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Abstract

Identifying misalignments in sequence alignment for protein
modelling

Danielle Talbot Ph.D. Thesis
September 2005

The difference between the number of known protein sequences and the number
of protein structures is vast. Comparative modelling offers a way to bridge this gap.
However it is possible to create a number of alternative models for a sequence which
differ in the conformation of local regions, or in the sequence alignment used. The
challenge, then is to pick the most likely model.

I have studied the empirical RAM potential to see whether it can be used to select
the correct model. It was found to be capable of discriminating between models with
large differences, but performed less well when differences between protein models were
more subtle.

Misalignment between target and parent is the largest cause of error in comparative
modelling. MLSAs (Misleading Local Sequence Alignments) are extreme examples
where the sequence alignment seems obvious, but the structural alignment is different.
Nine MLSAs were studied to try to determine the reasons for their occurrence. Factors
such as hydrophobicity, charge interactions and location near the end of a protein chain

appeared important, but no single factor was found that could be used to predict the
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presence of a MLSA.

SSMAs (Sequence-Structure MisAlignments) are less extreme cases where sequence
and structural alignments do not agree. These were also studied and a strong preference
for starting and finishing in S-strands was observed. Neural networks were trained
to identify regions of sequence likely to be mis-aligned, first using single sequences
and then combining predictions for single sequences to predict correct regions in an
alignment of two sequences. Single sequence predictions were up to 89.1% correct while
the alignment predictions were up to 92.9% correct.

These results have much potential to be used in improving alignment for compar-
ative modelling and software was evaluated to create alternative alignments and score

them using the neural networks.
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Chapter 1

Introduction

Modelling protein structures can offer a great deal of information about function and
evolution, as well as addressing the problem of how the three-dimensional structure is
embedded in the one-dimensional sequence (the protein folding problem) (Sierk and
Pearson, 2004). The difference between the number of protein sequences held in Gen-
Bank (Benson et al., 2002) and the number of protein structures held by the PDB
(Protein DataBank) (Berman et al., 2000) is vast. Only recently have high through-
put methods been put in place to solve protein structure. Comparative modelling offers
a way to bridge the gap between the number of structures and sequences. The problem
of predicting the structure of a protein from its sequence has been approached in a

number of ways which can be broadly split into the following categories of:
e comparative modelling (Sdnchez and Sali, 1997; Guex and Peitsch, 1997)
e threading (Skolnick and Kihara, 2001; Panchenko et al., 2000)

e ab initio folding (Kolinski and Skolnick, 1998; Ortiz et al., 1998; Simons et al.,

2001; Aszédi et al., 1995; Huang et al., 1999)

Comparative modelling is capable of creating a number of different likely protein

models and the challenge of being able to pick the most likely of them remains. This

1



CHAPTER 1. INTRODUCTION 2

applies to both alternative conformations generated for regions such as loops and to
differences in alignments. Misalignment between a target and a parent sequence is the
largest cause of error in comparative modelling. One of the most extreme types of
misalignment is MLSAs (Misleading Local Sequence Alignments). MLSAs are areas of
protein alignment where structural similarity is clear and where the optimal sequence
similarity is substantially higher than that seen in the structure alignment (Saqi et al.,
1998). A less extreme type of misalignment is SSMAs (Sequence-Structure MisAlign-
ments), where the sequence and structural alignments do not agree. We therefore wish
to know whether such regions can be predicted and the alignment in those regions

improved.

1.1 Protein databases

There are a number of databases that record protein data. These databases include:

Protein Data Bank (Berman et al., 2000)

Swiss-Prot (Boeckmann et al., 2003)

trEMBL (Boeckmann et al., 2003)

Genpept (Benson et al., 2002)

