilder, which combines SAbDab
with FREAD and several other programs to create an online submission system
for modelling antibodies13.

Kotai’s Anti-body Builder [81] models CDR-H3 by predicting whether or
not the loop is ‘bulged’. It then looks for loop fragments, filtering by sequence
similarity, secondary structure similarity, clash score and anchor residue simi-
larity. The top 20 structures are refined using molecular dynamics simulations.
Interestingly, the authors note that ‘slight flexibility in the non-H3 CDRs’ was
necessary to gain improvement in modelling CDR-H3.

Comparison of methods

The Antibody Modelling Assessment II (Antibody Modelling Assessment
(AMA)-II) [75] presents a comprehensive review of various antibody modelling
techniques. It considers several methods including Kotai Anti-body
Builder, PIGS, the commercial program Prime (which uses PLOP) and
RosettaAntibody. Generally, all methods managed an average of 1.2Å RMSD
(between backbone carbonyl atoms) for non-CDR-H3 loops. The mean RMSD
for CDR-H3 was around 3Å.

More specifically, the lengths of CDR-H3 ranged from 10 to 16 residues.
Modelling methods were tested both with and without a reference framework for

13Available at http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/Modelling.php
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CDR-H3. Some improvements were evident but “even with this additional infor-
mation, targets that proved difficult in the first round remained difficult” [75].
The two models with the worst results across the various methods had the
longest CDR-H3 loops.

The authors of SAbPred compared their method with the other approaches
in the AMA-II, reporting an overall Fv region accuracy of 1.19Å, comparable
to the methods tested in the AMA.

Despite the improvement in accuracy, revealed by the AMA, CDR-H3 ac-
curacy varies between roughly 1.5 and 3Å average RMSD. Shorter loops are
modelled more accurately. Marks & Deane [46] state that often, accuracies
worse that 3.0Å occur. Thy go on to conclude that few of the methods used to
predict CDR-H3 are purely knowledge based; CDR-H3 loops differ too much for
prediction based on previous observations to be effective. Using more restric-
tive features, such as these in ConFREAD increases accuracy but at the cost
of coverage. Ab initio approaches alone however, are more often more costly in
terms of runtime and do not take advantage of the useful structural information
already available. Research in this area appears to be moving towards hybrid
approaches, such as Kotai Antibody Builder, CODA, and latest RosettaAnti-
body algorithm.

1.3.4 Aims

The aims of this project are as follows:

• Evaluate various neural network architectures against the accuracy result-
ing models.

• Experiment with different encodings of sequence and structure in these
networks.

• Attempt to provide a confidence score for any predictions.

• Assess whether a neural network could provide a confidence score for mod-
els produced by other means.
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Chapter 2

Materials and Methods

2.1 Machine learning

Machine learning was defined by Samuel [63] as “giving computers the ability to
learn without being explicitly programmed”. Machine learning is a large topic;
many methods and algorithms exist. We focus on these areas relevant to CDR-
H3 modelling: these that have been applied to modelling tasks in the past and
new developments in these techniques.

Many machine learning techniques, such as Hidden Markov Models and Ran-
dom Forests have been used in various areas of bioinformatics and modelling.
In this work, we focus on neural networks.

2.1.1 Neural networks

Artificial Neural networks (Artificial Neural Network (ANN) or just Neural Net-
work (NN)) are one form of machine learning, inspired by biological neural net-
works. Such a network consists of artificial neurons with connections between
them, roughly analogous to axons and synapses in the human brain. Such neu-
rons receive a number of inputs, adjusted by weights. These inputs are combined
using a particular function and a signal is emitted. These signals go on to form
inputs to other neurons in different layers, or form the output of the network.

One of the earliest models is the Perceptron [62]. It is a form of linear clas-
sifier. It combines a set of inputs that are weighted, using a particular function,
outputting a 1 or 0. Modern neural networks are built from a similar compo-
nent but introduce a bias term and a non-linear transfer function. Perceptrons
arranged in multiple layers are mathematically equivalent to a single layer; the
transfer functions can be summed into a single function. In order to take advan-
tage of multiple layers in a neural network, non-linear transfer functions must
be used.

Neural networks have become quite popular at the time of writing. Major
companies such as Nvidia, Google and Facebook make extensive use of deep
neural networks, so called as rather than adding more neurons per layer, more
layers are added. This has proved popular in computer vision tasks, largely
because the hierarchical nature of the network reflects the problem in hand.
For example, in recognising a simple shape in an image, one first learns to
identify edges, then combinations of edges, then higher level shapes.
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Very large datasets are now available for academic purposes, such as the
MNIST database of handwritten digits1 or ukWaC2. Such datasets are big
enough to provide enough examples for an ANN to learn from.

Training a neural network requires a number of steps. Firstly, one needs to
create a loss function. Taking all the free values of the network as variables to the
function, one can calculate the cross entropy loss. As we know the underlying
distribution from our training data, the output of our network can be compared
to the correct values. This is referred to as the loss — minimising this value is
the goal of training.

To minimise the loss we need to take the derivative of the loss function. A
naive loss function would take all the training data, multiply it by all the free
variables and sum all of them together to find the loss. However, working out
the derivative of a loss function takes roughly three times the computation as
finding the loss itself. Given that a naive loss function in a neural network can
have millions of free parameters or more, computing the actual loss and correct
gradient is prohibitive.

Rather than consider the entire training set, a random subset is chosen. This
is called Stochastic Gradient Descent (Stochastic Gradient Descent (SGD)) and
while the estimation it provides of the loss is poor, it scales relatively well with
large datasets and large models. Various techniques can be used to mitigate
SGD’s limitations, such as taking smaller, many more steps.

Many of the mathematical operations in neural networks rely on linear al-
gebra. 3D computer graphics are similar. Thanks to the computer games in-
dustry, dedicated graphics processor units (Graphics Processing Unit (GPU))
have constantly grown more powerful. Their optimised matrix functions make
them almost perfect hardware for building and training neural networks (very
recently, dedicated chips have been built by IBM for this purpose but are not
available at present).

2.1.2 Neural network architectures

There are various kinds of neural network architectures. Each one is suitable for
a particular kind of problem. Several different kinds have been used (or could
be used) in bioinformatics problems, such as:

• Feed-Forward

• Recurrent (Recurrent Neural Network (RNN))

• Time-Delay (TDNN)

• Convolutional (Convolutional Neural Network (CNN))

• Long Short Term Memory (Long Term Short Term (LSTM))

Feed-forward or recurrent neural networks have either no dependencies on
their previous outputs, or several respectively. Feed-forward are the most basic
networks with no feed-back loops; data flows from one end and leaves at the
other. Feed-forward networks often have three layers: an input layer, a hidden

1at http://yann.lecun.com/exdb/mnist/
2http://wacky.sslmit.unibo.it/doku.php?id=corpora
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layer (so called because the user does not interact with it directly) and an output
layer. Some networks have more than one hidden layer — so called Deep Neural
Networks (DNN).

2.1.3 Time Delay Neural Networks

Time-delay neural networks have found use in processing natural language [77]
and in modelling CDR-H3 [60] (discussed in section 2.1.9). Their advantage
over simpler networks is their ability to incorporate the order of data into their
learning. This is achieved by having neuronal inputs that are sensitive to both
a feature and a time. Figure 2.1 illustrates this idea. Features, z, have a time
step, t, associated; in this case successive inputs look backwards by one time-step
from the previous input. Each input has a weight, just like a normal neuron,
but the input itself is only associated with that particular point in time.
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Figure 2.1: Diagram of a single Time-Delay Neuron. The inputs to the neuron
are on the left, marked z. Each input occurs again for a certain number of
time-steps (e.g z2(t − 1)). While the input value is repeated, it has a unique
weight for each time-step (in this case w2(t−1)).

2.1.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN or ConvNet) have one or more layers that
apply a convolving filter which reduces the number of input connections to that
layer, whilst increasing the layer’s depth. Applied originally to image processing
tasks [38], CNNs have found use in a variety of fields, including natural language
processing [35] and recommender systems [76].

CNNs are inspired by the organisation of neurons in the human visual sys-
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tem, where sets of neurons respond only to certain areas of the visual field,
with some amount of overlap. At each level in the CNN, different hierarchical
features are learned. For example, the first level of a CNN may have neurons
that are sensitive to straight lines. The second may be sensitive to a particular
shape such as triangle while the last layer would build on these features and be
sensitive to road warning signs.

Perhaps the most famous example of a CNN in widespread use is the digit
classifier by LeCun et al [38]. LeNet-5 as it is known, uses 7 layers and a series
of convolutions.

Figure 2.2: A typical CNN architecture. https://commons.wikimedia.org/

wiki/File:Typical_cnn.png.

Figure 2.2 shows a typical CNN architecture. CNNs introduce the concept
of a feature map. If one considers a typical computer image, each pixel is
represented by 3 values: red, green and blue. These channels can be mapped
to a particular filter (also known as a kernel) that is sensitive only to that
channel (or colour). The final result of applying this kernel to the entire image
is a feature map. As the filter is larger than one pixel (typically) the resulting
feature map will be smaller than the original image. However, there will be
multiple feature maps for each layer. The result is CNNs tend to get smaller
but deeper at each successive layer.

Each convolutional layer has a number of kernels which are convolved over
an input image, creating a feature map. The number of kernels convolved over
the image is equal to the number of feature maps which is equal to the depth.
A typical example might be the first layer of a ConvNet that looks at an RGB
image. Three kernels are convolved over the image, each one looking at a single
colour channel. If such an image was 300 pixels in both height and width, a 3
by 3 pixel kernel could be moved over the image 100 times in each direction,
creating a new layer of neurons 100 x 100 x 3.

The key difference is that each neuron in the convolutional layer is fully
connected to the depth information but only locally connected to the spatial
dimensions (the width and height). For example, a single neuron might be
attached to an input volume which has a size of 16 x 16 x 20. If the kernel in
use is 3 x 3 in size, each neuron would have 3 * 3 * 20 = 180 connections, rather
than 5120 connections, as would be the case if the neuron was fully connected
to every possible input value. The weights for each neuron are shared spatially,
but not across the depth.

Other functions are often added to CNNs in order to increase accuracy. Rec-
tified linear units (ReLU) add a small amount of non-linearity to aid in learning.
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Max-pooling takes a set of inputs (typically from a feature map) and reduces
the output by simply returning the largest value. This feature was implemented
to control over-fitting in the neural network. Another method commonly used
is drop-out, where neurons are randomly chosen to be ignored during training.
Such features can now be found in many other NN architectures.

The depth at each layer is chosen by the designer of the network; another
hyper-parameter. Values such as the stride (the distance the kernel is shifted
at each step), the padding (extra zeros surrounding the input) and the kernel
dimensions are also chosen arbitrarily but have a mutual constraint that the
kernel must exactly fit the input volume.

hkij = tanh((W k ∗ x)ij + bk). (2.1)

Equation2.1 shows how a particular value (i, k) in feature map h is computed,
from a set of weights W k. The neurons, their weights and biases (bk) are not
fully connected across the convolutional layer. The same weights are also used
across each stride of the kernel.

Relationship to Time-delay neural networks

Time-delay neural networks (TDNN) pre-date convolutional networks [77].

ok,p = fok(

J+1∑
j=1

wkjfyj(

I∑
i=1

nt∑
t=0

vj,i(t)zi,p(t) + zI+1vj , I + 1)) (2.2)

Equation2.2 defines the output of a complete TDNN. Focusing on a single
unit (the inner set of summations) the output is defined as a sum of the in-
puts over a set time period, with each time delay having a particular weight
(vj,i(t)zi,p(t)). This is analogous to the convolutional kernel. Consider an im-
age with dimensions [1,300], and a kernel with size [1,5]. As the kernel strides
across the image, new pixels are presented and older pixels leave. The width
of the kernel (5) is analogous to the number of time delays in the TDNN. The
output of the unit at any single step is dependent not only on the current pixel,
but on these surrounding it. With careful choice of parameters, a convolutional
network is a reasonable approximation of a TDNN.

2.1.5 Recurrent Neural Networks

Recurrent Neural Networks (RNN) take their outputs and feed-back to their
own inputs, potentially creating a circular dependency. This gives them the
advantage of processing arbitrary length inputs. However, training such net-
works is more complex as the error gradients tend to either vanish or explode
exponentially as the time between important events increases — optimising such
networks can be difficult [22]. RNNs are often unrolled for a certain number
of time steps to aid in design and implementation. Figure 2.3 illustrates this
architecture.
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Figure 2.3: Un-rolling an RNN reveals the inputs from new data, the inputs from
earlier time-steps and the corresponding outputs. https://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

2.1.6 Long-term Short-term neural networks

Long-term, short-term neural networks (LSTMs) are an extension of recurrent
neural networks that address some of the problems of RNNs. As the name
suggest, LSTMs are capable of remembering relationships that span both short
and long distances in time. Typically, they have been used in natural language
processing; an example being prediction of the next word in a sentence. The
context required for such a prediction depends not only on the word immediately
preceding the prediction, but also the earlier parts of the sentence.

Figure 2.4: A repeating module in a standard RNN typically contains one
component - a layer of neurons with an activation function. https://colah.

github.io/posts/2015-08-Understanding-LSTMs/.
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Figure 2.5: A repeating module in an LSTM contains four interacting systems.
https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

LSTMs attempt to overcome the shortcomings of RNNs, chiefly the exploding
and vanishing gradient problem. Several components comprise a LSTM cell.
Continuing with the brain analogy, we replace the feed-forward neuron with a
memory cell (or more commonly, just cell). The term cell is used because each
cell now contains a small amount of memory - it has a particular state over
time. In fact, the default LSTM implementation holds two states - the cell and
history states. These states have a particular size, chosen by the user.

The components of an LSTM cell differ over various papers and implemen-
tations, however the following components are common[22]:

• Forget gate

• Input gate

• Output gate

• Block input

• Cell state

The cell state c(t) can be thought of as the long-term state as it does not
pass through any transformation, save for the input addition and forget gates.
Some memories are added and others are dropped. The short-term h(t) state
passes through the forget, input and output gates.

The components of an LSTM block, and their associated functions are:

• The forget gate — ft = σg(Wfxt + Ufht−1 + bf )

• The input gate — it = σg(Wixt + Uiht−1 + bi)

• The output gate — ot = σg(Woxt + Uoht−1 + bo)

• The cell state vector — ct = ft · ct−1 + it · σc(Wcxt + Ucht−1 + bc)

• The output vector — ht = ot · σh(ct)

where

• xt is the input vector at time t.
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• ht is the output vector at time t.

• ct is the cell state vector at time t.

• W,U and b are the weights and biases of the neural network in question.

• ft is the forget gate vector — the weights of remembering old information.

• it is the input gate vector — the weights for acquiring new information.

• ot the output gate vector — the candidate for output that feeds back.

• σg is a sigmoid activation function.

• σc is a hyperbolic tangent activation function.

• σh is a hyperbolic tangent activation function (replaced with other func-
tions in various LSTM variants).

One key aspect of the LSTM is the output at t, which becomes the input
at t+ 1, has no activation function, therefore it does not degrade in the way in
which a normal RNN would, thus avoiding the vanishing gradient problem [73].

The forget gate allows a LSTM cell to forget its own state - effectively
resetting the cell.

Long Short Term Memory (LSTM) neural networks are designed to learn
from sequential data; a subclass of RNNs. LSTMs are capable of scaling to
longer time frames and are not specific to any particular problem [22]. They
were designed to overcome the problems involved with RNNs, and have been
used in a variety of tasks — from handwriting recognition to polyphonic music
modelling.

LSTM networks are built from LSTM blocks. Several kinds of blocks exist
with various features added or removed. The traditional LSTM block (figure
2.5) contains 4 different block with different activation functions. The behaviour
of the block is controlled by a set of gates: the forget gate, the input gate and
the output gate. Each of these is connected to one of the neural networks.

2.1.7 Sequence Labelling, Classification and Sequence to
Sequence

Recurrent neural networks, built of LSTMs, produce outputs at each time step
through-out their run ( ht in figure 2.5). There are two main approaches one
can take when processing this state:

• Pass each ht through a dense layer of shared weights.

• Take the final state only, passing through a dense layer of shared weights.

The first approach is often referred to as Sequence Labelling. One common
example of this technique is classifying each word in a sentence. As each word is
presented, the state of the particular LSTM cell is passed through the output-
dense-layer and a label is given. This has the effect of providing the same
number of labels as their are entries.

The disadvantage of this technique is the earlier items in the sequence do
not have any previous history to guide their decision, which can result in earlier
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items in a sequence being misclassified. This can be somewhat ameliorated by
using a bi-directional LSTM (discussed in next section). We test the sequence
labelling approach with a discretised representation of the torsion angles dis-
cussed in section 2.4.7.

The second approach is often referred to as Sequence Classification; the
entire sequence is given only one classification based on the output of the final
LSTM cell. This last-relevant-output is feed into a dense-output-layer and the
final classification is considered. Rather than output a class, we take the final
state and use the dense layer to produce a set of real numbers, representing the
φ and ψ angles.

Sequence-to-Sequence networks (Seq2Seq) are somewhat different from the
other two approaches. At their core, they contain an RNN, usually built of
LSTM units, but they differ considerably in the overall architecture, making
use of a decoder and encoder. Seq2Seq networks have found considerable use in
human language translation [70] among other variable sequence-based tasks3.

Seq2Seq builds on the concept of the autoencoder. Rather than provide a
network with a dense data format decided by hand, an autoencoder is fed both
the input and desired result. It then learns its own internal representation,
sometimes referred to as a meaning or thought vector.

With the encoding learned, the Seq2Seq network can be tested by providing
the input sequence only. This is converted to a meaning vector which is then
passed to a decoder, which converts the meaning vector back into our desired
output. Figure 2.6 shows this process in more detail.

3See also https://research.googleblog.com/2016/09/a-neural-network-for-machine.

html
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Figure 2.6: An overview of a Seq2Seq network, translating a sentence from En-
glish to French. The hidden layers are both RNNs with a dense, fully-connected
projection layer converting the cell states into classifications.

Another difference is the addition of start and end sequence markers. In
the example given in figure 2.6, the French translation contains fewer words.
The counters < s > and < /s > denote the end of the input and the end of
the translation respectively. In the case of natural language translation, this is
an essential feature. In our case however, the output sequence will always be
identical in length to the input sequence.

2.1.8 Machine learning, Bioinformatics and Modelling

Machine learning has been used in various areas of bioinformatics. Several
examples exist related to modelling proteins.

GenTHREADER, mentioned in section 1.3.1, generates a set of scores which
are fed into a neural network to produce a final rating of the sequence to fold
alignment [32].

The Neural Network for Promoter Prediction (NNPP) is an example of using
a neural network to locate areas in a sequence that might be gene signals [85].
It is an example of a TDNN.

Sønderby and Winther use an LSTM to predict secondary structure from
sequence [73].
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2.1.9 Neural networks and CDR-H3

Reczko and Martin [60] attempted to predict the conformation of CDR-H3 using
a TDNN. They achieved an accuracy of around 2.652Å. The training set loops
were between 8 and 17 residues long. Accuracy was sub 2.0Å in loops of 7
residues or less. The training set consisted of 1046 loops, from a total set of
1976.

Knowledge of the environment is not part of the input data to the neural
network. The authors suggest that this is what accounts for the drop-off in
accuracy for longer sequences, pointing out that similar accuracies have been
achieved by other methods that also do not consider the environment.

2.1.10 Tensorflow

Tensorflow is a library published by Google for machine learning4. It is built
around the concept of passing tensors through a graph, built from various oper-
ations on these tensors, one after another. Figure 2.7 describes how the classic
model neural network - neurons, weighted connected edges and a single output
- map to a matrix or tensor representation.

Figure 2.7: A two layer ANN with the first layer described in terms
of tensor / matrix operations. https://hackaday.com/2017/04/11/

introduction-to-tensorflow/.

4Available from https://www.tensorflow.org
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2.1.11 Variable lengths

Neural networks have a fixed size for each layer; there are a fixed certain number
of neurons and connections. In image classification tasks for example, the input
images are resized to fit the fixed size before processing.

In the AbDb dataset the longest CDR loop is 28 residues long, with the
shortest being 2 residues in length. The majority of loops cluster around the 8
to 12 range.

Reczko et al [60] built a network that supports loops of up to 22 residues.
Loops that are shorter are padded with zero values. This particular architecture
considers residues in pairs, with the first residue being paired with the last, the
second residue being paired with the penultimate residue, and so on. When the
number of residues is exhausted, the remaining pairs (referred to as spinors)
are set to zero.

We create a mask for each training example, based upon the input data.
This mask is set to 1 where a value should be considered, and 0 otherwise.
The cost functions and output functions are multiplied by this mask, effectively
setting the neuron outputs to 0 and ignoring their contribution to the error. 5

2.1.12 Epochs and batches

When a single training example is presented to the network at a time, one can
be said to be performing stochastic gradient descent. In batch gradient descent,
the entire training set is presented at once. Typically, most networks perform
mini-batch gradient descent, which presents a subset of the training data at each
training step.

Mini-batch gradient descent has three advantages over the other methods.
Firstly, it takes advantage of new hardware, particularly GPU hardware, which
is optimised for matrix multiplications on a large scale. Using a mini-batch
decreases the learning time[23]. Secondly, using the entire dataset is often in-
feasible due to memory limitations and the number of parameters required to
calculate the gradient of the cost function. Finally, using a single value results
in a very noisy cost value over time. Using a number of simultaneous samples
result in a smoother gradient, avoiding some of the smaller local minima and
maxima. This can be seen as a form of normalisation, improving the robustness
of the network.

The size of the batch is one of a number of hyper-parameters the user of
the network must tune for optimum performance. Another such parameter is
the number of epochs a network will run for. A single epoch is defined as the
the period of training between where a network sees a repeated datum. Once
a network has seen the entire training set, an epoch has passed. The network
will likely be trained over the course of several epochs, the number of which
is decided by the user, potentially with some early stopping criteria in mind
(discussed in 2.2.1).

Tensorflow encourages the user to pass training examples as batches (to the
point where certain functions do not work unless you pass in a batch). Typically,
we use values between 5 and 50 in step with the training-set size.

5approach is adapted from the work by Danijar Hafner https://danijar.com/

variable-sequence-lengths-in-tensorflow/
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When training the network, a batch is created at random from the training
set, then discarded. Per epoch, each batch contains a random set of unique
loops.

2.1.13 Gradients

Batch normalization is a technique one can apply, when using batches, to ad-
dress the problem of exploding and vanishing gradients. Given a mini-batch,
Batch normalization zero-centres and normalises the inputs, following with a
scale and shift on the result. This operation lets the “model learn the opti-
mal scale and mean of the inputs for each layer”[23]. In order to centre and
normalise the inputs, the mean and standard deviation is computed across the
current batch of input data.

Gradient clipping helps to reduce the exploding and vanishing problem by
limiting the minimum and maximum gradients to a particular value (another
hyper-parameter), usually -1.0 and 1.0 respectively. Certain networks we have
tested have a tendency to create large gradients resulting in numerical error;
gradient clipping fixes this problem. Clipping to this range makes particular
sense as the output of the network represents the sine and cosine of the angle
in question.

2.1.14 Basic error function

Equation 2.3 describes the basic error function - the mean of the sum-squared-
difference between the predicted (x) and actual(t) angles. Here, M is a mask,
set to 1 or 0, with L being the length of the CDR loop in question. I is the
maximum length of a CDR in the current dataset (the input tensors within our
neural network must be of a fixed size).∑I

i=1(xi − ti) ∗ (xi − ti) ∗Mi

L
(2.3)

x and t in equation 2.3 are tensors that contain the sine and cosine of the φ
and ψ angles (as radians). While this error function is simple to compute, it only
considers each angle on an individual basis, rather than the global structure.
While it is expected that neurons with larger errors will be adjusted more than
these with smaller errors, the error function does not model the explicit criterion
that a loop must start and end at particular locations.

We refer to the number returned by this function over the training set as
the training error. We can also apply this function to items from the validation
set, referred to as the validation error.

2.1.15 Optimizers

Tensorflow provides a set of optimizers one can use in order to minimise the cost
function and train the network. In our experiments we use Gradient Descent,
Adagrad [13] or Adam[36] optimizers.