The Protein Data Bank (PDB) is a worldwide archive of structural data of
macromolecules (Berman et al., 2000), it contains the structures for not only
proteins but also nucleic acids, carbohydrates and protein/nucleic acid complexes.
Swiss-Prot is a protein knowledgebase the first release of which came out in
mid-1986 (Bairoch et al., 2004). It is cross-referenced with 60 different databases
and tries to minimise redundancy caused by different literature reports on the same

sequence. Swiss-Prot is also integrated with PIR (Protein Information Resource)
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(Wu et al., 2002) to form UniprotKB (Universal Protein Resource Knowledgebase)
(Bairoch et al., 2005). UniprotKB is the central access point for extensive
curated protein information, including function, classification, and cross-reference
(see http://www.ebi.uniprot.org/). trEMBL is a protein sequence database
supplementing the Swiss-Prot Protein Sequence Data Bank (Boeckmann et al., 2003).
It contains the translations of all coding sequences (CDS) present in the EMBL
Nucleotide Sequence Database not yet integrated into Swiss-Prot. Genpept is a
protein database translated from GenBank (Benson et al., 2002), a genetic sequence
database, the annotated collection of all publicly available DNA sequences (Benson et

al., 2002) (See http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html).

1.2 Why predict protein structure?

It is widely accepted that protein function is related to structure (Bartlett et al.,
2003). The functional properties of proteins depend on their three-dimensional struc-
tures which, in turn, arise because linear polypeptide chains of particular amino acid
sequence can fold to generate compact domains with specific three-dimensional struc-
tures (Kyngés and Valjakka, 1998). Modelling protein structure based solely on their
sequence and on the known structures of other proteins could reveal more information
about the function of proteins. However, the inability routinely to predict correctly
these tertiary structures from their amino acid sequences remains a most challenging
problem (Kihara et al., 2001).

At the beginning of 2004 there were over 40,000,000 sequences recorded in the
GenBank database (figure 1). However in 2005 there were only 32,104 structures in
the Protein Data Bank (figure 2). Taking the numbers of these two databases into
consideration, it can be seen why there has been much effort expended in developing

methods to predict the structure of a protein based on its amino acid sequence (Chiu
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Figure 1: The increase in GenBank between 1982 to 2004, taken from
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html.
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Figure 2: The increase in the Protein Data Bank between 1972 to 2005, taken from
http://www.rcsb.org/pdb/holdings.html.
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and Goldstein, 1998). As the process of obtaining the three-dimensional structure of a
protein via X-ray crystallography or NMR is so laborious and expensive compared with
computer-based structure predictions, structure prediction will become increasingly
important as the predictions become more accurate (Marti-Renom et al., 2000; Vitkup
et al., 2001).

High through-put techniques have been developed to extract the sequences of DNA.
Indeed numerous genome-sequencing projects have used high through-put sequencing
to yield a plethora of protein sequences (Cantor and Little, 1998; Grunenfelder and
Winzeler, 2002; Tetko et al., 2005). As genome sequencing projects continue to detect
new protein sequences they provide new information for the application of computa-
tional methods. This stimulates the field and represents a good alternative to the
relatively slow experimental processes of determining protein structure (Rodriguez et
al., 1997; Westhead and Thornton, 1998).

Protein structure prediction methods have greatly improved in their ability to pro-
vide large sets of structural models for target protein sequence (Pettitt et al., 2005).
There has also been a great deal of work in the area of structural genomics. Structural
genomics uses a program of high through-put X-ray crystallography and NMR spec-
troscopy which is aimed at developing a comprehensive view of the protein structure
universe (Burley, 2000).

However, while both GenBank and the PDB are expanding at a rapid rate as tech-
niques improve, the growth rate of GenBank is far greater than that of its structural
equivalent. Comparative modelling helps to bridge the gap between primary and ter-

tiary structure by allowing the construction of protein models (Saunder et al., 2000).
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Figure  3: The  hierarchical  nature of  CATH, taken  from
http://cathwww.biochem.ucl.ac.uk/.

1.3 Classification of Protein Structure

It is thought that there are only a limited number of protein folds (Chothia and
Lesk, 1986). In 2003 there were approximately 750 distinct folds within the CATH
database (Orengo et al., 1997), though this value was increasing by 50 per year (Har-
rison et al., 2003). The CATH database is made up of protein domains extracted
semi-automatically from the PDB (Bernstein et al., 1977). These folds are then clas-
sified into a structural hierarchy using a number of automatic and manual techniques
(Blake and Cohen, 2001). The classification of proteins occurs at different levels; class,
architecture, topology and homologous superfamily. This can be seen in figure 3.

The class level is split into three major groups; mainly-alpha, mainly-beta and
alpha-beta, solely on the basis of secondary structure. A fourth class is used for the
small number of protein structures with low secondary structure content. ‘Architecture’
describes the orientations of the secondary structure units, such as bundles, barrels and
sandwiches (Orengo et al., 1997) without considering connectivity. The topology level
describes the protein fold by adding connectivity information. If structures belonging
to the same T-level have suitably high similarities combined with similar functions, the
proteins are assumed to be evolutionarily related and put into the same homologous

superfamily (Orengo et al., 1997). Criteria used to define homologues, together with
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Level Criteria

C Mainly-alpha, mainly-beta, alpha-beta or low secondary structure content
A

T

H

Based on orientation of secondary structure
Automatic assignment, SSAP score > 70
Sequence identity > 35%, 60% structure equivalent, SSAP score > 80.0
and sequence identity > 20%, 60% structure equivalent, SSAP score >
80.0, 60% structure equivalent and domains which have related functions.
Any other evidence of homology from the literature may also be used.

S (S35)  Sequence identity > 35%

N (S95) First to be classified is the representative

Table 1: The levels of the CATH database used to classify protein domains. The
SSAP score is generated by an algorithim and gives a normalised value between 1 and
100 which is independent of the sizes of the proteins or protein domains being scored
(Taylor et al., 1994). A score of above 80 indicates very similar folds, a SSAP score of
between 70 and 80 are probably related folds with differences in the loop regions and
in the orientation of secondary structure (Orengo et al., 1992).

an explanation of the CATH hierarchy are shown in table 1.

Another popular fold classification database is SCOP (Structural Classification of
Proteins) (Murzin et al., 1995; Lo Conte et al., 2000). Like CATH, SCOP is a hier-
archical classification of protein domains. Although CATH and SCOP classify what
a domain is differently, a total of 24,764 domains span the same residues in both

databases (Day et al., 2003). Protein domains within SCOP are divided into the fol-

lowing hierarchy:
1. Class - assigned by global characteristics (equivalent to CATH C)
2. Fold - assigned by similar topology (equivalent to CATH T)
3. Superfamily - assigned by clear structural homology (equivalent to CATH H)
4. Family - assigned by clear sequence homology (equivalent to CATH S)
5. Protein - assigned by function

6. Species
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There are three key differences between the CATH database and the SCOP
database. First, domains in CATH are assigned on a purely structural basis, while
in SCOP they are assigned on a functional inheritance. Thus, to be assigned as a
domain, the region must be seen as an inherited unit. Second,the assignment of a
protein in CATH is mostly automatic while SCOP is mostly manual. Third, the
hierarchies of the two databases differ. For example, CATH defines the architecture
level which the SCOP database does not.

One of the benefits of using CATH rather than SCOP in the past was the way
that entries were numbered. The authors of CATH anticipated the addition of data
to each level of their hierarchy when first designing the database (Hadley and Jones,
1999). Each original level of the CATH database was numbered as a multiple of ten, for
example the roll architecture is indexed as 3.10 and the barrel architecture is indexed as
3.20. This allowed for new entries to each level to be added to the end of the database
or slotted in the middle, e.g. the super-roll architecture is indexed as 3.15 (Hadley
and Jones, 1999). As a result of this indexing system once an entry has been given a
number that number does not change in future releases of the database. In contrast
the entries within the SCOP database were renumbered with each new release of the
database (Hadley and Jones, 1999) until release 1.55. Since the 1.55 version of SCOP
in March 2001, each database entry has a unique identifier (known as ‘sunid’), which

remains the same throughout each subsequent release.

1.4 Comparative modelling

The native conformation of a protein depends on its amino acid sequence and the sur-
rounding solvent (Anfinsen, 1973). The amino acid sequence of a protein holds the

information required to predict its tertiary structure. Sequence similarity can infer
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functional and structural connections to homologous proteins provided that evolution-
ary distance is not large (Abagyan and Batalov, 1997; Chothia and Lesk, 1986; Sander
and Schneider, 1991; S6ding et al., 2005). So if a sequence of unknown structure has a
homologue it is possible to model its tertiary structure.