Adagrad treats each feature seperately, creating a learning rate for each.
The sum of the squares of the past gradients are used to alter the learning rate
over time, reducing the size of the steps the optimizer will take. Adagrad is
recommended for use with sparse datasets, such as the bit-field representation
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of our amino acids[57]. It is the optimizer used in our networks that produce a
range of continuous values along with standard gradient descent.

Adam appears to be the most widely used of the various optimizers[23]. In
addition to storing the squares of past gradients, Adam also keeps an exponen-
tially decaying average of past gradients, providing a momentum. We use Adam
in these networks where a classification is required, described in section 2.1.7.

Arguably, the most important hyper-parameter is the learning rate. If this
number is too large, optimizers will make large changes to the neurons, most
likely never converging on the lowest minima. If this number is too small, the
optimizer will get stuck in local minima. Both Adagrad and Adam start with
one particular rate, then gradually adjust the rate downwards with each step.
In the case of Adagrad we tend to start with 0.45, whereas Adam begins at
0.004.

It has been suggested that altering the learning rate whilst training im-
proves performance [23]. Many techniques exist for altering the learning rate
across time, such as exponential decay and performance scheduling among oth-
ers. These can be implemented manually within Tensorflow, however both Ada-
grad and Adam monitor their own learning rates and adjust accordingly based
on past performance, so manually changing their rates is not recommended.

2.2 Neural networks in Tensorflow

2.2.1 Regularisation

Neural networks can suffer from the problem of over-fitting, also referred to as
memorising. Rather than learning an underlying relationship in the data, the
network merely remembers the examples it has been shown. This can detected
by comparing the training error with the validation error. Should the validation
error begin to increase as the training error continues to decrease, over-fitting
is likely.

Regularisation is particularly important to this work, as the AbDb is rela-
tively small, when compared to other data-sets in use in other deep-learning
networks. Once the network begins to see similar examples, after a certain
number of epochs, the tendency to over-train increases.

The process of constraining a model in order to reduce the possibility of
over-fitting is called regularisation. One simple example of regularisation in a
polynomial model is to reduce the number of polynomial degrees.

Ridge regression (or Tikhonov regularisation) [23] involves applying a reg-
ularisation term to the loss function. Equation 2.4 describes the term that is
added to the existing cost.

α
1

2

n∑
i=1

θ2i (2.4)

1

2
(‖w‖2)2 (2.5)

In the case of a neural network layer, θ refers to the weights; equation 2.5
describes the same equation in different terms. ‖w‖2 represents the l2 norm of
the weight vector. This form of regularisation is often referred to as l2 regular-
isation.
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Lasso (Least Absolute Shrinkage and Selection Operator Regression) is simi-
lar to Ridge regression but uses the l1 normalisation of the weight vectors instead
of half of the square of the the l2 norm[23], shown in equation 2.6.

α

n∑
i=1

|θi| (2.6)

Tensorflow has several functions one can apply to a tensor in order to apply
regularisation 6. For example, l1 regularisation can be added thusly:

base_loss = tf.reduce_mean(xentropy, name="avg_xentropy")

reg_losses = tf.reduce_sum(tf.abs(weights1))

+ tf.reduce_sum(tf.abs(weights2))

loss = tf.add(base_loss, scale * reg_losses, name="loss")

Early-stopping is considered a form of regularisation. Typically, when a
network begins to over-fit the training data, the error on the validation set
begins to increase as the training error decreases. It is preferable to stop training
before this occurs. Recording the error over each epoch or step, an algorithm can
decide to stop training early as soon as the validation error begins to significantly
increase after a period of decreasing. This necessitates the use of averaging in
order to smooth out local fluctuations in the error rate. In our early experiments,
we did not use early-stopping, rather running for a set number of epochs. Later
networks would monitor the learning rate, saving the most accurate version
generated.

Drop-out is another regularisation method proposed by Hinton et al [28]. The
process is relatively simple - every neuron is given a chance of being ignored
during a particular step in the training process. Once training is complete,
all neurons are considered. The drop-out probability is usually 50% but other
values can be used[23]. Drop-out is easily implemented in Tensorflow but results
in another hyper-parameter to tune.

2.2.2 Convolutional nets

Tensorflow provides several functions for creating convolutional networks. We
use a single dimensional window, 5 units long and a single convolutional layer.
Adding extra layers with different window sizes and depths is also possible and
we briefly consider up to 3 convolutional layers, each with a smaller window
size than the last. This hierarchical approach is an attempt to capture useful
information at different scales.

The output of our network is usually fed into a fully-connected or dense
layer, which presents the final result. In the majority of our experiments, this
layer is max cdr length ∗ 4, as each residue produces 4 numbers corresponding
to the sine and cosine of the φ and ψ angles. This layer may also have a bias
term applied.

6https://www.tensorflow.org/api_docs/python/tf/contrib/layers/apply_

regularization
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2.2.3 LSTMs

The Tensorflow implementation of the LSTM cell is implemented based on the
work of Zaremba et al [83]. We investigate a small variety of sizes - from 64 to
512. Typically, only a single LSTM layer is included due to time and resource
constraints. A single LSTM RNN layer takes longer to train in practice and
requires more more memory depending on the number of steps to unroll.

Like the convolutional net, the LSTM layer is fed into a fully connected layer,
max cdr length∗4 units wide. Bidirectional LSTMs perform a combination step
on the two passes before passing to the output layer.

2.2.4 Regularisation in LSTMs

“Unfortunately, dropout, the most powerful regularization method for
feedforward neural networks, does not work well with RNNs.”[83]. Fortunately,
Zaremba et al [83] provide a solution. Drop-out is applied only between the
non-recurrent connections, i.e the ht state when being fed into a second RNN
layer.

Drop-out cannot be applied to the final dense layer, as the primary purpose
of this layer is to change the data into the final required format. Some of the
networks in our experiment only have a single RNN layer and are therefore at
greater risk of over-fitting.

2.2.5 Variations and approaches

Our initial investigation looked at a naive LSTM implementation, listed in ap-
pendix B.4.

The number of time-steps is analogous to the number of residues. At each
step, the LSTM considers the current step and all the previous steps, however
all steps are available once the entire sequence has been considered. One may
take all the time-steps and combine them with a fully connected layer, or just
the last relevant step. We consider both approaches.

In many problems where LSTMs are applied, the size of the input data is not
known. In our case however, the entire sequence for the CDR loop is known at
prediction time. We can therefore use what is known as a bi-directional LSTM.
As the name suggests, such a network considers both directions of the sequence,
forwards and backwards. A separate function is used to combine the two passes.
In our case, we use addition, both of the entire sequence of steps, and with just
the last step of both passes.

It is debatable whether addition is the best choice for combining passes. We
also consider both taking an average of the two passes, and concatenating both
passes into a double wide layer for sending to the final dense layer.

Figure 2.4 shows a typical LSTM unit, complete with several gates. Other
units based on the original LSTM exist. We consider two major variations:
gated recurrent units (GRUs) and peephole gates.
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Figure 2.8: A gated recurrent unit (GRU). The equations for each
output are shown on the right. https://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

GRUs were proposed by Cho et al [10]. The major differences are the combi-
nation of the cell and hidden states, a single controller for both the forget and
input gates, and the removal of the output gate. Figure 2.8 describes the unit,
with the associated equations for each gate within the unit.

Peephole gates were proposed in 2000 by Gers and Schmidt[21]. This tech-
nique adds a weighted connection between the cell state and the forget, input
and output gates of the same cell. The effect allows the unit to occasionally
ignore input signals from previous states, or error signals during back propaga-
tion.

We use GRUs where possible in our networks as they are simpler than a tradi-
tional LSTM, take less time to train and provide results of similar accuracy[23].

2.3 Recreating structure

2.3.1 NeRF algorithm

There are several methods to convert a series of torsion angles to cartesian co-
ordinates, most of which are described by Parsons et al [56]. In their work, they
compare general rotations, Rodriguez-Gibbs and quaternion based solutions,
with their natural reference methods, known as NeRF and SN-NeRF.

The intuitive approach is to perform a series of trigonometric rotations,
possibly creating a series of matrices or quaternions. Parsons describes a second
method where the atom is placed in two steps. The first step uses only the bond
angles and distances to place the atom into position. The second step rotates
the atom into the reference frame, based on the previous three atoms.

The NeRF method is summarised as follows:

−→
D2 = (Rcos(θ), Rcos(φ)sin(θ), Rsin(φ)sin(θ)) (2.7)

Where R = bondCD, θ = angleBCD, φ = torsionBC.
The atom to be placed is labelled D, with atoms A,B,C already placed in

space. D is placed at a starting position equal to the bond distance between C

and D. Equation 2.7 describes the first step in placing the new atom at
−→
D2

ˆ̂
M = [b̂c, n̂× b̂c, n̂] (2.8)
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Equation 2.8 describes the construction of the final rotation matrix, where
bc is the normalised vector between atoms B and C, and n is defined as the

normalised cross-product between
−−→
AB and b̂c.

The bond angles and lengths are derived from the work of Laskowski et
al [37], and Fox et al [20]. The final values are listed in table 2.1 and table 2.2.

Atom pair Distance

N - Ca 1.4615Å
Ca - C 1.53Å
C - N 1.32Å

Table 2.1: Distances between atoms used in the NeRF algorithm.

Atom trio Bond angle
Ca to C 109◦

C to N 115◦

N to Ca 121◦

Table 2.2: Angles between atoms used in the NeRF algorithm.

Fox et al note that the distance between the nitrogen and carbon alpha
atom within a proline residue is closer to 1.355Å and that the angle between
carbon alpha and carboxyl carbon, via nitrogen, tends to vary by 5± degrees.
These differences result in a slight increase in RMSD between Cα atoms, versus
GenLoop.

Some reconstruction algorithms ignore the omega (ω) angle, making the as-
sumption that the amino-acid planar bond between the carboxyl carbon and
nitrogen is always 180◦. In certain cases, proline can be found in its cis confor-
mation, affecting the omega angle. Within the AbDb dataset, 390 loops have
omega angles are more than 30◦ away from 180◦, representing 7.5% of the total.

To assess the accuracy of reconstruction from torsion angles, NeRF created
structures were compared to real atom positions derived from the PDB files.
The torsion angles themselves are derived from the original PDB files, using
the code in appendix B.2. These angles were verified against the output of the
program torsions7. In addition, a third set of coordinates, generated by the
program genloop, derived from the same set of torsion angles was also used as
a comparison case.

We compare three sets of PDBs : these generated by the program genloop,
these generated by NeRF and the original loop extracted from the full antibody
PDB. Using PDBfit, the generated loops are matched to the original loop and
an RMSD score based on the backbone atoms is derived. The PDBs are drawn
from the AbDb dataset. The experiment is performed twice; once with the real
omega angles and once with omega set to 180◦. The mean scores are shown in
table 2.3.

In addition to generating a mean value, several models were found with with
RMSDs over 1.0.

7http://www.bioinf.org.uk/software/torsions/index.html
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Creation method RMSD with real Omega RMSD with 180 omega
GenLoop 0.785 1.52
NeRF 0.846 1.539

Table 2.3: Difference in Ångströms between loops created with NeRF and Gen-
Loop.

Creation method Total over 1.0 RMSD with
real omega

Total over 1.0 RMSD with
180 omega

GenLoop 514 (17.9%) 1269 (44.2%)
NeRF 679 (23.6%) 1442 (50.2%)

Table 2.4: Comparing real and fixed omega angles with GenLoop and NeRF.

Figure 2.9: Three examples of reconstructed loops from AbDb: 1RUR 1 (grey),
1RZG 2 (red) and 3MME 2 (blue). 1RUR 1 shows a good alignment of both
methods. 1RZG 2 shows both both methods unable to converge on a real loop
that appears to be incorrect. Finally 3MME 2 shows a reasonable alignment
with NeRF but a poor alignment with GenLoop.

Figure 2.9 shows three examples of reconstructed loops, compared against
the ground truth. The loop in red, 1RZG 2, has a number of missing residues in
the centre, though both algorithms still attempt the reconstruction. 3MME 2
(blue) shows a good alignment with NeRF but a poor one with GenLoop.

2.4 Datasets and data representation

Our experimental datasets are derived from two major sources: AbDb and the
Protein Databank (this latter set is referred to as LoopDB). Both sets of PDB
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files were entered into a database for ease of batching and examination.

2.4.1 AbDb dataset

The initial dataset we consider is derived from AbDb[18]. This data set is
derived from a compilation of antibody structures in the Protein Databank.
AbDb provides antibody numbers with Chothia, Kabat and Martin numbering
schemes, described in 1.2.2. At the time of writing the database has a number
of antibody structures, described in table 2.5.

At the time of writing, AbDb contains 2935 entries, of which 1716 are con-
sidered duplicates or redundant. We performed experiments on the entire set
with no restriction, removing duplicate entries from all the datasets used, and
removing duplicate entries in the validation and test sets only.

Datasets Complex type Processed
PDB files

Resultant
antibodies

non-
redundant
antibodies

Complete
anti-
body

Protein 976 1591 673
Non-protein 275 374 194
Free antibody 580 973 531
Complete dataset 1794 2938 1184

Light chains

Protein 12 17 5
Non-protein 9 17 5
Light only 77 137 48
Complete dataset 86 171 52

Heavy chains

Protein 88 162 74
Non-protein 5 11 5
Heavy only 47 94 51
Complete dataset 134 267 121

Table 2.5: Counts of the various types of structures in the AbDb dataset, taken
from http://www.bioinf.org.uk/abs/abybank/abdb/

A certain amount of processing takes place for each PDB file extracted
from the Protein Data Bank. To briefly summarise, chains are identified, non-
antibody chains are checked for redundancy and whether or not they can be
considered an antigen, and if so, does they contain contact CDRs. The com-
plete processing pipeline is described by Ferdous et al [18].

Although this resource is invaluable to researchers from several fields, the
number of training samples is still low in comparison to other training sets
in similar fields. For example, the famous MNIST database8 contains 70,000
images. Nevertheless, this dataset forms the basis of our experiments.

We process each entry in AbDb by extracting the atoms and residues from
95 to 102 inclusive, on the heavy (H) chain. These extracted loops are stored
within a database for use by our networks. Atom positions and residues are
stored first. A second step generates the torsion angles for each loop, entering
these into the database for later retrieval. Finally, the redundancy data is also
stored in the database to allow for the creation of non-redundant sets.

8http://yann.lecun.com/exdb/mnist/
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2.4.2 LoopDB dataset

LoopDB is the name given to a much larger set of structures that are similar to
CDR-H3 loops, extracted automatically from the Protein Databank.

All the available antibody structures within the PDB are analysed to find the
distances between the three residues are the N-terminus (i.e H92, H93 and H94)
and the C-terminus (H103, H104, H105). The mean and standard deviation of
these 9 distances are then calculated and used as criteria to select protein loops
from the entire Protein Databank. If a particular stretch of protein lies within
two standard deviations of these distances, the loop is included in the dataset.

At the time of writing, the LoopDB set consists of 561477 loops. Of these,
403298 are between 3 and 32 residues long, with no errors or unknown residues.
Each loop contains three extra residues at both ends, which are removed in a
pre-processing step before being added to our database for use by our networks.
Again, just as with AbDb we store the atom positions and residues first, before
the second step - generating and storing the torsion angles.

2.4.3 Rejections and redundancies

Both AbDB and LoopDB contain loops that cannot be used for the following
reasons:

• Models do not contain complete lists of atoms, making complete backbone
angle determination impossible.

• Residues labelled as UNK, GLX, CSO or ASX.

Many of the loops in AbDb are duplications of others. The complete list
of duplications can be found at http://www.bioinf.org.uk/abs/abdb/Data/

Redundant_files/Redundant_LH_Combined_Martin.txt. This information is
incorporated into our database. LoopDB also has several redundant loops, but
no list currently exists. We classify a loop as redundant if another loop within
the database has exactly the same residues in exactly the same order.

2.4.4 Dataset size versus parameter count

The Vapnik-Chervonenkis dimension (VC dimension)[6] is a number that “can
be viewed as a measure of the richness (or diversity) of the collection of all
functions x → N(θ, x) that can be computed by N for different values of its
internal parameters θ”[6] where N is the number of outputs. This number
is proportional to the number of training examples that are needed to train a
network to approximate a target function. VC can be applied to many functions,
not just neural networks, however in this case, VC is dependent on the number
of weights, neurons and the activation function in use.

Shai Shalev-Shwartz & Shai Ben-David define the largest possible VC for
a neural net with weights taken from a finite family and sigmoid activation
functions as O(|E|)[64]. In this context, the finite family refers to real numbers
represented by 32 bits within a computer. This equation is considered a rough
guide as it assumes the network is acting as a classifier.

Taking network 02 (presented in appendix B.3) as an example, we can cal-
culate the number of parameters as follows:
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• convlayer = windowsize(5) ∗ numacids(20) ∗ numacids(20) +
numbiases(20) = 2020

• connectedlayer = numacids(20)∗maxCDRlength(28)∗outputsize(112)+
numbiases(112) = 62832

• outputlayer = outputsize(112) ∗ outputsize(112) + numbiases(112) =
12656

• total = 77508

This suggests we need at least 77,508 examples in our training set. The
number of parameters is considerably smaller than other networks in use today,
such as VGGNet [67] which contains a number of parameters in the order of
138 million9.

2.4.5 Input representation

One simple way to represent the loops is to use a bit-field. Each amino acid
is represented as a 1 dimensional vector, 20 bits long. All the bits are set to
0 except for a single 1, representing the amino acid in question. This can be
fed directly to the neural network’s input layer neurons, effectively making one
neuron sensitive to one amino acid.

This method is referred to as a sparse representation; there is a large amount
of redundancy. In some applications, such as natural language processing, words
from a dictionary could be represented this way, but would results in vectors with
unmanageable lengths. In such cases, a dense representation is often used; a
method that encodes more information per bit. We consider two dense methods
- BLOSUM and 5D encoding.

BLOSUM

Block Substitution Matrices (BLOSUM)[25] are used to generate a score be-
tween alignments of amino acid sequences. When aligning such sequences, there
are different probabilities that a particular amino acid will be replaced by an-
other. Rather than having a single score (such as +1 for a match, −1 for a
mismatch), the score is related to how likely the particular substitution is.

BLOSUM are the same length as out bit-field representation, but provide
more relevant information to the network.

5D encoding

There have been a number of vector representations of amino acids. One of
the more recent approaches by Li and Koehl[39] derive a 3D representation of
an amino acid by performing principle component analysis (PCA) and multi-
dimensional scaling (MDS) on substitution matrices such as BLOSUM. They
claim an increase in performance when classifying proteins into folds.

They perform several reductions in different dimensions. In this work we
use their published values for 5 dimensions, listed in table C.0.1.

9See http://cs231n.github.io/convolutional-networks/#case for a breakdown of the
calculation.
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3-mer representation

Rather than map a single residue onto a pair of angles, we can take a particular
triple of residues and map these to a single pair of angles. This has the potential
to create a denser encoding, whilst considering any potential effects the local
neighbourhood may have on a particular pair of angles, rather than holding a
single residue responsible. This idea is discussed in Sutcliffe’s thesis[69].

We can do this in a number of ways with our existing data encoding schemes.

• Concatenate the three bit-field vectors, creating a single vector 60 units
long, with three positive integers instead of one.

• Concatenate the three 5D vectors into a vector of length 15.

• Perform an addition on the three 5D vectors together to form a new 5D
vector.

2.4.6 Internal representation and activation functions

Internally, the torsion angles are represented as the sine and cosine of the original
angle. This removes the discontinuity between 0◦ and 360◦ as well as mapping
to the range of the tanh activation function.

Neurons produce a value based on their input weights and some activation
function. Several functions over the weights can be used. Popular functions
include the logistic function,the sigmoid function, hyperbolic tangent and the
Rectified linear unit or ReLU.

Originally the sigmoid function was used to generate the output from a
neuron. This function has largely been dropped in favour of the ReLU and
tanh[23].

The hyperbolic tangent (or tanh) activation function is expressed as shown
in equation 2.9.

y =
ex − e−x

ex + e−x
(2.9)

Both sigmoid and tangent functions begin to saturate as their output value
approaches the maximum or minimum (for sigmoid functions, the minimum is
0.0, the maximum 1.0. The tangent function is bounded from -1.0 to 1.0). The
gradient at these points approaches 0, effectively vanishing. This is another
example of the vanishing gradients problem (see section 2.1.6).

The ReLU has “revolutionized deep learning”[57]; it appears to be the most
popular activation function, as it is easy to compute and provides a constant
gradient for positive values, no matter how large or small. Equation 2.10 de-
scribes how a ReLU is computed.

y = max(0, wTx+ b) (2.10)

Despite their success, ReLUs do suffer from a form of the vanishing gradient
problem called dying ReLUs[23]. During training, some neurons begin to only
output 0. This may happen, for example, if the learning rate is too high and
the inputs sum to less than 0. At this point a 0 gradient is returned, effectively
halting any further updates to that neuron.
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This problem is addressed by a family of ReLU functions called leaky ReLUs.
These functions do essentially the same thing: provide a small gradient for values
below zero. The basic leaky ReLU is described in equation 2.11

LeakyReLUα(z) = max(αz, z) (2.11)

Variants include the parametric ReLU (PReLU), randomized leaky
ReLU (RReLU) and the exponential linear unit(ELU).

Neither the ELU or tanh functions cover the range -1.0 to 1.0 completely.
ELU begins to saturate close to -1.0, whereas tanh will never reach -1.0 or 1.0.

For the majority of networks tested, we used the tanh activation function
throughout. In some networks, we use ReLUs or ELUs for the internal layers,
and tanh for the output layer, converting our internal values into the final angle
range.

Whilst non-linearity is a defining feature of a neural network, using tanh
implies that values close to 0 will change more rapidly than these nearer -1 or
1; certain angles may not be reached or quickly passed over.

We investigate leaky ReLUs where possible within our experiments, but the
majority of networks tested use the tanh function.

2.4.7 Discrete classes

Many of the example networks given in the Tensorflow documentation10 are
classifiers. Rather than attempting to match a series of real-valued numbers to
another such set, the network returns a vector of probabilities. These correspond
to the network’s confidence that a particular input belongs to a certain class.

Typically, these probabilities are passed through the softmax activation func-
tion. If there k classes and the weight for the i-th class is w(i) then the predicted
probability for this i-th class given by the input vector x is given by equation
2.12[57].

P (yi=1/x) =
ew

(i)T x+b(i)∑k
j=1 e

e(j)T x+b(j)
(2.12)

Softmax is a generalisation of the logistic regression, supporting multiple
classes rather than just two. The probabilities returned from this function are
normalised. Softmax is usually combined with the cross-entropy loss function,
defined in equation 2.13[57].

J = − 1

m

m∑
i=1

K∑
k=1

y
(i)
k log(p̂

(i)
k ) (2.13)

As CDRs are variable length lists of amino acids, we need a method that
can support classifying each residue in a variable list. Using an LSTM based
RNN within tensorflow, we can take the state at each time step, passing this
state through a fully connected, dense layer, producing a classification. This
approach is known as sequence labeling. We share the weights between each
step in the RNN; as each step is computed, the same tensor of output weights
is updated.

10available at https://www.tensorflow.org
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2.4.8 Validation and test sets

Regardless of the choice of dataset, three subsets were created for training,
validation and testing. In the early experiments, 80% of the available data was
used for training, 10% on validation, and 10% for testing. With the larger sets
we alter this to a 70%, 20%, 10% split to better gauge on-going performance for
early stopping. These sets are chosen at random from the database.

2.5 Deriving errors and accuracies

In order to derive an accuracy score for the trained network, the sine and cosine
angles produced from the output layer of the neural network must be combined,
pairwise using the atan2 function, creating a set of torsion angles.

Using the NeRF algorithm, the complete backbone (i.e the nitrogen, car-
boxyl carbon and carbon alpha for each residue) is reconstructed, both for the
predicted angles and the real angles. These loops are aligned and compared,
resulting in a root-mean-squared-deviation (RMSD) between the Cα atoms, in
Ångströms.

As the generated loops are created within their own cartesian coordinate
system using the NeRF algorithm, their orientation and final position will be
different from that found in the PDB file. We use the program PDBfit [74]11

to superimpose the real loop onto the predicted loop and generate an RMSD.
PDBfit implements the McLachlan fitting algorithm[50].