If there is discernible similarity between a sequence of unknown structure and a se-
quence of known structure, an alignment between the two will provide a good starting
point from which to initiate comparative modelling (Saqi et al., 1999). Compara-
tive modelling predicts the three-dimensional structure of a given protein sequence
(target) based primarily on its alignment to homologous proteins of known structure
(templates) within the databases (Marti-Renom et al., 2000; Pillardy et al., 2001), as
proteins with similar sequences tend to fold into similar three-dimensional structures
even when the sequence relationship between them is very distant (Chothia and Lesk,
1986; Lesk and Chothia, 1980; Hubbard and Blundell, 1987; Flores et al., 1993). There
are many different computer programs that can be used for comparative modelling,
e.g. MODELLER (Sali and Blundell, 1993), 3D-JIGSAW (Bates and Sternberg, 1999),
FAMS (Ogata and Umeyama, 2000) and ESyPred3D (Lambert et al., 2002).

The structure of a-lactalbumin was the first to be predicted using comparative
modelling. Browne et al. (1969) predicted the structure using hen egg white lysozyme
as the template structure. This was done by assembling a small number of rigid
bodies obtained from the aligned protein structures (Browne et al., 1969; Blundell
et al., 1987; Greer, 1990). These rigid bodies include the conserved core regions,
the variable loops that connect them and the side-chains that decorate the back-
bone (see Fiser and Sali, Comparative protein structure modelling, available online
at http://salilab.org/pdf/086_FiserDekker2000.pdf).

It has been found that most protein pairs with more than 30% identity are struc-

turally similar (Sander and Schneider, 1991; Rost, 1999). So basing an unknown protein
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structure upon a known structure should give a reasonable model. The greater the se-
quence identity between the target and template structures, the more accurate the

model of the target is likely to be. Here sequence identity is defined as:

No. of identical residues
S identit = x 100 1
equence identity (%) No. of residues in the shortest sequence (1)

Models become less accurate when the sequence identity between target and struc-
ture is lower (Martin et al., 1997; Frigerio et al., 1997). The ultimate goal of com-
parative modelling is to be able to calculate native protein structures using only the
information contained in the amino acid sequence (Sippl et al., 1994). This goal is not
yet achievable though comparative modelling techniques continue to improve.

There are nine distinct stages to produce manually a structure from a protein
sequence by comparative modelling. Computer programs like Swiss-Model (Peitsch,
1996) and Composer (Sutcliffe et al., 1987a; Sutcliffe et al., 1987b) essentially automate

these steps. The nine stages of comparative modelling are:

1. Identify template/parent structure

2. Align targets with parents

3. Identify SCRs (Structurally Conserved Regions)
4. Identify SVRs (Structurally Variable Regions)
5. Inherit SCRs from parent structures

6. Build SVRs

7. Build the side-chains

8. Refine the model
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A flowchart of a typical modelling protocol can be seen in Figure 4. Each of these

stages will now be discussed.

1.5 Stages of comparative modelling

1.5.1 Finding the Correct Template

The most important feature for choosing the possible template structures is sequence

identity. Comparative modelling can produce wrong models if low sequence identity

exists between the target protein sequence and the chosen template structure (Fac-

chiano et al., 2001). A high sequence identity (>30%) between two proteins usually

implies structural similarity and similar protein function (Shatsky et al., 2006).