We refer to the loop generated by our neural network from the existing
residues as the predicted loop, the loop reconstructed from the original torsion
angles as the intermediate loop, and the experimentally derived loop from the
PDB file as the real loop.

In the first stage of comparison, the predicted loop is compared against the
intermediate loop. This removes any differences caused by the assumptions
made by the NeRF algorithm, such as average bond lengths, a fixed angle for
omega, and the use fixed, average angles between backbone atoms. The final
accuracy of the network is determined by comparison with the real loops.

11Available at http://www.bioinf.org.uk/software/bioptools/
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Chapter 3

Results

3.1 Organisation

The number of possible architectures and combinations of hyper-parameters
available to us is vast. In practice, certain architectures previously
discussed, have been shown to perform better in particular circumstances.
Hyper-parameters have limits and there is some guidance in choosing the
correct activation functions, error functions and other such components.

The approach taken in this work starts with a wide investigation of some of
the possible architectures. We take the most promising approaches and submit
them to further analysis. We briefly investigate some of the more esoteric ap-
proaches such as sequence-labelling and 3-mer data representations. Finally, we
consider selection of candidate loops based on results in torsion space.

The majority of the experiments were performed on a single machine with
an Intel Core i5 CPU, running at 3.33GHz, with 16Gb of main memory and a
GeForce GTX 760. Some of the larger networks were trained using resources
provided by the Cambridge Service for Data Driven Discovery (CSD3) op-
erated by the University of Cambridge Research Computing Service (http:
//www.csd3.cam.ac.uk/), provided by Dell EMC and Intel using Tier-2 fund-
ing from the Engineering and Physical Sciences Research Council (capital grant
EP/P020259/1), and DiRAC funding from the Science and Technology Facilities
Council (www.dirac.ac.uk).

3.2 Initial Experiments

To begin with, we looked briefly at two major architectures, convolutional net-
works and LSTMs, with different hyper-parameters and datasets. Each experi-
ment was given a number, with the most promising experiments being studied
in more depth.

Over 32 variations of neural networks were tested, with variations in archi-
tecture, datasets, dataset representations and hyper-parameters. The following
networks were the most promising and were subjected to more rigorous testing.
They are referred to by their number throughout the reminder of this thesis.

• 02 - initial convolutional neural network with AbDb data.
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• 02a - net 02 but with restrictions on loops based on distances between
endpoints

• 06 - bi-directional LSTM with AbDb data

• 06a - net 06 but with restrictions on loops based on distances between
endpoints

• 13 - bi-directional LSTM with 5D Amino acid coding of AbDb data.

• 23 - bi-directional LSTM with last relevant selection, with AbDb data.

• 23a - net 23 but with restrictions on loops based on distances between
endpoints

We describe these networks in more detail in the following sections, starting
with network 02 and progressing down the list.

3.2.1 Convolutional nets

The first architecture investigated was the convolutional neural net (section
2.1.4), with one convolutional layer, one drop-out layer, and one fully-connected
layer. Each loop in the training data-set is converted to the bit-field represen-
tation; each input tensor has a size of (batch size, max cdr length, 20) with a
corresponding mask. Data is presented to the network in a batch size of 5 vec-
tors at a time. The input layer feeds into a convolutional layer with a window
size of 5, and a depth of 20. This layer is passed through a drop-out layer with a
50% drop-out rate. The final layer contains 112 neurons, mapping to the maxi-
mum length of 28 multiplied by the 4 values representing the sine and cosine of
φ and ψ. The tanh activation function is used throughout. The code listing for
this net can be found in appendix B.3.

Each run randomly draws loops from AbDb, creating new training, validation
and test sets. Each loop was tested to see whether or not it met the criterion
of having end points within one standard deviation of the mean. Column two
of table A.1.1 shows the percentage of loops from the AbDb set that meet this
criterion, while column three shows the percentage of predicted loops that meet
the same criterion. Each net was trained for 2000 epochs.

The final errors reported in appendix A.1 are these generated by the error
function over the test set, described in section 2.1.14. They can be viewed as
the mean average of the square of the difference between the real and predicted
angles.

The main parameters under investigation were the window-size and the num-
ber of convolutional nets. Adding extra convolutional layers with smaller heights
and widths, but more depth, did not improve performance and took slightly
longer to train. Altering the window size from the default of 5 resulted in
slightly worse performance.

Initial results were promising. Table A.1.1, in appendix A.1 shows the results
after running the network on 10 separate occasions. Seven of the ten mean Cα
RMSD scores are below 2Å.
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Figure 3.1: A plot of CDR-H3 length against RMSD Cα accuracy for run
#5 of network 02 (convolutional architecture, AbDb dataset with redundant
loops using bit-field encoding) in Ångströms. The Spearman correlation is 0.358
(pvalue = 4.2× 10−10). As the length of loop increases, the accuracy decreases.

Network 02a removes all loops from all datasets whose endpoints are greater
than 1 standard deviation away from the mean distance. The database contain-
ing the loops also contains the distance between the first and last Cα atoms, in-
cluding the overall average and standard deviation. When creating the datasets
for training, validation and test, each loop is checked against this criterion for
inclusion.

Table A.2.1, in appendix A.2 lists the results, whilst figure 3.2 plots the
length of the CDR against the RMSD accuracy for run #7 of network 02a.
Performance is slightly improved with nine runs having sub 2Å Cα RMSD.
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Figure 3.2: A plot of CDR-H3 length against RMSD Cα accuracy for run #7
of network 02a (convolutional network, AbDb dataset with redundant loops,
removing these with end-points more than one standard deviation away from
the mean, using bit-field encoding) in Ångströms. The Spearman correlation
is 0.372 (pvalue = 1.2 × 10−8). Accuracy slightly decreases as loop length
increases, though several outliers can be seen.

3.2.2 Bi-directional LSTM

Given the CDR length is fixed and known at training time, we can combine both
a forward pass and a backwards pass to make the network less order-dependent
- more closely reflecting the problem at hand. Such networks are known as
bi-directional LSTMs.

All-steps

In network 06 both the forward and backward passes are summed to create
a tensor which is subsequently reshaped and attached to a final, fully con-
nected layer. In this manner, all steps are considered. The input layer is the
same as that found in network 02. This layer is fed into Tensorflow’s bidirec-
tional dynamic rnn function, along with the lengths of each loop in the batch.
The output of this layer is two tensors and states, representing the current
output and state of both directions of the LSTM. In this all-steps network,
the output from all the steps of the forward and backwards passes are added
together and passed into a final layer, which is the same as the one found in
network 02. The code for this network is listed in appendix B.4.

The current step in an LSTM is a summation of the current information
and all the preceding steps. If one performs a summation on all steps, the
information presented in the very first step is counted cdr length times, with
each subsequent step represented (cdr length−N) times, whereN is the position
in the sequence. A loop 12 residues long will feature 12 LSTM steps, with the
first residue appearing in all steps and the last residue appearing only once.
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Alternatively, we can select only the last-relevant step. To do this, we select
only the final state after all residues in the CDR have been considered; this is
the approach taken in network 23.

Table A.3.1, in appendix A.3 shows the results for 10 runs of network 06, on
the AbDb dataset. Each network was run for 2000 epochs, with new training,
validation and test datasets randomly drawn from AbDb. Figure 3.3 shows a
plot of RMSD error against CDR length (Spearman’s correlation 0.309 pvalue =
1.26× 10−7).

The performance of this network improves on network 02, with no runs
having a Cα RMSD greater than 1.8Å.

Figure 3.3: A plot of CDR-H3 length against RMSD Cα accuracy for run #8
of network 06 (bidirectional all-steps LSTM, with AbDb dataset with redun-
dant loops included, bit-field representation), in Ångströms. Accuracy decreases
slightly, as loop length increases, though a number of outliers can be seen.

3.2.3 Last-relevant step

Network 23 is very similar to network 06 but rather than combine all the time
steps of both passes, the last step in both the forward and backward passes
are extracted and combined together. The program can be found listed in
appendix B.6; the only key difference between this network and network 06 is
the last relevant function that takes the entire output from the LSTM layer and
returns only the final step.

Table A.5.1, in appendix A.5 shows the results for 10 runs of network 23, on
the AbDb dataset. Each network was run for 2000 epochs, with new training,
test and validation sets, randomly drawn from AbDb.

Counting only the recurrent step in both directions shows an improvement
over counting all steps. The mean RMSD is slightly improved, along with the
final error scores. The results are plotted in figure 3.4 (Spearman correlation
0.372 with a p-value of 1.32−10).
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Figure 3.4: A plot of CDR-H3 length against RMSD Cα accuracy for run #3
of network 23 (bi-directional LSTM with last relevant step, AbDb dataset with
redundant loops included, bit-field representation), in Ångströms.

Bi-directional net with data restriction

Based on the success of network 23, we investigated the possibility that the
NeRF algorithm, when set with 180.0◦ omega angles, would not always recreate
the structure correctly (discussed in section 2.3.1) Network 23 was re-trained
with only these CDR loops that both pass the endpoint test - the same restric-
tion as network 02a - and do not contain problematic omega angles. Problematic
angles are defined as these omega angles that deviate by more than 30.0◦ from
the default 180.0◦.

The results are presented in table A.6.1 in appendix A.6. Like network 02a,
performance is slightly improved, with the mean Cα RMSD scores below 1.73Å.

3.2.4 5D

Network 13 is very similar to network 06, but uses the 5D encoding described in
section 2.4.5. The number of layers and the size of the LSTM units remains the
same. However the input layer is changed. Rather than vectors 20 units long,
our vectors are now 5 units long and contain floating point numbers as opposed
to a zero or one. The LSTM and output layers remain the same as these in net
06. The code can be found in appendix B.5.
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Figure 3.5: A plot of CDR-H3 length against RMSD Cα accuracy for run #8
on network 13 (bi-directional LSTM with AbDb dataset with redundant loops
included, 5D representation), in Ångströms (Spearman correlation 0.448 with a
p-value of 3.12× 10−15).

Figure 3.5 and table A.4.1 (appendix A.4), show that changing the input
representation results in slightly worse scores, with higher mean average RMSDs
( maximum of 1.847Å) and higher standard deviations (2.459 being the largest,
compared with 2.07 from network 06).

3.3 Non-redundant & LoopDB tests

In section 2.4.3, it was noted that many of the models within AbDb are redun-
dant; duplicates of existing items. We performed the same set of experiments
again, using only non-redundant data from AbDb. This results in a training
dataset consisting of 1171 loops. The following tables in appendix A.7 show the
results of running networks 02, 02a, 06, 06a, 13 and 23. Each network is run 10
times on a random datasets, drawn from the 1171 AbDb loops.

Networks 02 and 23 appear to be the best performers in terms of their average
Cα RMSD scores (3.53Å and 3.52Å respectively). The remaining networks
perform very poorly in comparison to their initial scores with redundant loops
included. For example, network 06 has mean Cα RMSD scores that double
when redundant data is removed: a maximum of 4.204Å compared with 1.79Å
(see table A.7.3).

These results point towards the first run of networks memorising certain
loops. Redundant data may appear in all three datasets, thus the network is
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trained and tested on data that is extremely similar, if not identical. This results
in a low validation error that is misleading.

Rather than restrict the dataset completely, another option is to allow re-
dundant data in the training set, but have training and validation sets that
contain no examples that are redundant with these in the training set.

Table A.8.1, in appendix A.8 shows the results from the run of network 02
with redundant data appearing in the training set only. The maximum mean
Cα RMSD score is 3.79Å, compared with 4.056Å in the non-redundant set - a
slight improvement.

We can compare the accuracy of the network over the test set, with accuracy
over the training set in order to gain some insight into whether or not the
network has over-trained. Although the training error will almost always be
lower, it should not be significantly lower than the validation error. Table
A.8.2, in appendix A.8 shows the results of run 1, but using the training data
set. The difference between the two results suggests that network 02 has still
over-trained. The mean Cα RMSD score is 1.335Å - a full 2Å lower than the
lowest validation score.

Table A.8.3 shows the results from the run of network 23 with redundant
data appearing in the training set only. The worst mean Cα RMSD score is
3.886Å - slightly better than network 02.

Again, we consider a run of network 23, only with the training set instead of
the test set. Table A.8.4 shows the result of re-running the net 1 evaluation but
with the training set. Again, the network appears to have over-trained, with a
mean Cα RMSD score of 0.957Å.

It is worth considering the final loops themselves, in Cartesian space, and
how the RMSD Cα score relates to the final structure. Figure 3.6 shows an
intermediate and predicted loop based on the PDB 3F12 2. Both loops are
incorrect due to a glycine with an omega angle of −61.8◦ within the actual
structure. Only some residues are well aligned.
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Figure 3.6: An image of 3F12 2, predicted in yellow and intermediate in cyan.
The intermediate loop has been aligned, resulting in an RMSD score of 2.066Å.
While the right hand portion of the loop is well aligned, the left-hand endpoint
is clearly impossible.

One of the better results is shown in figure 3.7, for the PDB file 2H1P 1. Both
local and global structure have been reproduced correctly. This loop contains
no atypical omega angles.
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Figure 3.7: An image of 2H1P 1, predicted in green and intermediate in blue.
The RMSD score is 0.261Å

One of the worst performing models is 4FQL 1, shown in figure 3.8. The
structure bears very little resemblance to the original with a RMSD score of
11.185Å. Again, the intermediate loop appears straight with some local varia-
tion that superficially appears similar to the local variation on the actual loop,
but the global structure is completely incorrect. This model has no ω angles
that differ from 180◦ or −180◦ by more than 18◦.
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Figure 3.8: An image of 4FQL 1, predicted in purple and intermediate in blue.
The RMSD score is 11.185Å

To combat the over-fitting, the best performing network 23, was retrained
using a combination of non-redundant data from both AbDb and LoopDB com-
bined, resulting in a dataset of 12248 loops in size. The input data was formatted
using the bit-field method (section 2.4.5). The program itself remains the same.
Table 3.1 shows the final result.

Set RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

Test set 6.181 0.011 29.24 5.423
Training set 5.09 0.08 29.08 4.69

Table 3.1: Results of independent runs of neural network 23 with non-redundant
data in all sets. Scores on both the test set and training set are given.

Performance decreases compared with just AbDb non-redundant sets, with
the overall accuracy being lower. However, the difference between the average
RMSD on the training and test sets is small when compared with the same
network running on the AbDb set only. This suggests that the larger dataset
prevents over-training at the cost of some accuracy.

3.4 Sequence labelling

As described in section 2.1.7, it is possible to represent a particular pair of
angles with a single label. In the following experiment we divide 360◦ into 10◦

increments, resulting in 36φ ∗ 36ψ = 1296 combinations or possible labels.
This network consists of a 3 layer LSTM network, with sizes of 256, 128

and 64 respectively. The final layer feeds into a dense layer with 1296 outputs
representing the probabilities that each label corresponds to the residue at the
current time step. The weights and biases comprising this layer are shared

55



across every LSTM step. We train this network on AbDb, with redundant data
appearing in the training set only.

We employ an early stopping technique, where training is halted once the
error stops decreasing. The input data is encoded using both the bit-field and
the 5D representation as described in section 2.4.5.

The results are shown in tables A.9.1, A.9.2 and figure 3.9. Comparing
against the real loops shows slightly worse performance than intermediate loops.
Again, there is a considerable difference in accuracy between the test and train-
ing sets, suggesting that this network has over-fitted.

Figure 3.9: A plot of RMSD error against the length of residue for our labelling
network, trained on the AbDb dataset. The error is derived by comparing the
Cα RMSD between predicted and real loops.

We have suggested that many of the networks memorise their inputs, rather
than learn underlying patterns or rules, due to the poor performance on the
validation and test sets. When training this particular network, we noticed
the following irregularities in the training error. Figure 3.10 shows a repeating
pattern of decreasing error, followed by a sharp increase back to previous levels.
This bounce is suggestive of memorisation. As the network quickly over-fits, the
error rate is reduced, but when a new epoch starts, the network must quickly
adjust to the new data, resulting in a high error rate. It is possible to see this
effect as the training set is rather small.
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Figure 3.10: A plot of training error against step number for our sequence
labelling network.

Figure 3.11: A histogram showing the frequency of particular sizes of RMSD
Cα errors for the labelling network, trained on AbDb.

Tables A.9.1 and A.9.2 shows the accuracy of this network on just the AbDb
set alone. These scores are based on these loops from AbDb that were not
included in training or validation sets. There is some improvement in the mean
and maximum RMSD scores in both intermediate and real loops. The code
listing for the labelling network can be found in appendix B.8.
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Figure 3.12: A plot of RMSD error against the length of residue for our labelling
network, trained on non-redundant data from AbDb and LoopDB datasets. The
loops are encoded using the bit-field approach. The error is derived by compar-
ing the Cα RMSD between predicted and real loops.

The size of the dataset (and the number of epochs in training as a direct
result of dataset size) could be the cause of memorisation, as the network sees
the same loops a large number of times. We therefore run the same network on
the much larger LoopDB dataset, combined with AbDb. Figure 3.12 and table
A.9.3 shows the results of this network when run on a training dataset with
no redundant models. The final training set contains 51993 loops. The data is
encoded with the bit-field encoding described in section 2.4.5.

This network achieves a mean Cα RMSD score of 5.751Å - a small improve-
ment over the 6.181Å achieved by our final network 23.

3.5 3-mer networks

We tested two kinds of 3-mer networks. Each uses the sequence labelling method
of the previous section to generate a set of discrete angles. The network only
differs in its input layer to accommodate the longer input vectors.

The first method uses the 5D approach, resulting in a vector of 15 values per
residue. The second network concatenates 3 bit-field vectors, creating a final
vector 60 values long. Table A.10.1 shows the results of both networks.

We briefly considered the 3-mer sequence where three, 5D vectors are added,
to create a final vector. This particular approach resulted in much poorer per-
formance and was discounted.

3.6 Further analyses

We decided to focus on two of the networks for further analysis: network 23 with
a training dataset built from the non-redundant elements of AbDb and LoopDB,
and the labelling network with the same dataset and the bit-field representation.
Both score around 6Å mean Cα RMSD. We improve on the code in network 23,
shown in appendix B.7. This network is trained for a maximum of 2000 epochs,
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stopping early when the validation error ceases to improve, recording the best
network found up until that point.

3.6.1 Versus AMA-II

The second Antibody Modelling Assessment (AMA-II)[5] lists the performance
of the current state-of-the-art approaches to antibody loop modelling. The
following 11 structures are predicted and compared:

• 4MA3

• 4KUZ

• 4KQ3

• 4KQ4

• 4M6M

• 4M6O

• 4MAU

• 4M7K

• 4KMT

• 4M61

• 4M43

Models with these names appear in the AbDb data set. The AMA-II uses
different numbering schemes and defines CDR-H3 somewhat differently than
Martin, with an additional 2 residues at the beginning of the loop, and one at
the end. In addition, some of the residues (aside from these additional residues
at each end) are different in our dataset.

Seven different programs are tested in this study. Table A.11.1 lists their
performance compared with our final network results. Our network performs
worse on the majority of scores, with some exceptions such as 4MA3. While
the scores for our final net are presented directly with these from AMA-II it is
important to note that these loops are not identical so a true, direct comparison
is not possible. However figure 3.13 highlights the problems with the predictions.
4MA3 is quite well aligned, as its RMSD score would suggest. However 4M6O
shows a model that should look like a hair-pin, however the predicted loop
appears not to be a loop at all. Where a sharp turn should appear near the
middle, there is none. 4M60 contains no atypical omega angles. 4M43 appears
to be a mixture of accurate and poor predictions throughout. Despite the score
of 3.431Å, the only valid loop with realistic endpoints is 4MA3.
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Figure 3.13: Three examples from the AMA-II models, 4M6O (in pink), 4M43
(in blue) and 4MA3 (in orange). Each pair is aligned with PDBfit.

3.6.2 Particular acids

We break down the errors in φ and ψ angles, by individual residue and the
3-mer occurrences within our final network’s test set. Figure 3.14 shows the
distribution of amino acids within the test set, with glycine and valine being
the most prevalent.

Figure 3.14: The number of occurrences of each amino acid within the test set
of our final network.
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We plot the mean and median averages of the error in degrees for each amino
acid in figures 3.15 and 3.16. Both of these figures show very little difference
in distribution, mean or median scores by amino acid. One might expect to see
greater variability in the more frequent acids but this does not appear to be the
case.

Figure 3.15: Violin plot of the errors in the φ angle, organised by amino acid,
in our finalnetwork.

Figure 3.16: Violin plot of the errors in the ψ angle, organised by amino acid,
in our finalnetwork.

3.6.3 Ramachandran plots

We plot the φ and ψ angles for both the predicted and real loops (figure 3.17)
from the final network test set. The plot of the real values roughly follows the
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Ramachandran plot for all acids, though many angles appear in areas that are
normally not populated.

The predicted plot does not completely conform to the ideal Ramachandran
plot, with areas towards the centre being too populated. The bottom left and
right of the plot are extremely under-populated, with the top left area also
under-populated.
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Figure 3.17: Phi and psi angles (in degrees) plotted against each other for the
predicted loops (above) and real loops(below) from the test set of our final
network.

The plot of the real loop angles contains several points in areas that should
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be sparsely populated which suggests there may be errors or poor quality loops
within the dataset. In the predicted plot, there are areas that should be pop-
ulated that have not been explored by the neural network, such as the area
around −160◦ψ,−160◦φ.

Figure 3.18: Phi and psi angles (in degrees) plotted against each other for the
predicted loops (above) and real loops(below) from the test set of the labelling
network. The angles are discretised into 10◦ wide categories.

Figure 3.18 plots the angles of the real and predicted loops within the test set
of the labelling network. The angles have been discretised into 10◦ increments.
A similar pattern emerges where large areas of the plot that are populated in
the real set are not populated in the predicted results.

3.6.4 Endpoint analysis and error location

When attempting to build antibody loops it is important that the endpoints
be within a specific distance of each other so that said loop can be grafted
onto a framework. We compare the loop lengths against the RMSD Cα errors
of the entire test set (in figure 3.19 ) with a subset where all the loops with
bad endpoint distances removed. We take the Cartesian distance between the
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first and last atom in the backbone loop and compare with the mean average
distance distance, derived from the AbDb dataset. If the distance is more than
two standard deviations away from this mean, we reject it. The results are
plotted in figure 3.20. In this second graph we can see that longer loops begin
to disappear from the results entirely, and that the average error remains below
2Å until loops reach 11 residues or more in length.

Figure 3.19: Violin plot of loop length against RMSD between Cα atoms for a
single run of our final LSTM based network, using loops from both AbDb and
LoopDB. Mean and median averages are shown.

Figure 3.20: Violin plot of loop length against RMSD between Cα atoms, where
loops with a endpoint distance greater than 2 standard deviations from the mean
are removed. Mean and median averages are shown.

Through-out the experiments, visualisations were made of the predicted
loops. Occasionally, we would notice a loop that should appear similar to a
hair-pin would be ‘straightened out’. This lead to a suspicion that the worst
error would appear towards the centre of the loop.

Taking the mean position of the worst error in torsion space across all the
test loops supports this position. Normalising the position we arrive at a mean
of 0.464 with a standard deviation of 0.281. If we restrict the results to loops of
length 8 or more, this value increases to 0.482 with a standard deviation of 0.28.
Taking each loop length individually, the position does not change significantly,
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and neither does the deviation. As the standard deviation is quite large, there
appears to be little or no pattern to where the worst error occurs.

The mean and median of the errors within each loop do not differ consid-
erably from each other, whilst the range of the errors across all rejected loops
remains between 32◦ and 69◦. This suggests that rejected endpoint loops are
not rejected purely on the basis of a single large error, towards the centre of the
loop.

It is possible that one particularly bad angle in an otherwise good prediction
set can result in an unusable structure in Cartesian space, whereas the error in
torsion space may be comparatively small. Figure 3.21 shows 1RZI 3 interme-
diate and predicted. A single atypical omega angle on the second residue causes
a large change in structure.

Figure 3.21: 1RZI 3 intermediate loop in yellow and the predicted loop in blue.

Removing these structures with atypical omega values does not affect the
overall performance in a significant way however, as their prevalence within the
combined AbDb and LoopDB set is relatively low. More common is a structure
where a small number of φ and ψ angles are incorrect, but the overall structure
retains a similar shape. Figure 3.22 shows one such example, 1TZI 1.
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Figure 3.22: 1TZI 1 intermediate loop in grey and the predicted loop in pink.

3.6.5 Altering the mask position

Until this point, our experiments have used the same masking function for loops
shorter than the maximum length (either 28 or 32 depending on the dataset).
The output vector representing the neurons in the output layer is multiplied
against a vector with zeros at the end, representing these unfilled residues. The
cost function and the input data are also masked in the same way.

In section 2.1.11, Reczko et al [60] place their equivalent of our mask in the
middle of the output vector, effectively splitting the loop in two, with one half
represented by the output neurons at one end, and the other half represented
by neurons at the opposing end of the output vector. We take our final network
and copy this approach, masking the centre of the output vector, adjusting the
cost function and input vector accordingly.
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Figure 3.23: A plot of CDR-H3 lengths against RMSD Cα accuracy of our
final network (bi-directional last step LSTM, with AbDb and LoopDB combined
dataset with no redundant loops, bit-field representation), in Ångströms. The
mask is moved to the centre of the loop.

RMSD Mean Min
RMSD

Max
RMSD

RMSD
StdDev

7.968 0.028 26.1 4.242

Table 3.2: The results of running our final network, moving the mask to the
middle of the loop. We use the combination of AbDb and LoopDB with no
redundant data.

Figure 3.23 and table 3.2 show a lower overall standard deviation between
the predicted and real loops, whilst the overall mean accuracy is lower. The
comparison between the standard deviation in this network and the original
final network is most pronounced in these loops of length 11 or less.

3.7 Selection by RMSD score in torsion space

Rather than rebuild the loops in Cartesian space, we considered whether or not
the best performing network could make an accurate suggestion of which loop
within the test set best matches the list of amino acids presented. The algorithm
proceeds as follows:

• Train network and generate angle predictions as before.

• For every prediction, generate RMSDs in torsion space against every other
loop in the test set of the same length.

• Take the lowest scoring loop, convert it to cartesian space and generate
an RMSD over the Cα positions against the original loop.

We can then see whether or not the network chose a good candidate loop
from a large set, given an input sequence. For this experiment, we choose
our final LSTM based network, using the non-redundant LoopDB and AbDB
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combined, with a test set size of 7660 loops. The torsion angles are generated as
before but we do not recreate the structure. Instead we compare the predicted
set of torsion angles against all models in the test set, selecting the loops with
the lowest mean RMSD score in torsion space. We then compare this chosen
structure with the actual structure the input residues were taken from, deriving
a final RMSD Cα score in Cartesian space.

Figure 3.24: Violin plot of loop length against RMSD Cα error between real
and selected loops in Cartesian space.

Figure 3.24 shows the results of this experiment. The mean and median
averages remain below 2Å until the length of the loop reaches 12. This suggests
that selecting from a large list of possible candidates results in higher accuracy
than generating the loops directly, and comparing using RMSD Cα scores - for
these loops of length 12 and below.
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Chapter 4

Discussion

4.1 Conclusion

The results do not support rejecting the null hypothesis; we have not improved
on the the accuracy of modelling CDR-H3 loop using neural networks, over
that already provided by other methods. However, the modelling of certain
loops and the selection of a well-fitting loop from a large set both appear to be
quite accurate.

4.1.1 Indifference to architecture

The most glaring problem appears to be the indifference to changing architec-
ture. Although some improvements were made when moving from convolutional
networks to LSTMs, changing the internal architectures (such as adding more
layers for example) appeared not to change the results by any significant amount.

Altering the window size in the convolutional networks did not change the
results, unless the window was made extremely small (1 or 2 units long) or
extremely large (around 10 and above). Adding more convolutional layers or
making each layer deeper resulted only in a longer training time.

When considering the LSTM networks, changing the size of the LSTM units
seemed to make little difference. Sizes of units exceeding 256 in size proved diffi-
cult to train, due to a lack of computer memory. Replacing the addition function
with either a concatenation operation or average function made no difference to
the final outcomes. Adding more layers resulted in slightly worse performance.
GRU cells were quicker to train but the results were not significantly different
to these networks utilising standard LSTM cells.

The sequence labelling network appeared to show the best performance on
the combined LoopDB and AbDb non-redundant set. However, this network
was tested and trained only once due to time and resource constraints so no
firm conclusion can be drawn at this point.

In the later networks when redundant data was removed, optimizers such as
Adagrad, and in particular Adam, performed better than simple gradient descent
alone. This is in-line with the current literature [23].
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4.1.2 Exploring the Ramachandran plot

Analysis of both the final network 23 and the labelling network show that certain
combinations of φ and ψ angles that appear in the real loops are not seen in
the final predictions. Certain areas of the Ramachandran plot do not appear to
have been explored. Whether these areas were considered and rejected, or not
considered at all remains unclear.

An area not considered by this work is weight initialisation. Tensorflow ex-
amples typically use a random weight with a normal distribution centred on
zero, with a standard deviation of 0.1; this is the approach we adopt through-
out. Engelbrecht [16] describes several approaches, but states that our adopted
method is one of the most successful. Nevertheless, it is not entirely certain
that such an approach is the best in our particular case; a poorly chosen weight
initialisation strategy will affect convergence and may result in zero derivatives.
It is conceivable that our weight initialisation may have resulted in certain angle
combinations never being explored.

4.1.3 Altering the mask position

During the initial experiments, the mask for the input and output layers con-
sisted of zeros at the end. These neurons towards the end of the output and
input layers would receive less training as a result. The neurons towards the
centre of these layers would effectively represent both the middle and end of the
loops passed in, depending on the lengths of the loops.

Changing the mask so the zeros appear in the centre forces the neurons at
the beginning of the layers to represent the starting point of the loop, and the
neurons at the end of the layers to represent the end point of the loop, better
reflecting the underlying structure. However, this approach resulted in slightly
worse performance overall, despite a reduction in the standard deviation.

4.1.4 Memorisation and over-training

Over-training is a serious risk with small data-sets. We encountered this with
the first set of networks trained on AbDb only. Regularisation techniques, such
as drop-out, may have helped to ameliorate this risk, but it remains unclear
how effective such techniques may have been.

In later networks, trained on the LoopDB and AbDb networks combined,
over-training became less of a problem; the differences between accuracies on
the training and test sets were much smaller.

4.1.5 Datasets

Even with the addition of LoopDB to the AbDb set, an argument could be made
that it is still too small. With the removal of redundant and incorrect data, the
final set was of the order of 50,000 loops in size. The distribution of these loops
is not uniform, with the longest loops being under-represented.

It is a widely accepted practice in deep learning for image recognition tasks,
to generate extra data from an existing set. Typically, this involves rotations,
scaling, colour swapping (in some cases) and any other operation that does
not alter the information the network requires to learn. Indeed, adding rotated
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versions of the same image, for example, leads to the desired property of a neural
network becoming rotation invariant when attempting to classify images.

Considering such invariances in the antibody loop data (if they exist at
all) would be one potential step towards both learning new information and
increasing the number of examples available for training, further reducing the
over-training problem.

Restricting the range of loops in the dataset to a specific range (8 to 21
residues in length specifically) did not appear to alter the accuracy of our final
network in any significant way.

In order to keep the size of the dataset as large as possible, no restric-
tions based upon quality were applied. For example, we did not reject any
low-resolution loops, or loops with large B-Factors. The Ramachandran plots
in section 3.6.3 show some uncommon angle combinations which suggest poor
data. Further restrictions in addition to the endpoint restrictions might in-
crease accuracy, though the dataset would have to be enlarged in some way to
compensate.

4.1.6 Data representation

Changing the representation of the input appeared to make little difference on
the final results. In some cases, it appeared to make the final accuracy worse.
This was unexpected and appears to go against the machine-learning consensus
that dense representations perform better [82][39]. This suggests the various
networks are operating in a way different to that expected.

The 3-mer representations performed worse than both the 5D and bit-field,
single residue approaches. Adding the 5D representation of the 3-mer into a
new 5D vector also performed poorly.

4.1.7 Time and budget contraints

Although networks with datasets derived from AbDb alone can be trained in a
matter of hours, larger networks trained on LoopDB take several days to com-
plete their run. Typically, each net will consume the entire memory resources
of a particular system (in our case 2 or 4GB of GPU memory depending on size
and number of layers), limiting the number of models that can be trained in
parallel. With a large number of hyper-parameters to explore, several architec-
tures to investigate and various filters to apply to the data, the possible number
of approaches remains quite large. Running each network repeatedly is time
and cost prohibitive.

4.1.8 With respect to the aims of the project

Looking back at section 1.3.4 we have evaluated a variety of neural network
architectures, experimented with different data representations and taken steps
towards scoring potential solutions.

Assessing whether a loop, built by other means, is reasonable has yet to be
attempted.
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4.2 Future

There are several avenues one can pursue in the quest to improve the modelling
of CDR-H3.

4.2.1 Cost functions

The cost function is perhaps the most important feature of a neural network.
In our approach, we evaluated only two such functions, both of which consider
each residue individually, whether it be a pair of angles or a single classification
(in the former case, each angle is treated independently).

Because the NeRF algorithm builds in a single direction (from the nitrogen
onwards) errors tend to compound, resulting in a final endpoint too distant
from the desired endpoint. Although some accuracy was obtained by using a
bi-directional LSTM, as opposed to a single direction, the cost function itself
only considers local structure.

We briefly considered two approaches to global structure improvement: using
the NeRF algorithm as a cost function, and inverse kinematics as a refinement
step.

Inverse Kinematics

Inverse kinematics is used in a variety of fields - from robotics to animation. It is
also used in Rosetta to help close the loop so it reaches the required endpoint[68].

In this algorithm, a set of constrained, rigid bodies form a kinematic chain
where each body has certain degrees of freedom of rotation. A common example
is the human arm, starting with the shoulder joint, progressing down the arm to
the wrist. If this system is fixed at the shoulder and there is a target to reach,
t, it is possible to construct a function, f , that calculates the position of the
hand in space and its distance from t in terms of the angles of the joints. This
is known as forward kinematics. It is often possible to differentiate f , resulting
in a gradient for each angle, which can be minimised by a gradient descent
algorithm. This is inverse kinematics.

Refining an existing result with inverse kinematics has been shown to im-
prove CDR-H3 modelling in Rosetta[68]. It is possible to write a refinement
algorithm in Tensorflow that can be automatically differentiated.

There is a problem with this approach. Inverse kinematics has a pattern in
its solution. Rather than greatly alter a single angle to reach an end-point, it
will alter all angles by a smaller amount. This may not always be the correct
solution.

NeRF as cost function

We can reconstruct our prediction and our target loops from their angles using
NeRF; the Cartesian difference between predicted and real carboxyl endpoint
provides the error. Gradients can be derived automatically from the NeRF
algorithm by Tensorflow resulting in a working cost function.

One problem with this approach is combining local structure with the global
structure. Simply using the endpoint distance as a global function would result
in a lack of accuracy in the local structure. Both approaches would need to be
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combined in order to be effective. Our end-point analysis suggests that several
loops are still poorly predicted, even if their endpoints are within an acceptable
distance of the target endpoints.

Secondly, the NeRF algorithm is very expensive in terms of computation
time. There are many steps that require differentiation by Tensorflow, to the
point where such a cost function is prohibitive with resources available to us at
the time.

Other approaches

Using an energy minimisation function as a cost function could potentially re-
move these predictions that are energetically unfavourable or impossible. None
of the neural networks explored in this thesis use any form of force-field or
energy calculations within their cost functions.

Restricting the cost function to certain areas of the Ramachandran plot was
considered but rejected in the hope that the neural network would create predic-
tions that resulted in a Ramachandran plot rather than enforce this restriction
explicitly (it was hoped the network would learn the underlying reason for such
a plot). However, it is possible to enforce this constraint by approximating
the plot using a set of equations that define an error surface, upon which an
optimizer can derive gradients. However, this would result in another hyper-
parameter - the scaling of this second term within the existing cost function, in
relation to the primary error of RMSD between predicted and existing angles.

4.2.2 Combined Convolutional and LSTM networks

Quang and Xie[59] present a network that combines both convolutional and
LSTM layers in order to quantify the functions of particular DNA sequences.
Their problem maps well to this approach as rather than consider an entire
sequence of bases, they consider sequences of motifs. These motifs emerge as
a result of the convolutional layers, and their organisation is considered by the
LSTM.

4.2.3 Sequence to Sequence networks

Sequence-to-sequence networks, discussed in section2.1.7 were briefly investi-
gated, with limited success; their complexity resulted in several bugs, precluding
their inclusion in the final results. Their ability to produce sequences of any
length, despite the input length is essential in natural language processing but
undesirable in our particular problem, where the mapping between the number
of residues to the number of angles is fixed.

Never-the-less, the use of an auto-encoder is a particularly interesting ap-
proach. Rather than decide on a dense or sparse encoding scheme ourselves,
having the network discover a useful encoding is a potential avenue of investi-
gation.

Hochreiter et al [29] and Quang & Xie[59] have shown improvements in their
respective problem domains by having the network learn the rules for motifs
automatically, rather than explicitly programming such rules.
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4.2.4 Orientation network

Our discretised, classification networks suffer from the problem that each class
is distinct, with no relationship to each other. As each class represents an angle,
some classes are very much closer to one-another in numerical terms. A miss-
classification should have an error that reflects this distance between classes.

Hara et al [24] describe a convolutional network that attempts to determine
an object’s orientation from an image. Like our classification networks, they
discretise angles using two values, creating M independent N sized softmax
classification layers. These are all trained jointly then combined into a final
loss function that uses the von-Mises distribution. Although this network is
designed to run on images, and produces a single angle, it might be possible to
adapt it to produce multiple angles from our antibody data. The functions and
distributions used throughout are wrapped ; they take into account circularity
from the outset.

4.2.5 Discrete space

Approaches to creating 3D objects using neural networks include selecting com-
ponents from a library and combining into a final object, and discretising space
into voxels, or a point set[17], each of which has a likelihood of being filled1.
Some networks combing both approaches [84].

Rather than discretise the torsion angles, one would discretise space into
cubes with a probability of containing an atom (and perhaps a bond). The
output layer would be considerably larger with one neuron per cube. Many of
these cubes would be unoccupied resulting in a sparse output representation.

The effects of neighbouring loops upon the conformation of CDR-H3 has not
been taken into account in this work, however a discrete space approach could
be used both as input and output, with the input space including these loops.
Discrete cubes of space could be labelled as containing atoms from other loops
and presented as part of the input.

4.2.6 Polar coordinate representation

One approach that may be worth considering is a polar coordinate encoding of
the output vector, with a cost function that incorporates the notion of rotation.
Using our sine & cosine encoding we require 4 numbers, which represent two
actual values. A slightly more dense encoding would be to represent both φ
and ψ angles as a single vector with length 1. φ and ψ would map to the polar
co-ordinates of this vector. This reduces the size of the output from four digits,
to three.

The cost function for such a representation would need to be changed, in
order to introduce the notation of rotation, as oppose to simply changing each
value in the vector individually. This is certainly possible and results in a slightly
more complex function.

This representation couples φ and ψ angles together as rotating a vector from
its current position to a target would involve a change in both angles, resulting in
an implicit relationship. Whilst the Ramachandran plot illustrates that certain

1Several examples of model generation by neural nets can be found at the 3DDL Conference
proceedings 2016 - http://3ddl.cs.princeton.edu/2016/.
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combinations of φ and ψ are more common than others, this approach may
perform best combined with a cost function taking the Ramachandran plot into
account as described in section 4.2.1.

As with the 5D vector representation, adding these vectors together would
result in a 3D structure that could be used as the basis of a global cost function,
albeit one not based on the real positions of the atoms. Such a function would
be much easier and faster to compute than NeRF.

4.2.7 Building from both ends

In the original work that inspired this thesis Reczko et al [60] consider pairs of
residues, starting with the first and last residue pair, proceeding along the loop
till the middle is reached. When we experimented with changing the masking
to reflect this approach, a change in the results could clearly be seen.

Using a bi-directional LSTM improved performance. Combining both the
forward and backward passes using addition was the approach we took, however
there are several other approaches available such as taking the mean average.

Rebuilding the loop in Cartesian space with the NeRF algorithm results
in errors that compound with each additional residue. Whilst alignment with
PDBfit can counter this effect when assessing the accuracy of the network,
it cannot be used to create original loop models; the original loop not being
available.

Building in one direction, then reversing the NeRF algorithm - rebuilding
from the last residue to the first - then taking an average of these generated
positions might reduce these errors. Taking this one step further, the reverse
bi-drectional pass from our final-network could also be output directly, rather
than being additively combined with the forward pass, then used to generate a
separate reverse loop.
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Appendix A

Result tables

A.1 Net 02 results

Run % end
input

% end
pre-
dicted

RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 67.6 56.1 1.89 0.054 12.01 1.85
2 60.63 52.61 1.97 0.06 14.27 2.01
3 68.29 50.17 1.9 0.026 12.51 1.8
4 65.51 47.04 1.94 0.067 10.16 1.85
5 66.55 53.66 1.89 0.1 11.85 1.94
6 65.16 46.69 2.14 0.115 12.16 1.88
7 63.41 48.08 2.0 0.001 11.61 2.02
8 64.46 44.6 1.96 0.097 9.221 1.83
9 71.1 54.36 1.83 0.042 8.91 1.7
10 67.24 50.87 2.14 0.115 12.16 1.88

Table A.1.1: Results of independent runs of neural network 02.

A.2 Net 02a results

Run % end
input

% end
pre-
dicted

RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 73.18 48.23 5.44 0.144 18.91 2.88
2 79.55 59.09 1.72 0.067 11.126 1.852
3 76.36 59.55 1.489 0.088 6.776 1.369
4 79.55 59.55 1.8 0.069 12.024 2.052
5 77.27 65.91 1.641 0.082 8.636 1.596
6 75.91 64.55 1.709 0.106 9.55 1.829
7 73.64 55.91 1.862 0.122 10.896 1.881
8 75.91 58.64 1.658 0.053 9.532 1.618
9 79.09 61.36 1.72 0.098 10.96 1.649
10 81.36 69.09 1.617 0.068 9.493 1.74
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Table A.2.1: Results of independent runs of neural network 02a.

A.3 Net 06 results

Run % end
input

% end
pre-
dicted

RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 63.21 51.07 1.625 0.078 15.921 1.96
2 66.79 53.93 1.57 0.079 9.26 1.78
3 68.93 62.14 1.53 0.035 11.397 1.93
4 68.57 58.93 1.5 0.051 7.85 1.8
5 70.0 56.43 1.575 0.035 15.5 2.07
6 72.14 55.37 1.67 0.046 9.578 1.897
7 67.5 58.21 1.79 0.018 10.26 2.06
8 69.64 53.93 1.7 0.038 13.04 2.02
9 63.93 52.86 1.68 0.066 14.91 2.01
10 61.79 53.21 1.6 0.079 10.148 1.79

Table A.3.1: Results of independent runs of neural network 06. Values are given
in Ångstroms

A.4 Net 13 results

Run % end
input

% end
pre-
dicted

RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 67.857 58.929 1.528 0.048 12.206 1.957
2 68.214 55.0 1.667 0.088 9.891 1.901
3 65.714 54.286 1.773 0.073 12.695 2.163
4 68.571 57.857 1.564 0.062 12.885 1.914
5 66.429 53.929 1.687 0.068 9.722 1.95
6 67.143 56.786 1.734 0.058 17.458 2.459
7 66.071 56.071 1.646 0.005 12.134 2.076
8 68.929 56.786 1.761 0.035 10.204 1.986
9 65.0 56.786 1.837 0.032 14.927 2.432
10 67.143 52.5 1.847 0.067 11.68 2.228

Table A.4.1: Results of independent runs of neural network 13.
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A.5 Net 23 results

Run % end
input

% end
pre-
dicted

RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 68.929 60.357 1.525 0.026 9.353 1.77
2 68.214 61.071 1.4 0.004 12.0 1.765
3 67.5 58.571 1.635 0.011 11.239 2.06
4 63.929 57.857 1.425 0.029 11.87 1.859
5 65.0 55.0 1.472 0.034 13.986 1.914
6 71.071 52.5 1.726 0.03 13.218 2.225
7 64.643 58.571 1.559 0.011 12.227 1.912
8 68.929 60.0 1.393 0.014 10.146 1.817
9 67.143 60.357 1.427 0.002 11.185 1.76
10 67.5 61.429 1.651 0.023 12.837 2.077

Table A.5.1: Results of independent runs of neural network 23.

A.6 Net 23a results

Run % end
input

% end
pre-
dicted

RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 79.091 69.545 1.536 0.049 9.509 1.941
2 77.727 69.091 1.384 0.046 10.929 1.719
3 75.909 71.364 1.35 0.014 8.775 1.66
4 79.545 64.545 1.534 0.067 10.516 1.915
5 79.545 67.272 1.514 0.057 11.451 2.017
6 83.636 70.0 1.301 0.073 9.074 1.513
7 74.545 64.091 1.362 0.071 10.191 1.743
8 80.91 77.727 1.286 0.022 9.561 1.713
9 80.91 67.727 1.416 0.023 9.642 1.643
10 82.272 70.91 1.21 0.033 7.724 1.541

Table A.6.1: Results of independent runs of neural network 23a.
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A.7 Non-redundant data results

Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 3.36 0.025 8.653 2.013
2 3.54 0.105 10.049 2.469
3 4.056 0.123 9.828 2.234
4 3.934 0.214 14.603 2.499
5 3.536 0.097 12.612 2.295
6 3.653 0.031 13.004 2.573
7 3.48 0.061 9.281 2.19
8 3.472 0.015 13.06 2.35
9 3.646 0.079 11.622 1.995
10 3.676 0.017 11.831 2.585

Table A.7.1: Results of independent runs of neural network 02 on non redundant
data from AbDb.

Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 3.74 0.172 14.8 2.566
2 3.55 0.089 10.471 2.605
3 3.358 0.39 11.365 2.075
4 3.641 0.078 9.972 2.241
5 3.399 0.037 10.013 2.3
6 3.51 0.109 12.494 2.315
7 3.838 0.06 11.29 2.533
8 3.419 0.167 10.558 2.206
9 3.315 0.151 8.662 2.065
10 3.54 0.082 13.573 2.67

Table A.7.2: Results of independent runs of neural network 02a on non redun-
dant data from AbDb.

Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 3.499 0.094 13.241 2.715
2 3.42 0.075 9.924 2.383
3 3.507 0.073 11.365 2.629
4 3.614 0.145 10.928 2.782
5 4.204 0.077 12.525 2.655
6 4.159 0.035 12.397 2.784
7 2.983 0.066 8.938 2.05
8 3.727 0.004 12.006 2.708
9 3.697 0.112 18.301 2.785
10 3.65 0.06 10.801 2.471

Table A.7.3: Results of independent runs of neural network 06 on non-redundant
data from AbDb.

87



Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 4.045 0.056 11.337 2.609
2 4.215 0.083 10.153 2.232
3 3.795 0.173 13.081 2.488
4 3.694 0.085 10.54 2.291
5 4.017 0.091 12.888 2.97
6 2.239 0.039 14.873 2.734
7 3.715 0.065 10.701 2.435
8 3.215 0.036 13.515 2.614
9 3.497 0.062 12.814 2.599
10 3.248 0.216 9.59 2.13

Table A.7.4: Results of independent runs of neural network 06a on non-
redundant data from AbDb.

Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 3.562 0.077 12.239 2.449
2 3.755 0.072 11.251 2.593
3 3.702 0.058 11.161 2.471
4 3.402 0.017 13.814 2.777
5 4.223 0.077 13.85 2.693
6 3.867 0.073 12.874 2.769
7 3.891 0.04 11.766 2.837
8 3.904 0.014 13.359 2.834
9 3.992 0.008 10.148 2.424
10 4.1 0.194 10.751 2.397

Table A.7.5: Results of independent runs of neural network 13 on non-redundant
data from AbDb.

Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 3.318 0.06 11.877 2.471
2 3.483 0.035 12.297 2.569
3 3.586 0.089 11.072 2.787
4 3.476 0.078 12.991 2.623
5 3.815 0.007 10.406 2.595
6 3.622 0.027 13.867 2.75
7 3.725 0.008 9.071 2.499
8 3.568 0.016 17.256 3.143
9 3.247 0.076 12.153 2.623
10 3.352 0.199 15.871 2.469

Table A.7.6: Results of independent runs of neural network 23 on non-redundant
data from AbDb.
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Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 3.362 0.067 11.721 2.494
2 3.229 0.1 9.842 2.466
3 3.317 0.242 9.233 2.526
4 4.055 0.038 11.366 2.44
5 3.349 0.129 12.332 2.428
6 3.261 0.175 11.807 2.512
7 3.144 0.083 12.555 2.528
8 3.573 0.067 11.839 2.787
9 3.707 0.087 17.763 2.997
10 3.303 0.25 8.31 1.98

Table A.7.7: Results of independent runs of neural network 23a on non-
redundant data from AbDb.

A.8 Redundant data in training set only results

Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 3.28 0.017 14.2 2.27
2 3.691 0.121 14.048 2.531
3 3.648 0.081 13.48 2.43
4 3.443 0.127 9.591 2.246
5 3.683 0.14 12.478 2.618
6 3.568 0.061 11.991 2.281
7 3.794 0.23 14.912 2.438
8 3.548 0.176 15.563 2.263
9 3.585 0.039 11.572 2.428
10 3.796 0.035 12.92 2.667

Table A.8.1: Results of independent runs of neural network 02 with redundant
data in the training set only.

Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 1.335 0.024 10.406 1.24

Table A.8.2: Results of independent runs of neural network 02 with redundant
data in the training set only, run with the training set.

89



Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 3.886 0.006 13.193 3.046
2 3.661 0.095 11.926 2.43
3 3.735 0.051 14.814 2.97
4 3.383 0.03 9.418 2.422
5 3.586 0.05 13.004 2.677
6 3.886 0.01 11.247 2.606
7 3.742 0.133 13.387 2.532
8 3.723 0.006 11.959 2.782
9 3.508 0.009 12.942 2.606
10 3.1 0.038 15.49 2.529

Table A.8.3: Results of independent runs of neural network 23 with redundant
data in the training set only.

Run RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

1 0.957 0.005 10.357 1.175

Table A.8.4: Results of independent runs of neural network 23 with redundant
data in the training set only. Scored with the training set

A.9 Labelling network results

Loop type RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

Intermediate Test Set 4.765 0.053 20.103 2.882
Real Test Set 5.251 0.237 21.84 3.521
Intermediate Training Set 4.166 0.0 21.16 3.143
Real Training Set 4.629 0.006 22.33 3.448

Table A.9.1: Result of our sequence labelling network, running on the AbDb
dataset using bitfield representation.

Loop type RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

Intermediate Test Set 3.898 0.0 12.202 2.143
Real Test Set 4.244 0.134 16.496 2.508
Intermediate Training Set 1.616 0.0 12.084 1.8
Real Training Set 2.747 0.007 11.637 1.999

Table A.9.2: Result of our sequence labelling network, running on the AbDb
dataset using 5D representation.
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Loop type RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

Intermediate Test Set 5.248 0.0 26.191 3.556
Real Test Set 5.751 0.006 27.125 2.963
Intermediate Training Set 4.579 0.0 20.287 3.279
Real Training Set 5.067 0.129 23.061 3.6

Table A.9.3: Result of our sequence labelling network, running on the combined
LoopDB-AbDb dataset, with bitfield representation.

Loop type RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

Intermediate 6.01 0.08 27.304 3.646
Real 6.41 0.175 29.319 4.04

Table A.9.4: Result of our sequence labelling network, running on the combined
LoopDB-AbDb dataset with 5D representation.

A.10 3-Mer network results

Loop type RMSD
Mean

Min
RMSD

Max
RMSD

RMSD
StdDev

Intermediate 5D 7.151 0.038 28.955 4.591
Real 5D 7.698 0.014 31.385 5.043
Intermediate bitfield 5.575 0.0 32.859 3.488
Real bitfield 5.942 0.014 30.539 3.82

Table A.10.1: Result of our 3-mer sequence labelling network, running on the
LoopDB and AbDb datasets. Values are in ngstroms

A.11 AMA-II network comparison

Model ACC CCG JEF JOA MNT SCH PIG FinalNet
4MA3 5.0 5.1 5.7 5.8 4.8 5.0 - 0.765
4KUZ 4.5 4.8 3.5 3.4 3.0 2.4 4.7 5.611
4KQ3 1.8 4.0 2.4 2.2 2.0 1.6 6.6 3.532
4KQ4 1.6 2.1 1.6 1.8 1.7 3.5 1.5 4.02
4M6M 3.2 3.3 2.9 2.8 2.1 3.4 - 4.477
4M6O 4.4 4.0 3.9 2.3 3.0 3.1 3.9 8.9
4MAU 2.7 3.1 1.3 1.0 2.1 2.0 3.0 3.47
4M7K 3.8 3.2 2.9 2.4 3.9 4.0 3.4 5.241
4KMT 2.6 1.5 1.8 2.0 5.1 2.5 2.1 3.048
4M61 1.8 3.6 2.1 2.5 3.0 2.4 3.7 4.42
4M43 3.3 3.5 3.2 2.2 3.0 3.3 2.2 3.431

Table A.11.1: Results from the AMA-II for CDRH3. Values are in Ångstroms
and represent he RMSD between Cα atoms within the backbone of the loop.
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Appendix B

Program code listings

Code listings are also available from https://github.com/OniDaito/MRes and
https://doi.org/10.5281/zenodo.1319787.

B.1 Generate statistics on reconstruction algo-
rithms

"""

stats_recon.py

author : Benjamin Blundell

email : me@benjamin.computer

Test how good NeRF and Martin's reconstruction programs are

"""

import os, sys, signal, subprocess, math

from Bio.PDB import *

import numpy as np

# Import our shared util

parentdir =

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))↪→

os.sys.path.insert(0,parentdir)

import common.acids as acids

def do_stats(names, loops, reals, do_omega = True):

''' Perform some stats on our three loop types.'''

import common.nerf as nerf

import common.pdb as pdb

idx = 0

pairs = []

for loop in loops:

nf = nerf.NeRF()

coords = nf.compute_positions_loop(loop)
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name = names[idx]

n0 = name + "_nerf.pdb"

pdb.coords_to_pdb( n0, name, loop._residues, coords)

n1 = name + "_real.pdb"

pdb.coords_to_pdb( n1, name, loop._residues, reals[idx])

n2 = name + "_mrtn.pdb"

gen_martin(loop, name, do_omega)

pairs.append((n0,n1,n2))

idx += 1

rmsds = []

rmsdm = []

for trio in pairs:

try:

pro = subprocess.run(["pdbfit", trio[0], trio[1] ],

stdout=subprocess.PIPE)↪→

tr = pro.stdout.decode()

tr = float(tr.replace("RMSD ",""))

rmsds.append(tr)

if tr > 1.0:

print("NeRF", trio[1], tr)

pro = subprocess.run(["pdbfit", "-w", trio[0], trio[1] ],

stdout=subprocess.PIPE)↪→

tr = pro.stdout.decode()

with open(trio[1],"w") as f:

f.write(tr)

pro = subprocess.run(["pdbfit", trio[1], trio[2] ],

stdout=subprocess.PIPE)↪→

tr = pro.stdout.decode()

tr = float(tr.replace("RMSD ",""))

rmsdm.append(tr)

if tr > 1.0:

print("Mrtn", trio[1], tr)

pro = subprocess.run(["pdbfit", "-w", trio[1], trio[2] ],

stdout=subprocess.PIPE)↪→

tr = pro.stdout.decode()

with open(trio[2],"w") as f:

f.write(tr)

except:

print("Failed pdbfit on", trio[1])

print("NeRF average", sum(rmsds) / len(rmsds))

print("Martin average", sum(rmsdm) / len(rmsdm))
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def pad(ss):

pad = ""

for i in range(0,8-len(ss)):

pad += " "

return pad + ss

def gen_martin(loop, name, do_omega = True):

''' Create the required output files for genloop.'''

with open("seq.martin","w") as f:

f.write("(")

for res in loop._residues:

f.write(acids.amino_to_letter(res._name))

f.write(")\n")

with open("torsion.martin","w") as f:

f.write(str(len(loop._residues)))

f.write(" 1\n\n")

f.write("title line\n")

f.write("----------------------------------\n")

for res in loop._residues:

f.write(" " + acids.amino_to_letter(res._name))

phi = pad("{0:.3f}".format(res.phid()))

psi = pad("{0:.3f}".format(res.psid()))

omega = pad("{0:.3f}".format(res.omegad()))

if not do_omega:

omega = pad("{0:.3f}".format(180.0))

f.write(" " + phi + " " + psi + " " + omega + "\n")

try:

pro = subprocess.run(["genloop", "seq.martin",

"torsion.martin", name + "_mrtn.pdb" ],

stdout=subprocess.PIPE)

↪→

↪→

except:

print("Failed genloop on", name)

def gen_reals(names):

''' Given a set of model names, find the real atom

positions.'''↪→

import psycopg2

_db = "pdb_martin"

_user = "postgres"

conn = psycopg2.connect("dbname=" + _db + " user=" + _user)

model_coords = []

for name in names:

mname = name.replace(" ","")

cur_res = conn.cursor()
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cur_res.execute("SELECT * from atom where chainid='H' and

resseq >= 95 and resseq <= 102 and model='" + mname + "'

and (name='C' or name='CA' or name='N') order by serial")

↪→

↪→

atoms = cur_res.fetchall()

coords = []

for atom in atoms:

coords.append((atom[8], atom[9], atom[10]))

model_coords.append(coords)

conn.close()

return model_coords

def gen_loops(limit=-1, do_omega=True):

''' Generate the loops from our database.'''

import psycopg2

from common.gen_data import Loop, Residue

_db = "pdb_martin"

_user = "postgres"

conn = psycopg2.connect("dbname=" + _db + " user=" + _user)

final_loops = []

names = []

cur_model = conn.cursor()

cur_model.execute("SELECT * from model order by code")

models = cur_model.fetchall()

for model in models:

mname = model[0].replace(" ","")

new_loop = Loop(mname)

# Pull out the NeRFed end points

cur_res = conn.cursor()

cur_res.execute("SELECT * from nerf where model='" + mname +

"'")↪→

endpoints = cur_res.fetchall()

if len(endpoints) != 1:

continue

endpoint = endpoints[0]

# Should only be one

new_loop._endpoint = [endpoint[1], endpoint[2], endpoint[3]]

cur_res = conn.cursor()

cur_res.execute("SELECT * from residue where model='" + mname

+ "' order by resorder")↪→

residues = cur_res.fetchall()

temp_residues = []

for row in residues:

residue = acids.label_to_amino(row[1])
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reslabel = row[2]

resorder = row[3]

temp_residues.append((residue,reslabel,resorder))

cur_angle = conn.cursor()

cur_angle.execute("SELECT * from angle where model='" + mname

+ "' order by resorder")↪→

angles = cur_angle.fetchall()

if len(angles) == 0:

print("ERROR with model " + mname + ". No angles returned")

continue

idx = 0

for row in angles:

phi = math.radians(row[1])

psi = math.radians(row[2])

omega = math.radians(row[3])

if not do_omega:

omega = math.pi

new_residue = Residue(

temp_residues[idx][0],

temp_residues[idx][1],

temp_residues[idx][2],

phi,psi,omega)

new_loop.add_residue(new_residue)

idx+=1

#print("Generated",mname)

names.append(mname)

if limit != -1:

if len(final_loops) >= limit:

break

final_loops.append(new_loop)

conn.close()

return (final_loops, names)

if __name__ == "__main__":

(loops, names) = gen_loops(limit=-1, do_omega=False)

reals = gen_reals(names)

do_stats(names, loops, reals)

B.2 Torsion angle creation algorithm

"""

torsions.py - module for working out backbone torsions
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author : Benjamin Blundell

email : me@benjamin.computer

"""

import math

def cross(u,v):

x = (u[1]*v[2]) - (u[2]*v[1])

y = (u[2]*v[0]) - (u[0]*v[2])

z = (u[0]*v[1]) - (u[1]*v[0])

return (x,y,z)

def sub(u,v):

return (u[0] - v[0], u[1] - v[1], u[2] - v[2])

def norm(u):

l = 1.0 / length(u)

return (u[0] *l, u[1] * l, u[2] * l)

def dot(u,v):

return u[0] * v[0] + u[1] * v[1] + u[2] * v[2]

def length(u) :

return math.sqrt(u[0] * u[0] + u[1] * u[1] + u[2] * u[2])

def res_atom (residue, label):

for rr in residue:

if rr[0] == label:

return (rr[3], rr[4], rr[5])

# residue is as follows:

# atom.label, atom.resseq, atom.resnum, x, y, z

def derive_angles(residues):

""" Given the residues, lets take a look at the atoms within

and derive the angles. """↪→

angles = []

Cap = (0,0,0)

C = (0,0,0)

Nn = (0,0,0)

Ca = (0,0,0)

N = (0,0,0)

idx = 0

for idx in range(0,len(residues)):

phi = psi = omega = 0

res = residues[idx]
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N = res_atom(res,'N')

if idx != 0:

Cp = C

C = res_atom(res,'C')

Cap = Ca

Ca = res_atom(res,'CA')

# ORTHONORMAL FRAME (changing basis basically)

# Results dont seem as close as cos-1 version but

apparently, this is more accurate :/↪→

# Phi

a = sub(Cp,N)

b = sub(Ca,N)

d = b

n0a = cross(a, b)

n1a = cross(sub(N,Ca), sub(C,Ca))

cosphi = -dot(n0a,n1a) / (length(n0a) * length(n1a))

nx = dot(cross(n0a,n1a),d)

phi = math.degrees(math.acos(cosphi))

if nx < 0:

phi = -180 + phi

else :

phi = 180 - phi

if idx < len(residues) - 1:

Ca = res_atom(res,'CA')

resn = residues[idx+1]

Nn = res_atom(resn,'N')

Can = res_atom(resn,'CA')

C = res_atom(res,'C')

# Omega - needed to get Phi and Psi correct because it

might flip things around↪→

# we need to adjust the next angle

d = sub(Nn,C)

n0c = cross(sub(Ca,C), sub(Nn,C))

n1c = cross(sub(Can,Nn), sub(C,Nn))

cosomega = -dot(n0c,n1c) / (length(n0c) * length(n1c))

nx = dot(cross(n0c,n1c),d)

omega = math.degrees(math.acos(cosomega))

if nx > 0:

omega = -omega # this seems too simple :/

# This method uses arctan and is more reliable apparently

#m = cross(b,n0a)

#x = dot(n0a,n1a)

#y = dot(m,n1a)

#phi = math.degrees(math.atan2(y,x))
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# Psi

a = sub(N,Ca)

b = sub(C,Ca)

d = b

n0b = cross(a, b)

n1b = cross(sub(Ca,C), sub(Nn,C))

# Same arctan method

#m = cross(b,n0b)

#x = dot(n0b,n1b)

#y = dot(m,n1b)

#psi = math.degrees(math.atan2(y,x))

cospsi = -dot(n0b,n1b) / (length(n0b) * length(n1b))

nx = dot(cross(n0b,n1b),d)

psi = math.degrees(math.acos(cospsi))

if nx < 0:

psi = -180 + psi

else :

psi = 180 - psi

angles.append((phi, psi, omega))

idx += 1

return angles

\begin{end}

\section{NeRF algorithm}

\label{appendix:nerf}

\begin{minted}[breaklines]{python}

"""

The NeRF algorithm

This program converts torsion angles to cartesian co-ordinates

for amino-acid back-bones. Based on the following resources:

http://onlinelibrary.wiley.com/doi/10.1002/jcc.20237/abstract

https://www.ncbi.nlm.nih.gov/pubmed/8515464

https://www.google.com/patents/WO2002073193A1?cl=en

"""

import numpy as np

import math, itertools

#bond_lengths = { "N_TO_A" : 1.4615, "PRO_N_TO_A" : 1.353,

"A_TO_C" : 1.53, "C_TO_N" : 1.325 }↪→

bond_lengths = { "N_TO_A" : 1.4615, "A_TO_C" : 1.53, "C_TO_N" :

1.325 }↪→

bond_angles = { "A_TO_C" : math.radians(109), "C_TO_N" :

math.radians(115), "N_TO_A" : math.radians(121) }↪→
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bond_order = ["C_TO_N", "N_TO_A", "A_TO_C"]

def next_data(key):

''' Loop over our bond_angles and bond_lengths '''

ff = itertools.cycle(bond_order)

for item in ff:

if item == key:

next_key = next(ff)

break

return (bond_angles[next_key], bond_lengths[next_key],

next_key)↪→

def place_atom(atom_a, atom_b, atom_c, bond_angle, torsion_angle,

bond_length) :↪→

''' Given the three previous atoms, the required angles and the

bond↪→

lengths, place the next atom. Angles are in radians, lengths in

angstroms.'''↪→

ab = np.subtract(atom_b, atom_a)

bc = np.subtract(atom_c, atom_b)

bcn = bc / np.linalg.norm(bc)

R = bond_length

# numpy is row major

d = np.array([-R * math.cos(bond_angle),

R * math.cos(torsion_angle) * math.sin(bond_angle),

R * math.sin(torsion_angle) * math.sin(bond_angle)])

n = np.cross(ab,bcn)

n = n / np.linalg.norm(n)

nbc = np.cross(n,bcn)

m = np.array([

[bcn[0],nbc[0],n[0]],

[bcn[1],nbc[1],n[1]],

[bcn[2],nbc[2],n[2]]])

d = m.dot(d)

d = d + atom_c

return d

def compute_positions(torsions):

atoms = [[0, -1.355, 0], [0, 0, 0], [1.4466, 0.4981, 0]]

torsions = list(map(math.radians, torsions))

key = "C_TO_N"

angle = bond_angles[key]

length = bond_lengths[key]

for torsion in torsions:
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atoms.append(place_atom(atoms[-3], atoms[-2], atoms[-1],

angle, torsion, length))↪→

(angle, length, key) = next_data(key)

return atoms

if __name__ == "__main__":

print ("3NH7_1 - using real omega")

torsions = [ 142.951668191667, 173.2,

-147.449854444109, 137.593755455898, -176.98,

-110.137784727015, 138.084240732612, 162.28,

-101.068226849313, -96.1690297398444, 167.88,

-78.7796836206707, -44.3733790929788, 175.88,

-136.836113196726, 164.182984866024, -172.22,

-63.909882696529, 143.817250526837, 168.89,

-144.50345668635, 158.70503596547, 175.87,

-96.842536650294, 103.724939588454, -172.34,

-85.7345901579845, -18.1379473766538, -172.98,

-150.084356709565]

atoms0 = compute_positions(torsions)

print(len(atoms0))

for atom in atoms0:

print(atom)

print ("3NH7_1 - using 180 omega")

torsions = [142.951668191667, 179.0,

-147.449854444109, 137.593755455898, -176.0,

-110.137784727015, 138.084240732612, 175.0,

-101.068226849313, -96.1690297398444, 179.0,

-78.7796836206707, -44.3733790929788, 179.0,

-136.836113196726, 164.182984866024, -179.0,

-63.909882696529, 143.817250526837, 179.0,

-144.50345668635, 158.70503596547, 179.0,

-96.842536650294, 103.724939588454, -179.0,

-85.7345901579845, -18.1379473766538, -179.0,

-150.084356709565]

atoms1 = compute_positions(torsions)

print(len(atoms1))

for atom in atoms1:

print(atom)

print("Diff")

for idx in range(0,len(atoms0)):

print(idx, np.subtract(atoms0[idx], atoms1[idx]))
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B.3 nn02 - convolutional net example

"""

nn02.py - Dealing with variable length input

author : Benjamin Blundell

email : me@benjamin.computer

Based on https://www.tensorflow.org/get_started/mnist/pros

and https://danijar.com/variable-sequence-lengths-in-tensorflow/

This version performs the best so far and is probably closest

to the TDNN we want to check

"""

import sys, os, math, random

import tensorflow as tf

import numpy as np

# Import our shared util

parentdir =

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))↪→

os.sys.path.insert(0,parentdir)

from common.util import *

from common.batch_real import *

from common import gen_data

FLAGS = NNGlobals()

# A higher learning rate seems good as we have few examples in

this data set.↪→

# Would that be correct do we think?

FLAGS.learning_rate = 0.35

FLAGS.window_size = 4

FLAGS.pickle_filename = 'pdb_martin_02.pickle'

FLAGS.num_epochs = 2000

def weight_variable(shape, name ):

'''For now I use truncated normals with stdddev of 0.1.

Hopefully↪→

some of these go negative.'''

initial = tf.truncated_normal(shape, stddev=0.1, name=name)

return tf.Variable(initial)

def bias_variable(shape, name):

initial = tf.constant(1.0, shape=shape, name=name)

return tf.Variable(initial)

def conv1d(x, W):

''' Our convolution is what we use to replicate a TDNN though
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I suspect we need to do a lot more.'''

return tf.nn.conv1d(x, W, stride=1, padding='SAME')

def create_graph() :

''' My attempt at creating a TDNN with the conv1d operation. We

have one conv layer, and two fully↪→

connected layers (which are quite large). We take a batch x

max_cdr x amino_acid layer and output↪→

a max_cdr * 4 layer for angle components. We use tanh

activation functions throughout.'''↪→

graph = tf.Graph()

with tf.device('/gpu:0'):

with graph.as_default():

# Input data - we use a 2D array with each 'channel' being

an amino acid bitfield↪→

# In this case, we only use one example at a time as each

is a different length↪→

tf_train_dataset = tf.placeholder(tf.bool,

[None, FLAGS.max_cdr_length,

FLAGS.num_acids],name="train_input")↪→

output_size = FLAGS.max_cdr_length * 4

dmask = tf.placeholder(tf.float32, [None, output_size],

name="dmask")↪→

x = tf.cast(tf_train_dataset, dtype=tf.float32)

# According to the Tensorflow tutorial, the last two vars

are input channels↪→

# and output channels (both 21)

W_conv0 = weight_variable([FLAGS.window_size,

FLAGS.num_acids, FLAGS.num_acids] , "weight_conv_0")

b_conv0 = bias_variable([FLAGS.num_acids], "bias_conv_0")

# Using tanh as an activation fuction as it is bounded over

-1 to 1↪→

# Don't have to use it here but we get better accuracy

h_conv0 = tf.tanh(conv1d(x, W_conv0) + b_conv0)

# The second layer is fully connected, neural net.

dim_size = FLAGS.num_acids * FLAGS.max_cdr_length

W_f = weight_variable([dim_size, output_size],

"weight_hidden")↪→

b_f = bias_variable([output_size], "bias_hidden")

# Apparently, the convolutional layer needs to be reshaped

# This bit might be key as our depth, our 21 amino acid

neurons are being connected here↪→

h_conv0_flat = tf.reshape(h_conv0, [-1, dim_size])
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h_f = tf.tanh( (tf.matmul(h_conv0_flat, W_f) + b_f)) *

dmask↪→

# It looks like I can't take a size < max_cdr and use it,

because we have↪→

# fixed sized stuff so we need to dropout the weights we

don't need per sample↪→

# Find the actual sequence length and only include up to

that length↪→

# We always use dropout even after training

# Annoyingly tensorflow's dropout doesnt work for us here

so I need to↪→

# add another variable to our h_f layer, deactivating these

neurons matched↪→

test = tf.placeholder(tf.float32, [None, output_size],

name="train_test")↪→

# Output layer - we don't need this because the previous

layer is fine but↪→

# we do get some accuracy increases with another layer/

# the right number of variables for us but I'll add another

one anyway so we have three.↪→

W_o = weight_variable([output_size, output_size],

"weight_output")↪→

b_o = bias_variable([output_size],"bias_output")

# I use tanh to bound the results between -1 and 1

y_conv = tf.tanh( ( tf.matmul(h_f, W_o) + b_o) * dmask,

name="output")↪→

variable_summaries(y_conv, "y_conv")

return graph

def create_mask(batch):

''' create a mask for our fully connected layer, which

is a [1] shape that is max_cdr * 4 long.'''

mask = []

for model in batch:

mm = []

for cdr in model:

tt = 1

if not 1 in cdr:

tt = 0

for i in range(0,4):

mm.append(tt)

mask.append(mm)

return np.array(mask,dtype=np.float32)

def cost(goutput, gtest):