Suitable parent structures can be identified through searching the PDB with FASTA

(Pearson and Lipman, 1988; Pearson, 1990; Pearson, 1996), BLAST (Basic local align-

ment search tool) (Altschul et al., 1990), WU-BLAST (Washington University BLAST)

(Altschul and Gish, 1996) or SSEARCH (Sequence Similarity Search) (Smith and Wa-

terman, 1981).
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Psi-BLAST (Position specific iterative BLAST) (Altschul et al., 1997), which is
designed to find remote homologues, can also be used to find a template. However, as
the first round of Psi-BLAST is BLAST, if the PDB were used alone, the initial search
would give the best hit and further searches would only find more distant homologues.
If no hit is found in the PDB using BLAST, then using a larger database (for example,
the PDB in conjunction with Genpept) may allow remote homologues in the PDB to
be identified. Psi-BLAST creates a position-specific score matrix, a profile of conserved
residues between its original sequence and its hits (it treats gap characters as a 21st
distinct character (Johnston and Shields, 2005)). It then uses this profile to search
against the database. As the matrix used for searching evolves through iterations it
can ‘move’ too far away from the original sequence. This can then lead to sequences,
unrelated to the original, being pulled out. So although Psi-BLAST is able to detect
more distant relationships than the normal BLAST search, it can also end up pulling

out unrelated sequences.

1.5.2 Alignment

The alignment is the most important stage of the comparative modelling process, if it
is incorrect then the final model will also be incorrect. In the CASP2 experiment it was
shown that the quality of a model was dominated by the correctness of the alignment

(Cristobal et al., 2001).

Structural Alignment

Structural alignment is typically based on Euclidean distance between between corre-
sponding residues, rather than the distance between amino acid ‘types’ in sequence
alignment (Kolodny et al., 2005). It seeks to find the optimum set of equivalent
residues. There are a number of programs capable of aligning proteins by struc-

ture. These include CE (Combinatorial Extension Algorithm) (Shindyalov and Bourne,
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1998), SSAP (Sequential Structure Alignment Program) (Taylor and Orengo, 1989),
STRUCTAL (Subbiah et al., 1993; Gerstein and Levitt, 1998), DALI (Distance ma-
trix Alignment) (Holm and Sander, 1993; Holm and Park, 2000), LSQMAN (Kley-
wegt, 1996), MATRAS (MArkovian TRAnsition of Structure evolution) (Kawabata
and Nishikawa, 2000), VAST (Vector Alignment Search Tool) (Gibrat et al., 1996)
and SSM (Secondary Structure Matching) (Krissinel and Henrick, 2004). There are
a number of different ways to superimpose two or more protein structures and, if the
proteins are not identical or at least extremely similar in both sequence and structure,
then there can be no optimal superposition (Novotny et al., 2004).

Most methods for structural alignment use dynamic programming, such as SSAP,
and Monte Carlo optimization, such as DALI. However, when dynamic programming
is used it has an inherent ambiguity caused by the problem of the non-uniqueness of
optimal structural alignment solutions (Miickstein et al., 2002). This non-uniqueness
comes about because different structural alignment programs can lead to different
‘optimal’ alignments. Although a structural alignment (regardless of which method
was used to obtain it) is often referred to in the literature as if it were the one and
only true alignment between a pair of proteins this is not the case (Godzik, 1996). As
the superimposition of protein folds by dynamic programming is frequently ambiguous
(Feng and Sippl, 1996) this means that the reliability of a so-called ‘optimal’ alignment,
has the potential to vary along its length. For proteins that are close in homology
the differences between alignments created by different programs are only minor and
confined to residues outside the hydrophobic core (Godzik, 1996). As the structural
alignments used in this research were all between domains that were at least within the
same homologous family the issue of the non-uniqueness of the structural alignment
should not prove to be a problem.

CE does not use dynamic programming, instead it constructs a structural alignment

by joining well aligned fragment pairs known as AFPs (Kolodny et al., 2005). AFPs
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are pairs of fragments, one from each protein, which confer structural similarity and
are based on local geometry rather than global (Shindyalov and Bourne, 1998). By
connecting these fragments, which are locally aligned, an overall structural alignment
is achieved. VAST aligns SSEs (Secondary Structure Elements) using a graph theory-
based approach to form a structural alignment (Madej et al., 1995; Novotny et al.,
2004).