''' Our error function which we will try to minimise'''
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# We find the absolute difference between the output angles and

the training angles↪→

# Can't use cross entropy because thats all to do with

probabilities and the like↪→

# Basic error of sum squares diverges to NaN due to gradient so

I go with reduce mean↪→

# Values of -3.0 are the ones we ignore

# This could go wrong as adding 3.0 to -3.0 is not numerically

stable↪→

mask = tf.sign(tf.add(gtest,3.0))

basic_error = tf.square(gtest-goutput) * mask

# reduce mean doesnt work here as we just want the numbers

where mask is 1↪→

# We work out the mean ourselves

basic_error = tf.reduce_sum(basic_error)

basic_error /= tf.reduce_sum(mask)

return basic_error

def run_session(graph, datasets):

''' Run the session once we have a graph, training methodology

and a dataset '''↪→

with tf.device('/gpu:0'):

with tf.Session(graph=graph) as sess:

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

# Pull out the bits of the graph we need

ginput = graph.get_tensor_by_name("train_input:0")

gtest = graph.get_tensor_by_name("train_test:0")

goutput = graph.get_tensor_by_name("output:0")

gmask = graph.get_tensor_by_name("dmask:0")

stepnum = 0

# Working out the accuracy

basic_error = cost(goutput, gtest)

# Setup all the logging for tensorboard

variable_summaries(basic_error, "Error")

merged = tf.summary.merge_all()

train_writer =

tf.summary.FileWriter('./summaries/train',graph)↪→

# So far, I have found Gradient Descent still wins out at

the moment↪→

train_step =

tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(basic_error)↪→

#train_step =

tf.train.AdagradOptimizer(FLAGS.learning_rate).minimize(basic_error)↪→

#train_step =

tf.train.AdamOptimizer(1e-4).minimize(basic_error)↪→

#train_step =

tf.train.MomentumOptimizer(FLAGS.learning_rate,

0.1).minimize(basic_error)

↪→

↪→
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tf.global_variables_initializer().run()

print('Initialized')

for i in range(0,FLAGS.num_epochs):

stepnum = 0

FLAGS.next_batch = 0

print("Epoch",i)

while has_next_batch(training_input, FLAGS):

item_is, item_os = next_batch(training_input,

training_output, FLAGS)↪→

mask = create_mask(item_is)

summary, _ = sess.run([merged, train_step],

feed_dict={ginput: item_is, gtest: item_os, gmask:

mask})↪→

# Find the accuracy at every step, but only print every

100↪→

mask = create_mask(validate_input)

train_accuracy = basic_error.eval(

feed_dict={ginput: validate_input, gtest:

validate_output, gmask : mask})↪→

if stepnum % 50 == 0:

print('step %d, training accuracy %g' % (stepnum,

train_accuracy))↪→

#dm = gmask.eval(feed_dict={ginput: item_is, gtest:

item_os, gmask: mask})↪→

#print(dm)

stepnum += 1

# save our trained net

saver = tf.train.Saver()

saver.save(sess, 'saved/nn02')

def run_saved(datasets):

''' Load the saved version and then test it against the

validation set '''↪→

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn02.meta')

saver.restore(sess, 'saved/nn02')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gmask = graph.get_tensor_by_name("dmask:0")

mask = create_mask(validate_input)

106



res = sess.run([goutput], feed_dict={ginput: validate_input,

gmask: mask })↪→

# Now lets output a random example and see how close it is,

as well as working out the↪→

# the difference in mean values. Don't adjust the weights

though↪→

r = random.randint(0, len(validate_input)-1)

print("Actual Predicted")

for i in range(0,len(validate_input[r])):

sys.stdout.write(bitmask_to_acid(FLAGS,

validate_input[r][i]))↪→

phi = math.degrees(math.atan2(validate_output[r][i*4],

validate_output[r][i*4+1]))↪→

psi = math.degrees(math.atan2(validate_output[r][i*4+2],

validate_output[r][i*4+3]))↪→

sys.stdout.write(": " +

"{0:<8}".format("{0:.3f}".format(phi)) + " ")↪→

sys.stdout.write("{0:<8}".format("{0:.3f}".format(psi)) + "

")↪→

phi = math.degrees(math.atan2(res[0][r][i*4],

res[0][r][i*4+1]))↪→

psi = math.degrees(math.atan2(res[0][r][i*4+2],

res[0][r][i*4+3]))↪→

sys.stdout.write(" | " +

"{0:<8}".format("{0:.3f}".format(phi)) + " ")↪→

sys.stdout.write("{0:<8}".format("{0:.3f}".format(psi)))

print("")

def print_error(datasets):

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn02.meta')

saver.restore(sess, 'saved/nn02')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gmask = graph.get_tensor_by_name("dmask:0")

gtest = graph.get_tensor_by_name("train_test:0")

mask = create_mask(test_input)

basic_error = cost(goutput, gtest)

test_accuracy = basic_error.eval(

feed_dict={ginput: test_input, gtest: test_output,

gmask : mask})↪→

print ("Error on test set:", test_accuracy)

def generate_pdbs(datasets):
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''' Load the saved version and write a set of PDBs of both the

predicted↪→

and actual models.'''

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn02.meta')

saver.restore(sess, 'saved/nn02')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gmask = graph.get_tensor_by_name("dmask:0")

mask = create_mask(test_input)

res = sess.run([goutput], feed_dict={ginput: test_input,

gmask: mask })↪→

for midx in range(0,len(test_input)):

torsions_real = []

torsions_pred = []

residues = []

# Put the data in the correct arrays for PDB printing

for i in range(0,len(test_input[midx])):

tres = bitmask_to_acid(FLAGS, test_input[midx][i])

if tres == "***": break

residues.append((tres,i))

phi = math.atan2(test_output[midx][i*4],

test_output[midx][i*4+1])↪→

psi = math.atan2(test_output[midx][i*4+2],

test_output[midx][i*4+3])↪→

torsions_real.append([phi,psi])

phi = math.atan2(res[0][midx][i*4], res[0][midx][i*4+1])

psi = math.atan2(res[0][midx][i*4+2],

res[0][midx][i*4+3])↪→

torsions_pred.append([phi,psi])

torsions_pred[0][0] = 0.0

torsions_real[0][0] = 0.0

torsions_pred[len(torsions_pred)-1][1] = 0.0

torsions_real[len(torsions_real)-1][1] = 0.0

from common import torsion_to_coord as tc

mname = str(midx).zfill(3) + "_real.pdb"

with open(mname,'w') as f:

pf = {}

pf["angles"] = torsions_real

pf["residues"] = residues

entries = tc.process(pf)

f.write(tc.printpdb(mname, entries, residues))
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mname = str(midx).zfill(3) + "_pred.pdb"

with open(mname,'w') as f:

pf = {}

pf["angles"] = torsions_pred

pf["residues"] = residues

entries = tc.process(pf)

f.write(tc.printpdb(mname, entries, residues))

mname = str(midx).zfill(3) + "_real.txt"

with open(mname,'w') as f:

for i in range(0, len(residues)):

f.write(residues[i][0] + ": " +

str(torsions_real[i][0]) + ", " +

str(torsions_real[i][1]) + "\n")

↪→

↪→

mname = str(midx).zfill(3) + "_pred.txt"

with open(mname,'w') as f:

for i in range(0, len(residues)):

f.write(residues[i][0] + ": " +

str(torsions_pred[i][0]) + ", " +

str(torsions_pred[i][1]) + "\n")

↪→

↪→

if __name__ == "__main__":

from common import gen_data

# If we just want to run the trained net

datasets = init_data_sets(FLAGS, gen_data)

if len(sys.argv) > 1:

if sys.argv[1] == "-r":

run_saved(datasets)

sys.exit()

elif sys.argv[1] == "-e":

print_error(datasets)

sys.exit()

elif sys.argv[1] == "-g":

generate_pdbs(datasets)

sys.exit()

graph = create_graph()

run_session(graph, datasets)

run_saved(datasets)

B.4 nn06 - Bi-directional LSTM

"""

nn06.py - A bidirectional LSTM attempt
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author : Benjamin Blundell

email : me@benjamin.computer

We pad out the data to the maximum, but for each input

we find the real length and both stop the LSTM unrolls

at that point (dynamic) and mask out the output layers

so the cost function doesn't take these padded values

into account.

"""

import sys, os, math, random

import tensorflow as tf

import numpy as np

# Import our shared util

parentdir =

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))↪→

os.sys.path.insert(0,parentdir)

from common.util import *

from common.batch_real import *

from common import gen_data

FLAGS = NNGlobals()

# A higher learning rate seems good as we have few examples in

this data set.↪→

# Would that be correct do we think?

FLAGS.learning_rate = 0.45

FLAGS.pickle_filename = 'pdb_martin_06.pickle'

FLAGS.lstm_size = 256 # number of neurons per LSTM cell do we

think?↪→

FLAGS.num_epochs = 2000 # number of loops around the training set

FLAGS.batch_size = 20

def weight_variable(shape, name ):

''' For now I use truncated normals with stdddev of 0.1.'''

initial = tf.truncated_normal(shape, stddev=0.1, name=name)

return tf.Variable(initial)

def bias_variable(shape, name):

initial = tf.constant(1.0, shape=shape, name=name)

return tf.Variable(initial)

def lstm_cell(size, kprob):

''' Return an LSTM Cell or other RNN type cell. We

have a few choices. We can even throw in a bit of

dropout if we want.'''

cell= tf.nn.rnn_cell.BasicLSTMCell(size)
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#cell = tf.nn.rnn_cell.GRUCell(size)

#cell = tf.nn.rnn_cell.BasicRNNCell(size)

cell = tf.nn.rnn_cell.DropoutWrapper(cell=cell,

output_keep_prob=kprob)↪→

return cell

def create_graph() :

graph = tf.Graph()

with tf.device('/gpu:0'):

with graph.as_default():

# Input data. We take in padded CDRs but feed in a length /

mask as well↪→

# Apparently the dynamic RNN thingy can cope with variable

lengths↪→

# Input has to be [batch_size, max_time, ...]

tf_train_dataset = tf.placeholder(tf.int32, [None,

FLAGS.max_cdr_length,

FLAGS.num_acids],name="train_input")

↪→

↪→

output_size = FLAGS.max_cdr_length * 4

dmask = tf.placeholder(tf.float32, [None, output_size],

name="dmask")↪→

x = tf.cast(tf_train_dataset, dtype=tf.float32)

# Since we are using dropout, we need to have a

placeholder, so we dont set↪→

# dropout at validation time

keep_prob = tf.placeholder(tf.float32, name="keepprob")

single_rnn_cell = lstm_cell(FLAGS.lstm_size, keep_prob)

# 'outputs' is a tensor of shape [batch_size,

max_cdr_length, lstm_size]↪→

# 'state' is a N-tuple where N is the number of LSTMCells

containing a↪→

# tf.contrib.rnn.LSTMStateTuple for each cell

length = create_length(x)

initial_state =

single_rnn_cell.zero_state(FLAGS.batch_size,

dtype=tf.float32)

↪→

↪→

outputs, states =

tf.nn.bidirectional_dynamic_rnn(cell_fw=single_rnn_cell,

cell_bw=single_rnn_cell, inputs=x, dtype=tf.float32,

sequence_length = length)

↪→

↪→

↪→

output_fw, output_bw = outputs

states_fw, states_bw = states

# We flatten out the outputs so it just looks like a big

batch to our weight matrix↪→
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# apparently this gives us weights across the entire set of

steps↪→

output_fw = tf.reshape(output_fw, [-1, FLAGS.lstm_size],

name="flattened_fw")↪→

output_bw = tf.reshape(output_bw, [-1, FLAGS.lstm_size],

name="flattened_bw")↪→

output = tf.add(output_fw, output_bw)

test = tf.placeholder(tf.float32, [None, output_size],

name="train_test")↪→

W_i = weight_variable([FLAGS.lstm_size, 4],

"weight_intermediate")↪→

b_i = bias_variable([4],"bias_intermediate")

y_i = tf.tanh( ( tf.matmul( output, W_i) + b_i),

name="intermediate")↪→

# Now reshape it back and run the mask against it

y_b = tf.reshape(y_i, [-1, output_size], name="output")

y_b = y_b * dmask

return graph

def create_mask(batch):

''' create a mask for our fully connected layer, which

is a [1] shape that is max_cdr * 4 long.'''

mask = []

for model in batch:

mm = []

for cdr in model:

tt = 1

if not 1 in cdr:

tt = 0

for i in range(0,4):

mm.append(tt)

mask.append(mm)

return np.array(mask,dtype=np.float32)

def create_length(batch):

''' return the actual lengths of our CDR here. Taken from

https://danijar.com/variable-sequence-lengths-in-tensorflow/

'''↪→

used = tf.sign(tf.reduce_max(tf.abs(batch), 2))

length = tf.reduce_sum(used, 1)

length = tf.cast(length, tf.int32)

return length
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def cost(goutput, gtest):

''' Our error function which we will try to minimise'''

# We find the absolute difference between the output angles and

the training angles↪→

# Can't use cross entropy because thats all to do with

probabilities and the like↪→

# Basic error of sum squares diverges to NaN due to gradient so

I go with reduce mean↪→

# Values of -3.0 are the ones we ignore

# This could go wrong as adding 3.0 to -3.0 is not numerically

stable↪→

mask = tf.sign(tf.add(gtest,3.0))

basic_error = tf.square(gtest-goutput) * mask

# reduce mean doesnt work here as we just want the numbers

where mask is 1↪→

# We work out the mean ourselves

basic_error = tf.reduce_sum(basic_error)

basic_error /= tf.reduce_sum(mask)

return basic_error

def run_session(graph, datasets):

''' Run the session once we have a graph, training methodology

and a dataset '''↪→

with tf.device('/gpu:0'):

with tf.Session(graph=graph) as sess:

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

# Pull out the bits of the graph we need

ginput = graph.get_tensor_by_name("train_input:0")

gtest = graph.get_tensor_by_name("train_test:0")

goutput = graph.get_tensor_by_name("output:0")

gmask = graph.get_tensor_by_name("dmask:0")

gprob = graph.get_tensor_by_name("keepprob:0")

# Working out the accuracy

basic_error = cost(goutput, gtest)

# Setup all the logging for tensorboard

variable_summaries(basic_error, "Error")

merged = tf.summary.merge_all()

train_writer =

tf.summary.FileWriter('./summaries/train',graph)↪→

#train_step =

tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(basic_error)↪→

optimizer = tf.train.AdagradOptimizer(FLAGS.learning_rate)

gvs = optimizer.compute_gradients(basic_error)
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capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for

grad, var in gvs]↪→

train_step = optimizer.apply_gradients(capped_gvs)

#train_step =

tf.train.AdamOptimizer(1e-4).minimize(basic_error)↪→

#train_step =

tf.train.MomentumOptimizer(FLAGS.learning_rate,

0.1).minimize(basic_error)

↪→

↪→

tf.global_variables_initializer().run()

print('Initialized')

for i in range(0,FLAGS.num_epochs):

stepnum = 0

FLAGS.next_batch = 0

print("Epoch",i)

while has_next_batch(training_input, FLAGS):

batch_is, batch_os = next_batch(training_input,

training_output, FLAGS)↪→

batch_iv, batch_ov = random_batch(validate_input,

validate_output, FLAGS)↪→

# For some reason, if the batches are not ALL the same

size, we get a crash↪→

# so I reject batches smaller than the one set

if len(batch_is) != FLAGS.batch_size or len(batch_iv)

!= FLAGS.batch_size:↪→

continue

mask = create_mask(batch_is)

summary, _ = sess.run([merged, train_step],

feed_dict={ginput: batch_is, gtest: batch_os,

gmask: mask, gprob: 0.8})↪→

# Find the accuracy at every step, but only print every

100↪→

# We have to batch here too for some reason? LSTM or

something?↪→

mask = create_mask(batch_iv)

train_accuracy = basic_error.eval(

feed_dict={ginput: batch_iv, gtest: batch_ov,

gmask: mask, gprob: 1.0})↪→

if stepnum % 10 == 0:

print('step %d, training accuracy %g' % (stepnum,

train_accuracy))↪→

train_writer.add_summary(summary, stepnum)
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stepnum += 1

# save our trained net

saver = tf.train.Saver()

saver.save(sess, 'saved/nn06')

def run_saved(datasets):

''' Load the saved version and then test it against the

validation set '''↪→

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn06.meta')

saver.restore(sess, 'saved/nn06')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gmask = graph.get_tensor_by_name("dmask:0")

gprob = graph.get_tensor_by_name("keepprob:0")

mask = create_mask(validate_input)

res = sess.run([goutput], feed_dict={ginput: validate_input,

gmask: mask, gprob: 1.0})↪→

# Now lets output a random example and see how close it is,

as well as working out the↪→

# the difference in mean values. Don't adjust the weights

though↪→

r = random.randint(0, len(validate_input)-1)

print("Actual Predicted")

for i in range(0,len(validate_input[r])):

sys.stdout.write(bitmask_to_acid(FLAGS,

validate_input[r][i]))↪→

phi = math.degrees(math.atan2(validate_output[r][i*4],

validate_output[r][i*4+1]))↪→

psi = math.degrees(math.atan2(validate_output[r][i*4+2],

validate_output[r][i*4+3]))↪→

sys.stdout.write(": " +

"{0:<8}".format("{0:.3f}".format(phi)) + " ")↪→

sys.stdout.write("{0:<8}".format("{0:.3f}".format(psi)) + "

")↪→

phi = math.degrees(math.atan2(res[0][r][i*4],

res[0][r][i*4+1]))↪→

psi = math.degrees(math.atan2(res[0][r][i*4+2],

res[0][r][i*4+3]))↪→

sys.stdout.write(" | " +

"{0:<8}".format("{0:.3f}".format(phi)) + " ")↪→

sys.stdout.write("{0:<8}".format("{0:.3f}".format(psi)))

print("")
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def print_error(datasets):

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn06.meta')

saver.restore(sess, 'saved/nn06')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gprob = graph.get_tensor_by_name("keepprob:0")

gmask = graph.get_tensor_by_name("dmask:0")

gtest = graph.get_tensor_by_name("train_test:0")

mask = create_mask(test_input)

basic_error = cost(goutput, gtest)

test_input = test_input[:FLAGS.batch_size]

test_output = test_output[:FLAGS.batch_size]

test_accuracy = basic_error.eval(

feed_dict={ginput: test_input, gtest: test_output, gmask

: mask, gprob: 1.0})↪→

print ("Error on test set:", test_accuracy)

def generate_pdbs(datasets):

''' Load the saved version and write a set of PDBs of both the

predicted↪→

and actual models.'''

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn06.meta')

saver.restore(sess, 'saved/nn06')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gmask = graph.get_tensor_by_name("dmask:0")

gprob = graph.get_tensor_by_name("keepprob:0")

mask = create_mask(test_input)

midx = 0

for k in range(0, len(test_input), FLAGS.batch_size):

test_input_batch = test_input[k:k+FLAGS.batch_size]

test_output_batch = test_output[k:k+FLAGS.batch_size]

if len(test_input_batch) != FLAGS.batch_size:

break

116



res = sess.run([goutput], feed_dict={ginput:

test_input_batch, gmask: mask, gprob: 1.0 })↪→

for j in range(0,len(test_input_batch)):

torsions_real = []

torsions_pred = []

residues = []

# Put the data in the correct arrays for PDB printing

for i in range(0,len(test_input_batch[j])):

tres = bitmask_to_acid(FLAGS, test_input_batch[j][i])

if tres == "***": break

residues.append((tres,i))

phi = math.atan2(test_output_batch[j][i*4],

test_output_batch[j][i*4+1])↪→

psi = math.atan2(test_output_batch[j][i*4+2],

test_output_batch[j][i*4+3])↪→

torsions_real.append([phi,psi])

phi = math.atan2(res[0][j][i*4], res[0][j][i*4+1])

psi = math.atan2(res[0][j][i*4+2], res[0][j][i*4+3])

torsions_pred.append([phi,psi])

torsions_pred[0][0] = 0.0

torsions_real[0][0] = 0.0

torsions_pred[len(torsions_pred)-1][1] = 0.0

torsions_real[len(torsions_real)-1][1] = 0.0

from common import torsion_to_coord as tc

mname = str(midx).zfill(3) + "_real.pdb"

with open(mname,'w') as f:

pf = {}

pf["angles"] = torsions_real

pf["residues"] = residues

entries = tc.process(pf)

f.write(tc.printpdb(mname, entries, residues))

mname = str(midx).zfill(3) + "_pred.pdb"

with open(mname,'w') as f:

pf = {}

pf["angles"] = torsions_pred

pf["residues"] = residues

entries = tc.process(pf)

f.write(tc.printpdb(mname, entries, residues))

mname = str(midx).zfill(3) + "_real.txt"

with open(mname,'w') as f:

for i in range(0, len(residues)):
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f.write(residues[i][0] + ": " +

str(torsions_real[i][0]) + ", " +

str(torsions_real[i][1]) + "\n")

↪→

↪→

mname = str(midx).zfill(3) + "_pred.txt"

with open(mname,'w') as f:

for i in range(0, len(residues)):

f.write(residues[i][0] + ": " +

str(torsions_pred[i][0]) + ", " +

str(torsions_pred[i][1]) + "\n")

↪→

↪→

midx += 1

if __name__ == "__main__":

from common import gen_data

# If we just want to run the trained net

if len(sys.argv) > 1:

if sys.argv[1] == "-r":

datasets = init_data_sets(FLAGS, gen_data)

run_saved(datasets)

sys.exit()

if sys.argv[1] == "-e":

datasets = init_data_sets(FLAGS, gen_data)

print_error(datasets)

sys.exit()

if sys.argv[1] == "-g":

datasets = init_data_sets(FLAGS, gen_data)

generate_pdbs(datasets)

sys.exit()

datasets = init_data_sets(FLAGS, gen_data)

graph = create_graph()

run_session(graph, datasets)

run_saved(datasets)

B.5 nn13 - LSTM with 5D encoding

"""

nn13.py - A bidirectional LSTM attempt with 5D encoding

author : Benjamin Blundell

email : me@benjamin.computer

We pad out the data to the maximum, but for each input

we find the real length and both stop the LSTM unrolls

at that point (dynamic) and mask out the output layers

so the cost function doesn't take these padded values

into account.

"""
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import sys, os, math, random

import tensorflow as tf

import numpy as np

# Import our shared util

parentdir =

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))↪→

os.sys.path.insert(0,parentdir)

from common.util import *

from common.batch_real_3d import *

from common import gen_data

FLAGS = NNGlobals()

# A higher learning rate seems good as we have few examples in

this data set.↪→

# Would that be correct do we think?

FLAGS.learning_rate = 0.45

FLAGS.pickle_filename = 'pdb_martin_13.pickle'

FLAGS.lstm_size = 256 # number of neurons per LSTM cell do we

think?↪→

FLAGS.num_epochs = 2000 # number of loops around the training set

FLAGS.batch_size = 20

def weight_variable(shape, name ):

''' For now I use truncated normals with stdddev of 0.1.'''

initial = tf.truncated_normal(shape, stddev=0.1, name=name)

return tf.Variable(initial)

def bias_variable(shape, name):

initial = tf.constant(1.0, shape=shape, name=name)

return tf.Variable(initial)

def lstm_cell(size, kprob):

''' Return an LSTM Cell or other RNN type cell. We

have a few choices. We can even throw in a bit of

dropout if we want.'''

cell= tf.nn.rnn_cell.BasicLSTMCell(size)

#cell = tf.nn.rnn_cell.GRUCell(size)

#cell = tf.nn.rnn_cell.BasicRNNCell(size)

cell = tf.nn.rnn_cell.DropoutWrapper(cell=cell,

output_keep_prob=kprob)↪→

return cell

def create_graph() :

graph = tf.Graph()

with tf.device('/gpu:0'):
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with graph.as_default():

# Input data. We take in padded CDRs but feed in a length /

mask as well↪→

# Apparently the dynamic RNN thingy can cope with variable

lengths↪→

# Input has to be [batch_size, max_time, ...]

tf_train_dataset = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, 5],name="train_input")↪→

output_size = FLAGS.max_cdr_length * 4

dmask = tf.placeholder(tf.float32, [None, output_size],

name="dmask")↪→

x = tf.cast(tf_train_dataset, dtype=tf.float32)

# Since we are using dropout, we need to have a

placeholder, so we dont set↪→

# dropout at validation time

keep_prob = tf.placeholder(tf.float32, name="keepprob")

# This is the number of unrolls I think - sequential cells

# In this example, I'm going for max_cdr_length as we want

all the history↪→

# This will take a while and it is dynamically sized based

on the inputs.↪→

single_rnn_cell = lstm_cell(FLAGS.lstm_size, keep_prob)

# 'outputs' is a tensor of shape [batch_size,

max_cdr_length, lstm_size]↪→

# 'state' is a N-tuple where N is the number of LSTMCells

containing a↪→

# tf.contrib.rnn.LSTMStateTuple for each cell

length = create_length(x)

initial_state =

single_rnn_cell.zero_state(FLAGS.batch_size,

dtype=tf.float32)

↪→

↪→

outputs, states =

tf.nn.bidirectional_dynamic_rnn(cell_fw=single_rnn_cell,

cell_bw=single_rnn_cell, inputs=x, dtype=tf.float32,

sequence_length = length)

↪→

↪→

↪→

output_fw, output_bw = outputs

states_fw, states_bw = states

# We flatten out the outputs so it just looks like a big

batch to our weight matrix↪→

# apparently this gives us weights across the entire set of

steps↪→

output_fw = tf.reshape(output_fw, [-1, FLAGS.lstm_size],

name="flattened_fw")↪→
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output_bw = tf.reshape(output_bw, [-1, FLAGS.lstm_size],

name="flattened_bw")↪→

output = tf.add(output_fw, output_bw)

test = tf.placeholder(tf.float32, [None, output_size],

name="train_test")↪→

W_i = weight_variable([FLAGS.lstm_size, 4],

"weight_intermediate")↪→

b_i = bias_variable([4],"bias_intermediate")

y_i = tf.tanh( ( tf.matmul( output, W_i) + b_i),

name="intermediate")↪→

# Now reshape it back and run the mask against it

y_b = tf.reshape(y_i, [-1, output_size], name="output")

y_b = y_b * dmask

return graph

def create_mask(batch):

''' create a mask for our fully connected layer, which

is a [1] shape that is max_cdr * 4 long.'''

mask = []

for model in batch:

mm = []

for cdr in model:

tt = 1

if sum(cdr) == 0:

tt = 0

for i in range(0,4):

mm.append(tt)

mask.append(mm)

return np.array(mask,dtype=np.float32)

def create_length(batch):

''' return the actual lengths of our CDR here. Taken from

https://danijar.com/variable-sequence-lengths-in-tensorflow/

'''↪→

used = tf.sign(tf.reduce_max(tf.abs(batch), 2))

length = tf.reduce_sum(used, 1)

length = tf.cast(length, tf.int32)

return length

def cost(goutput, gtest):

''' Our error function which we will try to minimise'''

mask = tf.sign(tf.add(gtest,3.0))

basic_error = tf.square(gtest-goutput) * mask

basic_error = tf.reduce_sum(basic_error)

basic_error /= tf.reduce_sum(mask)
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return basic_error

def run_session(graph, datasets):

''' Run the session once we have a graph, training methodology

and a dataset '''↪→

with tf.device('/gpu:0'):

with tf.Session(graph=graph) as sess:

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

# Pull out the bits of the graph we need

ginput = graph.get_tensor_by_name("train_input:0")

gtest = graph.get_tensor_by_name("train_test:0")

goutput = graph.get_tensor_by_name("output:0")

gmask = graph.get_tensor_by_name("dmask:0")

gprob = graph.get_tensor_by_name("keepprob:0")

# Working out the accuracy

basic_error = cost(goutput, gtest)

# Setup all the logging for tensorboard

variable_summaries(basic_error, "Error")

merged = tf.summary.merge_all()

train_writer =

tf.summary.FileWriter('./summaries/train',graph)↪→

# So far, I have found Gradient Descent still wins out at

the moment↪→

#train_step =

tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(basic_error)↪→

optimizer = tf.train.AdagradOptimizer(FLAGS.learning_rate)

gvs = optimizer.compute_gradients(basic_error)

capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for

grad, var in gvs]↪→

train_step = optimizer.apply_gradients(capped_gvs)

#train_step =

tf.train.AdamOptimizer(1e-4).minimize(basic_error)↪→

#train_step =

tf.train.MomentumOptimizer(FLAGS.learning_rate,

0.1).minimize(basic_error)

↪→

↪→

tf.global_variables_initializer().run()

print('Initialized')

for i in range(0,FLAGS.num_epochs):

stepnum = 0

FLAGS.next_batch = 0

print("Epoch",i)
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while has_next_batch(training_input, FLAGS):

batch_is, batch_os = next_batch(training_input,

training_output, FLAGS)↪→

batch_iv, batch_ov = random_batch(validate_input,

validate_output, FLAGS)↪→

# For some reason, if the batches are not ALL the same

size, we get a crash↪→

# so I reject batches smaller than the one set

if len(batch_is) != FLAGS.batch_size or len(batch_iv)

!= FLAGS.batch_size:↪→

continue

mask = create_mask(batch_is)

summary, _ = sess.run([merged, train_step],

feed_dict={ginput: batch_is, gtest: batch_os,

gmask: mask, gprob: 0.8})↪→

if stepnum % 10 == 0:

mask = create_mask(batch_iv)

train_accuracy = basic_error.eval(

feed_dict={ginput: batch_iv, gtest: batch_ov,

gmask: mask, gprob: 1.0})↪→

print('step %d, training accuracy %g' % (stepnum,

train_accuracy))↪→

train_writer.add_summary(summary, stepnum)

stepnum += 1

# save our trained net

saver = tf.train.Saver()

saver.save(sess, 'saved/nn13')

def run_saved(datasets):

''' Load the saved version and then test it against the

validation set '''↪→

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn13.meta')

saver.restore(sess, 'saved/nn13')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gmask = graph.get_tensor_by_name("dmask:0")

gprob = graph.get_tensor_by_name("keepprob:0")

mask = create_mask(validate_input)
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res = sess.run([goutput], feed_dict={ginput: validate_input,

gmask: mask, gprob: 1.0})↪→

# Now lets output a random example and see how close it is,

as well as working out the↪→

# the difference in mean values. Don't adjust the weights

though↪→

r = random.randint(0, len(validate_input)-1)

print("Actual Predicted")

for i in range(0,len(validate_input[r])):

sys.stdout.write(vector_to_acid(FLAGS,

validate_input[r][i]))↪→

phi = math.degrees(math.atan2(validate_output[r][i*4],

validate_output[r][i*4+1]))↪→

psi = math.degrees(math.atan2(validate_output[r][i*4+2],

validate_output[r][i*4+3]))↪→

sys.stdout.write(": " +

"{0:<8}".format("{0:.3f}".format(phi)) + " ")↪→

sys.stdout.write("{0:<8}".format("{0:.3f}".format(psi)) + "

")↪→

phi = math.degrees(math.atan2(res[0][r][i*4],

res[0][r][i*4+1]))↪→

psi = math.degrees(math.atan2(res[0][r][i*4+2],

res[0][r][i*4+3]))↪→

sys.stdout.write(" | " +

"{0:<8}".format("{0:.3f}".format(phi)) + " ")↪→

sys.stdout.write("{0:<8}".format("{0:.3f}".format(psi)))

print("")

def print_error(datasets):

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn13.meta')

saver.restore(sess, 'saved/nn13')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gprob = graph.get_tensor_by_name("keepprob:0")

gmask = graph.get_tensor_by_name("dmask:0")

gtest = graph.get_tensor_by_name("train_test:0")

mask = create_mask(test_input)

basic_error = cost(goutput, gtest)

test_input = test_input[:FLAGS.batch_size]

test_output = test_output[:FLAGS.batch_size]

test_accuracy = basic_error.eval(
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feed_dict={ginput: test_input, gtest: test_output, gmask

: mask, gprob: 1.0})↪→

print ("Error on test set:", test_accuracy)

def generate_pdbs(datasets):

''' Load the saved version and write a set of PDBs of both the

predicted↪→

and actual models.'''

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn13.meta')

saver.restore(sess, 'saved/nn13')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gmask = graph.get_tensor_by_name("dmask:0")

gprob = graph.get_tensor_by_name("keepprob:0")

mask = create_mask(test_input)

midx = 0

for k in range(0, len(test_input), FLAGS.batch_size):

test_input_batch = test_input[k:k+FLAGS.batch_size]

test_output_batch = test_output[k:k+FLAGS.batch_size]

if len(test_input_batch) != FLAGS.batch_size:

break

res = sess.run([goutput], feed_dict={ginput:

test_input_batch, gmask: mask, gprob: 1.0 })↪→

for j in range(0,len(test_input_batch)):

torsions_real = []

torsions_pred = []

residues = []

# Put the data in the correct arrays for PDB printing

for i in range(0,len(test_input_batch[j])):

tres = vector_to_acid(FLAGS, test_input_batch[j][i])

if tres == "***": break

residues.append((tres,i))

phi = math.atan2(test_output_batch[j][i*4],

test_output_batch[j][i*4+1])↪→

psi = math.atan2(test_output_batch[j][i*4+2],

test_output_batch[j][i*4+3])↪→

torsions_real.append([phi,psi])

phi = math.atan2(res[0][j][i*4], res[0][j][i*4+1])

psi = math.atan2(res[0][j][i*4+2], res[0][j][i*4+3])
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torsions_pred.append([phi,psi])

torsions_pred[0][0] = 0.0

torsions_real[0][0] = 0.0

torsions_pred[len(torsions_pred)-1][1] = 0.0

torsions_real[len(torsions_real)-1][1] = 0.0

from common import torsion_to_coord as tc

mname = str(midx).zfill(3) + "_real.pdb"

with open(mname,'w') as f:

pf = {}

pf["angles"] = torsions_real

pf["residues"] = residues

entries = tc.process(pf)

f.write(tc.printpdb(mname, entries, residues))

mname = str(midx).zfill(3) + "_pred.pdb"

with open(mname,'w') as f:

pf = {}

pf["angles"] = torsions_pred

pf["residues"] = residues

entries = tc.process(pf)

f.write(tc.printpdb(mname, entries, residues))

mname = str(midx).zfill(3) + "_real.txt"

with open(mname,'w') as f:

for i in range(0, len(residues)):

f.write(residues[i][0] + ": " +

str(torsions_real[i][0]) + ", " +

str(torsions_real[i][1]) + "\n")

↪→

↪→

mname = str(midx).zfill(3) + "_pred.txt"

with open(mname,'w') as f:

for i in range(0, len(residues)):

f.write(residues[i][0] + ": " +

str(torsions_pred[i][0]) + ", " +

str(torsions_pred[i][1]) + "\n")

↪→

↪→

midx += 1

if __name__ == "__main__":

from common import gen_data

datasets = init_data_sets(FLAGS, gen_data)

# If we just want to run the trained net

if len(sys.argv) > 1:

if sys.argv[1] == "-r":

run_saved(datasets)

sys.exit()

if sys.argv[1] == "-e":
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print_error(datasets)

sys.exit()

if sys.argv[1] == "-g":

generate_pdbs(datasets)

sys.exit()

graph = create_graph()

run_session(graph, datasets)

run_saved(datasets)

B.6 nn23 - LSTM with last relevant selection

"""

nn23.py - A bidirectional LSTM tided up

author : Benjamin Blundell

email : me@benjamin.computer

We pad out the data to the maximum, but for each input

we find the real length and both stop the LSTM unrolls

at that point (dynamic) and mask out the output layers

so the cost function doesn't take these padded values

into account.

"""

import sys, os, math, random

import tensorflow as tf

import numpy as np

# Import our shared util

parentdir =

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))↪→

os.sys.path.insert(0,parentdir)

from common.util import *

from common.batch_real import *

FLAGS = NNGlobals()

# A higher learning rate seems good as we have few examples in

this data set.↪→

# Would that be correct do we think?

FLAGS.learning_rate = 0.45

FLAGS.pickle_filename = 'pdb_martin_23.pickle'

FLAGS.lstm_size = 256 # number of neurons per LSTM cell do we

think?↪→

FLAGS.num_epochs = 2000 # number of loops around the training set

FLAGS.batch_size = 20

def weight_variable(shape, name ):
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''' For now I use truncated normals with stdddev of 0.1.'''

initial = tf.truncated_normal(shape, stddev=0.1, name=name)

return tf.Variable(initial)

def bias_variable(shape, name):

initial = tf.constant(1.0, shape=shape, name=name)

return tf.Variable(initial)

def lstm_cell(size, kprob):

''' Return an LSTM Cell or other RNN type cell. We

have a few choices. We can even throw in a bit of

dropout if we want.'''

cell= tf.nn.rnn_cell.BasicLSTMCell(size)

#cell = tf.nn.rnn_cell.GRUCell(size)

#cell = tf.nn.rnn_cell.BasicRNNCell(size)

cell = tf.nn.rnn_cell.DropoutWrapper(cell=cell,

output_keep_prob=kprob)↪→

return cell

def last_relevant(output, length):

''' Taken from

https://danijar.com/variable-sequence-lengths-in-tensorflow/↪→

Essentially, we want the last output after the total CDR has

been computed.↪→

That output is then converted to our 4 * max_cdr output. '''

batch_size = tf.shape(output)[0]

max_length = tf.shape(output)[1]

out_size = int(output.get_shape()[2])

index = tf.range(0, batch_size) * FLAGS.max_cdr_length +

(length - 1)↪→

flat = tf.reshape(output, [-1, out_size])

relevant = tf.gather(flat, index)

return relevant

def create_graph() :

graph = tf.Graph()

with tf.device('/gpu:0'):

with graph.as_default():

# Input data. We take in padded CDRs but feed in a length /

mask as well↪→

# Apparently the dynamic RNN thingy can cope with variable

lengths↪→

# Input has to be [batch_size, max_time, ...]

tf_train_dataset = tf.placeholder(tf.int32, [None,

FLAGS.max_cdr_length,

FLAGS.num_acids],name="train_input")

↪→

↪→

output_size = FLAGS.max_cdr_length * 4
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dmask = tf.placeholder(tf.float32, [None, output_size],

name="dmask")↪→

x = tf.cast(tf_train_dataset, dtype=tf.float32)

# Since we are using dropout, we need to have a

placeholder, so we dont set↪→

# dropout at validation time

keep_prob = tf.placeholder(tf.float32, name="keepprob")

single_rnn_cell_fw = lstm_cell(FLAGS.lstm_size, keep_prob)

single_rnn_cell_bw = lstm_cell(FLAGS.lstm_size, keep_prob)

# 'outputs' is a tensor of shape [batch_size,

max_cdr_length, lstm_size]↪→

# 'state' is a N-tuple where N is the number of LSTMCells

containing a↪→

# tf.contrib.rnn.LSTMStateTuple for each cell

length = create_length(x)

initial_state =

single_rnn_cell_fw.zero_state(FLAGS.batch_size,

dtype=tf.float32)

↪→

↪→

initial_state =

single_rnn_cell_bw.zero_state(FLAGS.batch_size,

dtype=tf.float32)

↪→

↪→

outputs, states =

tf.nn.bidirectional_dynamic_rnn(cell_fw=single_rnn_cell_fw,

cell_bw=single_rnn_cell_bw, inputs=x, dtype=tf.float32,

sequence_length = length)

↪→

↪→

↪→

output_fw, output_bw = outputs

states_fw, states_bw = states

output_fw = last_relevant(output_fw, length)

output_bw = last_relevant(output_bw, length)

output = tf.add(output_fw, output_bw)

test = tf.placeholder(tf.float32, [None, output_size],

name="train_test")↪→

# Output layer converts our LSTM to 4 outputs (4 angles)

W_o = weight_variable([FLAGS.lstm_size, output_size],

"weight_output")↪→

b_o = bias_variable([output_size],"bias_output")

# I use tanh to bound the results between -1 and 1

y_conv = tf.tanh( ( tf.matmul(output, W_o) + b_o) * dmask,

name="output")↪→

variable_summaries(y_conv, "y_conv")

return graph
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def create_mask(batch):

''' create a mask for our fully connected layer, which

is a [1] shape that is max_cdr * 4 long.'''

mask = []

for model in batch:

mm = []

for cdr in model:

tt = 1

if not 1 in cdr:

tt = 0

for i in range(0,4):

mm.append(tt)

mask.append(mm)

return np.array(mask,dtype=np.float32)

def create_length(batch):

''' return the actual lengths of our CDR here. Taken from

https://danijar.com/variable-sequence-lengths-in-tensorflow/

'''↪→

used = tf.sign(tf.reduce_max(tf.abs(batch), 2))

length = tf.reduce_sum(used, 1)

length = tf.cast(length, tf.int32)

return length

def cost(goutput, gtest):

''' Our error function which we will try to minimise'''

# We find the absolute difference between the output angles and

the training angles↪→

# Can't use cross entropy because thats all to do with

probabilities and the like↪→

# Basic error of sum squares diverges to NaN due to gradient so

I go with reduce mean↪→

# Values of -3.0 are the ones we ignore

# This could go wrong as adding 3.0 to -3.0 is not numerically

stable↪→

mask = tf.sign(tf.add(gtest,3.0))

basic_error = tf.square(gtest-goutput) * mask

# reduce mean doesnt work here as we just want the numbers

where mask is 1↪→

# We work out the mean ourselves

basic_error = tf.reduce_sum(basic_error)

basic_error /= tf.reduce_sum(mask)

return basic_error

def run_session(graph, datasets):

''' Run the session once we have a graph, training methodology

and a dataset '''↪→

with tf.device('/gpu:0'):

130



with tf.Session(graph=graph) as sess:

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

# Pull out the bits of the graph we need

ginput = graph.get_tensor_by_name("train_input:0")

gtest = graph.get_tensor_by_name("train_test:0")

goutput = graph.get_tensor_by_name("output:0")

gmask = graph.get_tensor_by_name("dmask:0")

gprob = graph.get_tensor_by_name("keepprob:0")

# Working out the accuracy

basic_error = cost(goutput, gtest)

# Setup all the logging for tensorboard

variable_summaries(basic_error, "Error")

merged = tf.summary.merge_all()

train_writer =

tf.summary.FileWriter('./summaries/train',graph)↪→

#train_step =

tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(basic_error)↪→

optimizer = tf.train.AdagradOptimizer(FLAGS.learning_rate)

gvs = optimizer.compute_gradients(basic_error)

capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for

grad, var in gvs]↪→

train_step = optimizer.apply_gradients(capped_gvs)

#train_step =

tf.train.AdamOptimizer(1e-4).minimize(basic_error)↪→

#train_step =

tf.train.MomentumOptimizer(FLAGS.learning_rate,

0.1).minimize(basic_error)

↪→

↪→

tf.global_variables_initializer().run()

print('Initialized')

for i in range(0,FLAGS.num_epochs):

stepnum = 0

FLAGS.next_batch = 0

print("Epoch",i)

while has_next_batch(training_input, FLAGS):

batch_is, batch_os = next_batch(training_input,

training_output, FLAGS)↪→

batch_iv, batch_ov = random_batch(validate_input,

validate_output, FLAGS)↪→
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# For some reason, if the batches are not ALL the same

size, we get a crash↪→

# so I reject batches smaller than the one set

if len(batch_is) != FLAGS.batch_size or len(batch_iv)

!= FLAGS.batch_size:↪→

continue

mask = create_mask(batch_is)

summary, _ = sess.run([merged, train_step],

feed_dict={ginput: batch_is, gtest: batch_os,

gmask: mask, gprob: 0.8})↪→

if stepnum % 10 == 0:

mask = create_mask(batch_iv)

train_accuracy = basic_error.eval(

feed_dict={ginput: batch_iv, gtest: batch_ov,

gmask: mask, gprob: 1.0})↪→

print('step %d, training accuracy %g' % (stepnum,

train_accuracy))↪→

train_writer.add_summary(summary, stepnum)

stepnum += 1

# save our trained net

saver = tf.train.Saver()

saver.save(sess, 'saved/nn23')

def run_saved(datasets):

''' Load the saved version and then test it against the

validation set '''↪→

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn23.meta')

saver.restore(sess, 'saved/nn23')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gmask = graph.get_tensor_by_name("dmask:0")

gprob = graph.get_tensor_by_name("keepprob:0")

mask = create_mask(validate_input)

res = sess.run([goutput], feed_dict={ginput: validate_input,

gmask: mask, gprob: 1.0})↪→

# Now lets output a random example and see how close it is,

as well as working out the↪→

# the difference in mean values. Don't adjust the weights

though↪→

r = random.randint(0, len(validate_input)-1)
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print("Actual Predicted")

for i in range(0,len(validate_input[r])):

sys.stdout.write(bitmask_to_acid(FLAGS,

validate_input[r][i]))↪→

phi = math.degrees(math.atan2(validate_output[r][i*4],

validate_output[r][i*4+1]))↪→

psi = math.degrees(math.atan2(validate_output[r][i*4+2],

validate_output[r][i*4+3]))↪→

sys.stdout.write(": " +

"{0:<8}".format("{0:.3f}".format(phi)) + " ")↪→

sys.stdout.write("{0:<8}".format("{0:.3f}".format(psi)) + "

")↪→

phi = math.degrees(math.atan2(res[0][r][i*4],

res[0][r][i*4+1]))↪→

psi = math.degrees(math.atan2(res[0][r][i*4+2],

res[0][r][i*4+3]))↪→

sys.stdout.write(" | " +

"{0:<8}".format("{0:.3f}".format(phi)) + " ")↪→

sys.stdout.write("{0:<8}".format("{0:.3f}".format(psi)))

print("")

def print_error(datasets):

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn23.meta')

saver.restore(sess, 'saved/nn23')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gprob = graph.get_tensor_by_name("keepprob:0")

gmask = graph.get_tensor_by_name("dmask:0")

gtest = graph.get_tensor_by_name("train_test:0")

basic_error = cost(goutput, gtest)

test_input = test_input[:FLAGS.batch_size]

test_output = test_output[:FLAGS.batch_size]

mask = create_mask(test_input)

test_accuracy = basic_error.eval(

feed_dict={ginput: test_input, gtest: test_output, gmask

: mask, gprob: 1.0})↪→

print ("Error on test set:", test_accuracy)

def generate_pdbs(datasets):

''' Load the saved version and write a set of PDBs of both the

predicted↪→
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and actual models.'''

with tf.Session() as sess:

graph = sess.graph

saver = tf.train.import_meta_graph('saved/nn23.meta')

saver.restore(sess, 'saved/nn23')

training_input, training_output, validate_input,

validate_output, test_input, test_output = datasets↪→

goutput = graph.get_tensor_by_name("output:0")

ginput = graph.get_tensor_by_name("train_input:0")

gmask = graph.get_tensor_by_name("dmask:0")

gprob = graph.get_tensor_by_name("keepprob:0")

midx = 0

for k in range(0, len(test_input), FLAGS.batch_size):

test_input_batch = test_input[k:k+FLAGS.batch_size]

test_output_batch = test_output[k:k+FLAGS.batch_size]

mask = create_mask(test_input_batch)

if len(test_input_batch) != FLAGS.batch_size:

break

res = sess.run([goutput], feed_dict={ginput:

test_input_batch, gmask: mask, gprob: 1.0 })↪→

for j in range(0,len(test_input_batch)):

torsions_real = []

torsions_pred = []

residues = []

# Put the data in the correct arrays for PDB printing

for i in range(0,len(test_input_batch[j])):

tres = bitmask_to_acid(FLAGS, test_input_batch[j][i])

if tres == "***": break

residues.append((tres,i))

phi = math.atan2( test_output_batch[j][i*4],

test_output_batch[j][i*4+1])↪→

psi = math.atan2( test_output_batch[j][i*4+2],

test_output_batch[j][i*4+3])↪→

torsions_real.append([phi,psi])

phi = math.atan2(res[0][j][i*4], res[0][j][i*4+1])

psi = math.atan2(res[0][j][i*4+2], res[0][j][i*4+3])

torsions_pred.append([phi,psi])

torsions_pred[0][0] = 0.0

torsions_real[0][0] = 0.0

torsions_pred[len(torsions_pred)-1][1] = 0.0

torsions_real[len(torsions_real)-1][1] = 0.0

from common import torsion_to_coord as tc
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mname = str(midx).zfill(3) + "_real.pdb"

with open(mname,'w') as f:

pf = {}

pf["angles"] = torsions_real

pf["residues"] = residues

entries = tc.process(pf)

f.write(tc.printpdb(mname, entries, residues))

mname = str(midx).zfill(3) + "_pred.pdb"

with open(mname,'w') as f:

pf = {}

pf["angles"] = torsions_pred

pf["residues"] = residues

entries = tc.process(pf)

f.write(tc.printpdb(mname, entries, residues))

mname = str(midx).zfill(3) + "_real.txt"

with open(mname,'w') as f:

for i in range(0, len(residues)):

f.write(residues[i][0] + ": " +

str(torsions_real[i][0]) + ", " +

str(torsions_real[i][1]) + "\n")