Several studies have been made that compare some of the various structural align-
ment methods, such as those by Novotnyet al. (2004) and Kolodnyet al. (2005). In the
earlier study by Novotny, CE, DALI, MATRAS and VAST proved to be the most accu-
rate through a variety of tests that involved modelling the Ca: backbone of the protein
or modelling multi-domain proteins. None of the methods achieved a 100% success
rate (Novotny et al., 2004). In the Kolodny study six methods were compared: SSAP,
STRUCTAL, DALI, LSQMAN, CE and SSM. They concluded that STRUCTAL and
SSM performed the best, followed by LSQMAN and CE (Kolodny et al., 2005).

In this work SSAP was used to produce the structural alignments, as it was the
method that we were most familiar with. SSAP is residue based and gives an accu-
rate determination of the structural similarities between a pair of protein sequences
(Harrison et al., 2003). It uses double dynamic programming and therefore requires
a similarity measure for each pair of equivalent residues in order to find the optimal
alignment (Kolodny et al., 2005). For SSAP this similarity measure is created from the
overlap of a list of distances between the residue and every other residue in the struc-
ture for each pair of residues. This overlap of distance is optimised through further
dynamic programming. As well as an alignment, SSAP also gives a score as part of its
output. This score is a measure which combines the similarity of the aligned residues
(accounting for the length of the alignment) and the number of residues in the smaller
protein (Kolodny et al., 2005).

SSAP was compared with other methods in the study by Kolodny and did not do
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well. However this was because the Kolodny study looked at local alignments while
SSAP aligns globally.

In comparative modelling, with an unknown target structure, it is not possible to
align this way. Instead we have to rely on guessing the structural alignment from the
sequence alignment. However a structural alignment can be used as a way in which
to compare the validity of the modelling method. It is also useful for the classification
and organization of known structures (Orengo et al., 1997; Shindyalov and Bourne,

2000).

Sequence Alignment

An alignment between two sequences of residues is usually calculated by optimizing
an alignment scoring function, the two common ingredients of which are a gap penalty
function and a matrix of substitution scores for replacing one residue with another
(Marti-Renom et al., 2004). The simplest way to align two sequences is to use the
dynamic programming Needleman and Wunsch algorithm (Needleman and Wunsch,
1970) which finds the best alignment by the amino acid sequence alone. Given two
sequences A and B of lengths (4 and [ respectively and a similarity matrix s such that
residue A; with B; scores s; ;, with a length-dependent gap penalty W (k) (generally
of the form W (k) = W, + W,(k) i.e. a fixed opening penalty and a second (smaller)

length dependent element):

Sit1,+1
Sij = Sij +maxq max(Siy1 4k — W(k)) for2<k<lp—3j
max(Siix,j+1 — W(k)) for2 <k <ly—1
This algorithm applies penalties to its alignment ‘score’ dependent on any insertions
and/or deletions that are found. Needleman and Wunsch calculates a global alignment

rather than a local alignment as the Smith-Waterman algorithm (Smith and Waterman,
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1981) does. The Smith-Waterman algorithm, using the same definitions as for the

Needleman and Wunsch algorithm, is:

4

Sit1,j+1 T Siyj

max(SiH’ﬂ_k - W(k)) for 2 S k S lB —]
Sz',j = Imax {

maX(Si+k7j+1 — W(k)) for 2 S k S lA — 1

0

\

Local alignment algorithms are better at finding more distant patches of homology.
However, as global alignment algorithms try to align all the amino acid residues within
a sequence they are best used if the two sequences are known to be homologous.

One attempt to include structural information is PIMA (Pattern-Induced Multi-
sequence Alignment) algorithm (Smith and Smith, 1992) which encourages gaps outside
regions of secondary structure by modifying the gap penalty. This means that gaps

are more frequently found in the structurally variable regions of the protein domain.

1.5.3 Identifying the Structurally Conserved and Structurally

Variable Regions, and Building the SVRs

The structurally conserved regions (SCRs) of a protein often play a major part in its
function and/or stability. Typically these consist of elements of secondary structure (Li
et al., 1999). Since these are conserved, they are generally easy to model. The struc-
turally variable regions (SVRs) of a protein typically include the loop regions. These
may vary greatly in structure even between proteins with a high sequence identity.
The SCRs of the template can be identified by overlaying several parents and ob-
serving where they most frequently overlap in structure. When there is only one parent
structure it becomes more difficult to identify the SCRs. SCRs tend to be the regions

of secondary structure and also ligand- and substrate-binding areas. So if only one
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parent structure can be found then these areas of the protein will be used to form the
SCRs. Once identified the structure is simply inherited from the parent to the target
sequence.