↪→

↪→

mname = str(midx).zfill(3) + "_pred.txt"

with open(mname,'w') as f:

for i in range(0, len(residues)):

f.write(residues[i][0] + ": " +

str(torsions_pred[i][0]) + ", " +

str(torsions_pred[i][1]) + "\n")

↪→

↪→

midx += 1

if __name__ == "__main__":

from common import gen_data

# If we just want to run the trained net

if len(sys.argv) > 1:

if sys.argv[1] == "-r":

datasets = init_data_sets(FLAGS, gen_data)

run_saved(datasets)

sys.exit()

if sys.argv[1] == "-e":

datasets = init_data_sets(FLAGS, gen_data)

print_error(datasets)

sys.exit()

if sys.argv[1] == "-g":

datasets = init_data_sets(FLAGS, gen_data)

generate_pdbs(datasets)

sys.exit()
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datasets = init_data_sets(FLAGS, gen_data)

graph = create_graph()

run_session(graph, datasets)

run_saved(datasets)

B.7 Final version of network 23

This final version of network 23 spans several files, including many ancillary
functions for generating statistics, testing various options and different train-
ing functions. We reproduce the important graph and training functions here.
The entire program can be found at https://github.com/OniDaito/MRes and
https://doi.org/10.5281/zenodo.1319787

"""

graph.py - A bidirectional LSTM graph

author : Benjamin Blundell

email : me@benjamin.computer

"""

import sys, os, math, random

import tensorflow as tf

import numpy as np

# Import our shared util - bit hacky but allows testing with

__main__↪→

if __name__ != "__main__":

parentdir =

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))↪→

os.sys.path.insert(0,parentdir)

import common.acids as acids

import common.batcher as batcher

import common.settings

from common.util_neural import *

def weight_variable(shape, name ):

''' For now I use truncated normals with stdddev of 0.1.'''

initial = tf.truncated_normal(shape, stddev=0.01, name=name)

return tf.Variable(initial)

def bias_variable(shape, name):

initial = tf.constant(0.0, shape=shape, name=name)

return tf.Variable(initial)

def lstm_cell(size, kprob, name):

''' Return an LSTM Cell or other RNN type cell. We

have a few choices. We can even throw in a bit of

dropout if we want.'''
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#cell = tf.nn.rnn_cell.BasicLSTMCell(size, name = name)

#cell = tf.nn.rnn_cell.LSTMCell(size, use_peepholes = True,

name = name)↪→

#wrapper = tf.contrib.rnn.LSTMBlockWrapper

cell = tf.nn.rnn_cell.GRUCell(size) # Removed name for the CSD3

machine↪→

#cell = tf.nn.rnn_cell.BasicRNNCell(size)

cell = tf.nn.rnn_cell.DropoutWrapper(cell=cell,

input_keep_prob=kprob, output_keep_prob=kprob)↪→

return cell

def last_relevant(FLAGS, output, length, name="last"):

''' Taken from

https://danijar.com/variable-sequence-lengths-in-tensorflow/↪→

Essentially, we want the last output after the total CDR has

been computed.'''↪→

batch_size = tf.shape(output)[0]

max_length = tf.shape(output)[1]

out_size = int(output.get_shape()[2])

index = tf.range(0, batch_size) * FLAGS.max_cdr_length +

(length - 1)↪→

flat = tf.reshape(output, [-1, out_size])

relevant = tf.gather(flat, index, name=name)

return relevant

def create_length(batch):

''' return the actual lengths of our CDR here. Taken from

https://danijar.com/variable-sequence-lengths-in-tensorflow/

'''↪→

used = tf.sign(tf.reduce_max(tf.abs(batch), 2))

length = tf.reduce_sum(used, 1)

length = tf.cast(length, tf.int32)

return length

def create_graph(FLAGS) :

graph = tf.Graph()

with tf.device(FLAGS.device):

with graph.as_default():

x = None

ww = FLAGS.num_acids

if FLAGS.type_in == batcher.BatchTypeIn.BITFIELD:

x = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length,

FLAGS.num_acids],name="train_input")

↪→

↪→

elif FLAGS.type_in == batcher.BatchTypeIn.FIVED or

FLAGS.type_in == batcher.BatchTypeIn.FIVEDADD:↪→

ww = 5

x = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, ww],name="train_input")↪→
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elif FLAGS.type_in == batcher.BatchTypeIn.FIVEDTRIPLE:

ww = 15

x = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, ww],name="train_input")↪→

elif FLAGS.type_in == batcher.BatchTypeIn.BITFIELDTRIPLE:

ww = FLAGS.num_acids * 3

x = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, ww],name="train_input")↪→

dmask = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, 4], name="dmask")↪→

# Since we are using dropout, we need to have a

placeholder, so we dont set↪→

# dropout at validation time

keep_prob = tf.placeholder(tf.float32, name="keepprob")

sizes = [FLAGS.lstm_size, FLAGS.lstm_size ]

single_rnn_cell_fw = tf.contrib.rnn.MultiRNNCell(

[lstm_cell(sizes[i], keep_prob, "cell_fw" + str(i)) for

i in range(len(sizes))])

↪→

↪→

single_rnn_cell_bw = tf.contrib.rnn.MultiRNNCell(

[lstm_cell(sizes[i], keep_prob, "cell_bw" + str(i)) for

i in range(len(sizes))])

↪→

↪→

# 'outputs' is a tensor of shape [batch_size,

max_cdr_length, lstm_size]↪→

# 'state' is a N-tuple where N is the number of LSTMCells

containing a↪→

# tf.contrib.rnn.LSTMStateTuple for each cell

length = create_length(x)

initial_state =

single_rnn_cell_fw.zero_state(FLAGS.batch_size,

dtype=tf.float32)

↪→

↪→

initial_state =

single_rnn_cell_bw.zero_state(FLAGS.batch_size,

dtype=tf.float32)

↪→

↪→

outputs, states =

tf.nn.bidirectional_dynamic_rnn(cell_fw=single_rnn_cell_fw,

cell_bw=single_rnn_cell_bw, inputs=x, dtype=tf.float32,

sequence_length = length)

↪→

↪→

↪→

output_fw, output_bw = outputs

states_fw, states_bw = states

# We can avoid the costly gather operation here by using

the state↪→

# Seems to only apply for single layer LSTMS potentially?
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output_fw = last_relevant(FLAGS, output_fw, length,

"last_fw")↪→

output_bw = last_relevant(FLAGS, output_bw, length,

"last_bw")↪→

output_fw = states_fw[-1]

output_bw = states_bw[-1]

output = tf.add(output_fw, output_bw)

output /= 2.0

dim = sizes[-1]

W_f = weight_variable([dim, FLAGS.max_cdr_length * 4],

"weight_output")↪→

b_f = bias_variable([FLAGS.max_cdr_length * 4],

"bias_output")↪→

#y_conv = tf.nn.relu( (tf.matmul(h_drop, W_f) + b_f),

name="output") * dmask↪→

output = tf.nn.tanh( (tf.matmul(output, W_f) + b_f))

output = tf.reshape(output, [-1, FLAGS.max_cdr_length, 4],

name="output") * dmask↪→

test = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, 4], name="train_test")↪→

variable_summaries(output, "output")

variable_summaries(output, "output_layer")

return graph

"""

train.py - train our neural network

author : Benjamin Blundell

email : me@benjamin.computer

"""

import os, sys, math, random

import tensorflow as tf

import numpy as np

if __name__ != "__main__":

parentdir = os.path.dirname( os.path.dirname(

os.path.abspath(__file__)))↪→

os.sys.path.insert(0,parentdir)

from common.util_neural import *

from common import acids

from common import batcher

from lstm import test
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def cost(goutput, gtest, FLAGS):

''' Our error function which we will try to minimise'''

mask = tf.sign(tf.add(gtest,3.0))

basic_error = tf.square(gtest-goutput) * mask

rama_error = error_rama(goutput)

basic_error += 0.1 * rama_error # scaling function

basic_error = tf.reduce_sum(basic_error)

basic_error /= tf.reduce_sum(mask)

#basic_error += 0.001*tf.nn.l2_loss(gweights)

return basic_error

def error_rama(goutput):

# Take an estimate of the ramachandran plot

(pre_phi,pre_psi)= tf.split(goutput,2,2)

(sin_phi,cos_phi)= tf.split(pre_phi,2,2)

(sin_psi,cos_psi)= tf.split(pre_psi,2,2)

phi = tf.atan2(sin_phi, cos_phi)

psi = tf.atan2(sin_psi, cos_psi)

x = phi

y = psi

a = tf.maximum(tf.sin(x*1.8-45.9+y*0.26)*1.2 +

tf.cos(y*1.8)*0.3 - (0.5 * x) -1.4 + (y * 0.1), 0)↪→

b = tf.maximum(tf.sin(y-0.35 + x*0.85)*0.8 + tf.cos(x-1.0)

-1.5, 0)↪→

return 1.0 - tf.minimum(1.0, a+b)

def train_load(FLAGS, bt):

with tf.control_dependencies( tf.get_collection(

tf.GraphKeys.UPDATE_OPS)):↪→

#with tf.device(FLAGS.device):

with tf.Session() as sess:

saver = tf.train.import_meta_graph( FLAGS.save_path + "/" +

FLAGS.save_name + '.meta')↪→

#saver.restore(sess, FLAGS.save_path + "/" +

FLAGS.save_name)↪→

saver.restore(sess,

tf.train.latest_checkpoint(FLAGS.save_path))↪→

graph = sess.graph

_train(FLAGS, graph, bt, sess, reload=True)

def train(FLAGS, graph, bt):
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with tf.control_dependencies( tf.get_collection(

tf.GraphKeys.UPDATE_OPS)):↪→

with tf.device(FLAGS.device):

with tf.Session(graph=graph) as sess:

_train(FLAGS, graph, bt, sess)

def _train(FLAGS, graph, bt, sess, reload=False):

''' Run the training session once we have a graph, training

methodology and a dataset.↪→

FLAGS is the NeuralGlobals class. Graph is a tensorflow graph

object and↪→

datasets is a tuple as received from gen_data.'''

# Pull out the bits of the graph we need

ginput = graph.get_tensor_by_name("train_input:0")

gtest = graph.get_tensor_by_name("train_test:0")

goutput = graph.get_tensor_by_name("output:0")

gmask = graph.get_tensor_by_name("dmask:0")

gprob = graph.get_tensor_by_name("keepprob:0")

# Working out the accuracy

basic_error = None

glabel = None

gpred = None

basic_error = cost(goutput, gtest, FLAGS)

l1_regularizer = tf.contrib.layers.l1_regularizer(scale=0.001,

scope=None)↪→

weights = tf.trainable_variables() # all vars of your graph

print(weights)

#ll = [greg0, greg1, greg2, greg3]

#regularization_penalty =

tf.contrib.layers.apply_regularization(l1_regularizer,

[gweights, gweights2, gweights3])

↪→

↪→

#regularization_penalty =

tf.contrib.layers.apply_regularization(l1_regularizer, ll)↪→

regularization_penalty =

tf.contrib.layers.apply_regularization(l1_regularizer,

weights)

↪→

↪→

regularized_loss = basic_error + regularization_penalty # this

loss needs to be minimized↪→

# Setup all the logging for tensorboard

esum = tf.summary.scalar("TrainingError",basic_error)

vsum = tf.summary.scalar("ValidationError", basic_error)

train_writer = tf.summary.FileWriter(FLAGS.save_path +

'/summaries/train',graph)↪→

merged = tf.summary.merge_all()

train_step = None
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if not reload:

# There is a bug here. If we don't add optimizer.name this

won't serialise↪→

optimizer = tf.train.AdamOptimizer(learning_rate =

FLAGS.learning_rate, name="BUG")↪→

optimizer.name = "BUG"

#train_step = optimizer.minimize(regularized_loss)

#train_step = optimizer.minimize(basic_error,

global_step=global_step)↪→

#train_step = optimizer.minimize(basic_error)

# Gradient clipping - stops things from exploding

gvs = optimizer.compute_gradients(basic_error)

#gvs = optimizer.compute_gradients(regularized_loss)

capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for

grad, var in gvs]↪→

train_step = optimizer.apply_gradients(capped_gvs)

tf.global_variables_initializer().run()

tf.add_to_collection("optimizer", optimizer)

else:

train_step = tf.get_collection("optimizer")[0]

print('Initialized')

print("goutput shape", goutput.shape)

# The actual running

total_steps = 0

error_history = []

eval_limit = 50

lowest = 5.0

for epoch in range(0,FLAGS.num_epochs):

stepnum = 0

bt.reset()

while bt.has_next_batch_random(batcher.SetType.TRAIN):

(batch_is, batch_os, loop_t) =

bt.next_batch(batcher.SetType.TRAIN, randset=True )↪→

(batch_iv, batch_ov, loop_v) =

bt.random_batch(batcher.SetType.VALIDATE)↪→

# For some reason, if the batches are not ALL the same

size, we get a crash↪→

# so I reject batches smaller than the one set
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if len(batch_is) != FLAGS.batch_size or len(batch_iv) !=

FLAGS.batch_size:↪→

continue

mask = bt.create_mask(batch_is)

feed_dict = {ginput: batch_is, gtest: batch_os, gmask:

mask, gprob: FLAGS.dropout}↪→

summary, _ = sess.run([merged, train_step], feed_dict=

feed_dict)↪→

# Evaluate and print the error, based on the validation set

# We also record the error and perform an early stop and

save↪→

if stepnum % eval_limit == 0:

mask = bt.create_mask(batch_iv)

feed_dict = {ginput: batch_iv, gtest: batch_ov, gmask:

mask, gprob: 1.0}↪→

validation_accuracy, validation_sum =

sess.run([basic_error, vsum], feed_dict=feed_dict)↪→

mask = bt.create_mask(batch_is)

feed_dict = {ginput: batch_is, gtest: batch_os, gmask:

mask, gprob: 1.0}↪→

train_accuracy, train_sum = sess.run([basic_error, esum

], feed_dict=feed_dict)↪→

train_writer.add_summary(validation_sum, total_steps)

train_writer.add_summary(train_sum, total_steps)

print('epoch %d, step %d, training accuracy %g,

validation accuracy %g' % (epoch, stepnum,

train_accuracy, validation_accuracy))

↪→

↪→

if validation_accuracy < lowest:

lowest = validation_accuracy

saver = tf.train.Saver()

saver.save(sess, FLAGS.save_path + "/" + str(epoch) +

"_best_" + FLAGS.save_name)↪→

eval_limit = max(1, 5 *

int(math.floor(validation_accuracy /

FLAGS.absolute_error)))

↪→

↪→

error_history.append(validation_accuracy)

if len(error_history) > FLAGS.error_window:

error_history = error_history[1:]

train_writer.add_summary(summary, total_steps)
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stepnum += 1

total_steps += 1

global_step = total_steps

if stepnum % eval_limit == 0:

# Run a quick test

test.predict(FLAGS, sess, graph, bt)

# Test for early quit

if len(error_history) == FLAGS.error_window:

diff = 0

for i in range(1, FLAGS.error_window):

diff += math.fabs(error_history[i] -

error_history[i-1])↪→

diff /= FLAGS.error_window

print("Diff", diff, "Err:", error_history[-1])

if diff <= FLAGS.error_delta and error_history[-1] <

FLAGS.absolute_error:↪→

print("Low error reached. Saving at epoch:", epoch)

saver = tf.train.Saver()

saver.save(sess, FLAGS.save_path + "/" + str(epoch) +

"_" + FLAGS.save_name)↪→

sys.exit()

# Save a version each epoch

saver = tf.train.Saver()

saver.save(sess, FLAGS.save_path + "/" + FLAGS.save_name)

B.8 Labelling network

The labelling network shares sections with the final network, so only the graph
code is shown here. The entire program can be found at https://github.com/
OniDaito/MRes and https://doi.org/10.5281/zenodo.1319787

"""

graph.py - Labelling network

author : Benjamin Blundell

email : me@benjamin.computer

"""

import sys, os, math, random

import tensorflow as tf

import numpy as np

# Import our shared util - bit hacky but allows testing with

__main__↪→

if __name__ != "__main__":

parentdir =

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))↪→
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os.sys.path.insert(0,parentdir)

import common.acids as acids

import common.batcher as batcher

import common.settings

from common.util_neural import *

def weight_variable(shape, name ):

''' For now I use truncated normals with stdddev of 0.1.'''

initial = tf.truncated_normal(shape, stddev=0.01, name=name)

return tf.Variable(initial)

def bias_variable(shape, name):

initial = tf.constant(0.0, shape=shape, name=name)

return tf.Variable(initial)

def lstm_cell(size, kprob, name):

''' Return an LSTM Cell or other RNN type cell. We

have a few choices. We can even throw in a bit of

dropout if we want.'''

#cell = tf.nn.rnn_cell.BasicLSTMCell(size, name = name)

#cell = tf.nn.rnn_cell.LSTMCell(size, use_peepholes = True,

name = name, activation=tf.nn.elu)↪→

#wrapper = tf.contrib.rnn.LSTMBlockWrapper

cell = tf.nn.rnn_cell.GRUCell(size, name=name)

#cell = tf.nn.rnn_cell.BasicRNNCell(size)

cell = tf.nn.rnn_cell.DropoutWrapper(cell=cell,

input_keep_prob=kprob, output_keep_prob=kprob)↪→

return cell

def last_relevant(FLAGS, output, length, name="last"):

''' Taken from

https://danijar.com/variable-sequence-lengths-in-tensorflow/↪→

Essentially, we want the last output after the total CDR has

been computed.'''↪→

batch_size = tf.shape(output)[0]

max_length = tf.shape(output)[1]

out_size = int(output.get_shape()[2])

index = tf.range(0, batch_size) * FLAGS.max_cdr_length +

(length - 1)↪→

flat = tf.reshape(output, [-1, out_size])

relevant = tf.gather(flat, index, name=name)

return relevant

def create_length(batch):

''' return the actual lengths of our CDR here. Taken from

https://danijar.com/variable-sequence-lengths-in-tensorflow/

'''↪→

used = tf.sign(tf.reduce_max(tf.abs(batch), 2))

length = tf.reduce_sum(used, 1)
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length = tf.cast(length, tf.int32, name="length")

return length

def create_graph(FLAGS) :

graph = tf.Graph()

with tf.device(FLAGS.device):

with graph.as_default():

x = None

ww = FLAGS.num_acids

if FLAGS.type_in == batcher.BatchTypeIn.BITFIELD:

x = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length,

FLAGS.num_acids],name="train_input")

↪→

↪→

elif FLAGS.type_in == batcher.BatchTypeIn.FIVED or

FLAGS.type_in == batcher.BatchTypeIn.FIVEDADD:↪→

ww = 5

x = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, ww],name="train_input")↪→

elif FLAGS.type_in == batcher.BatchTypeIn.FIVEDTRIPLE:

ww = 15

x = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, ww],name="train_input")↪→

elif FLAGS.type_in == batcher.BatchTypeIn.BITFIELDTRIPLE:

ww = FLAGS.num_acids * 3

x = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, ww],name="train_input")↪→

num_classes = 36 * 36 # 10 degree divisions

dmask = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, num_classes], name="dmask")↪→

keep_prob = tf.placeholder(tf.float32, name="keepprob")

sizes = [FLAGS.lstm_size,

int(math.floor(FLAGS.lstm_size/2)),

int(math.floor(FLAGS.lstm_size/4))]

↪→

↪→

single_rnn_cell_fw = tf.contrib.rnn.MultiRNNCell(

[lstm_cell(sizes[i], keep_prob, "cell_fw" + str(i)) for

i in range(len(sizes))])

↪→

↪→

single_rnn_cell_bw = tf.contrib.rnn.MultiRNNCell(

[lstm_cell(sizes[i], keep_prob, "cell_bw" + str(i)) for

i in range(len(sizes))])

↪→

↪→

# 'outputs' is a tensor of shape [batch_size,

max_cdr_length, lstm_size]↪→

# 'state' is a N-tuple where N is the number of LSTMCells

containing a↪→

# tf.contrib.rnn.LSTMStateTuple for each cell

146



length = create_length(x)

initial_state =

single_rnn_cell_fw.zero_state(FLAGS.batch_size,

dtype=tf.float32)

↪→

↪→

initial_state =

single_rnn_cell_bw.zero_state(FLAGS.batch_size,

dtype=tf.float32)

↪→

↪→

outputs, states =

tf.nn.bidirectional_dynamic_rnn(cell_fw=single_rnn_cell_fw,

cell_bw=single_rnn_cell_bw, inputs=x, dtype=tf.float32,

sequence_length = length)

↪→

↪→

↪→

output_fw, output_bw = outputs

states_fw, states_bw = states

# We can avoid the costly gather operation here by using

the state↪→

# Seems to only apply for single layer LSTMS potentially?

#output_fw = last_relevant(FLAGS, output_fw, length,

"last_fw")↪→

#output_bw = last_relevant(FLAGS, output_bw, length,

"last_bw")↪→

#output_fw = states_fw[-1]

#output_bw = states_bw[-1]

output = tf.concat((output_fw, output_bw), axis=2,

name='bidirectional_concat_outputs')↪→

output = tf.nn.dropout(output, keep_prob)

dim = sizes[-1] * 2

W_f = weight_variable([dim, num_classes], "weight_output")

b_f = bias_variable([num_classes], "bias_output")

# Flatten to apply same weights to all time steps.

output = tf.reshape(output, [-1, dim])

logits = tf.add(tf.matmul(output, W_f), b_f, name="logits")

prediction = tf.reshape(tf.nn.softmax(logits), [-1,

FLAGS.max_cdr_length, num_classes], name="prediction")↪→

output = tf.reshape(logits, [-1, FLAGS.max_cdr_length,

num_classes], name="output")↪→

test = tf.placeholder(tf.float32, [None,

FLAGS.max_cdr_length, num_classes], name="train_test")↪→

labels = tf.placeholder(tf.int32, [None,

FLAGS.max_cdr_length], name="labels")↪→
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variable_summaries(prediction, "output")

variable_summaries(output, "mid_output")

variable_summaries(W_f, "weight_output")

variable_summaries(b_f, "bias_output")

return graph
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Appendix C

5D amino acid vectors

Acid 0 1 2 3 4
ALA 0.189 -3.989 1.989 0.14 1.009
ARG 5.007 0.834 -2.709 -2.027 3.696
ASN 7.616 0.943 0.101 3.308 0.207
ASP 7.781 0.03 1.821 1.376 -3.442
CYS -5.929 -4.837 6.206 2.884 5.365
GLN 5.48 1.293 -3.091 -2.348 1.628
GLU 7.444 1.005 -2.121 -1.307 -1.011
GLY 4.096 0.772 7.12 0.211 -1.744
HIS 3.488 6.754 -2.703 4.989 0.452
ILE -7.883 -4.9 -2.23 0.99 -2.316
LEU -7.582 -3.724 -2.74 -0.736 -0.208
LYS 5.665 -0.166 -2.643 -2.808 2.474
MET -5.2 -2.547 -3.561 -1.73 0.859
PHE -8.681 4.397 -0.732 1.883 -1.987
PRO 4.281 -2.932 2.319 -3.269 -4.451
SER 4.201 -1.948 1.453 1.226 1.014
THR 0.774 -3.192 0.666 0.07 0.407
TRP -8.492 9.958 4.874 -5.288 0.672
TYR -6.147 7.59 -2.065 2.413 -0.562
VAL -6.108 -5.341 -1.95 0.025 -2.062

Table C.0.1: Five-dimensional values for each amino acid, from Li and Koehl[39]
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