Structurally variable regions pose more of a problem as they cannot just be inherited
from parent to target due to their variability. SVRs often contribute to binding sites and
determine the functional specificity of a given protein framework (Fiser and Sali, 2003);
the complementarity determining region loops of antibodies are a classic example. In
these proteins the SVRs make up the antigen binding regions which vary in order to
give them their specificity for binding antigen. Structurally variable regions can be

built in a number of ways:

e by hand using molecular graphics (e.g. de la Paz et al. (1986))

e by knowledge-based methods (e.g. Jones and Thirup (1986), Greer (1981), Fidelis
et al. (1994))

e by ab initio methods (e.g. Fine et al. (1986), Bruccoleri and Karplus (1987))

e by a combination of the above methods (e.g. Martin et al. (1989))

Building a loop by hand involves closing gaps in the 3-D structure of the loop. This
is not very effective for longer variable regions. It is normally followed by cycles of
energy minimization.

Knowledge-based methods rely on databases of loops that are searched using con-
straints in order to find the loop that best fits the core region to which it is to be
added and the sequence being modelled. These constraints include measurements of
distances between the secondary structures that hold the loops. The loop that best
fits these measurements and the target sequence for the loop can then be transplanted

onto the SCRs. One such database is SLoop (Donate et al., 1996). In 2001 the SLoop
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database contained over 10 000 loops up to 20 residues in length, which cluster into
over 560 well populated classes (Burke and Deane, 2001).

Knowledge-based methods depend on how well saturated the conformational space
is about the SVR region. In general longer loops have more available conformational
space while the conformational space for shorter loops is more restricted. Thus the
conformational space for shorter loops tends to be better saturated in the PDB while,
for longer loops, only a small sample of the available conformations are observed (Fidelis
et al., 1994).

Ab initio methods involve conformational searches which programs such as CON-
GEN (Bruccoleri and Karplus, 1987) can perform. Molecular dynamics can be used as
an alternative to this or in conjunction with it.

These methods can be used separately or in combination to create a model of a

SVR that can be used within the protein model.

1.5.4 Building the Side-chains

The determination of side chain orientation presents a difficult problem due to the com-
binatorial nature of searching the large conformational space accessible to most amino
acid residues (Feig et al., 2000). To search and analyze all the possible conformations
of a amino acid side chain would take an extremely long time. However, side chains
have been observed usually only to be found a limited number of low energy rotameric
states (Chandrasekaran and Ramachandran, 1970; Ponder and Richards, 1987). In-
stead of considering the full geometrically possible conformational space, only a small
number of rotamers can be used to describe most naturally occurring conformers of
a side chain (Liang and Grishin, 2001). Therefore side chain modelling is best done
through the use of a rotamer library such as the backbone-dependent SCWRL (Bower

et al., 1997).



CHAPTER 1. INTRODUCTION 19

Rotamer libraries work on the principle that the presence of steric forces mean that
there are certain rotational positions of bonds within an individual amino acid side-
chain that are preferred over others. The steric forces cause certain rotameric states to
be lower in energy than others which will cause the side-chain to twist out of the way
of neighboring atoms, inflicting a high dihedral energy on the residue (Dunbrack and
Karplus, 1993). Obviously an amino acid will adopt one of these preferred positions in
the native structure of the protein if that position doesn’t involve a clash with another
part of the protein structure. Figure 5 (Shetty et al., 2003) shows an example of a
rotamer library for five amino acids.

There are two types of rotamer library, backbone-dependent (e.g. SCWRL, which
is both an algorithm and a library and the work of Dunbrack and Karplus (1993)) and
backbone-independent(e.g. the work of Ponder and Richards (1987), Summers and
Karplus (1991), Tuffery et al. (1991), De Maeyer et al. (1997), Lovell et al. (2000)).
Backbone-dependent rotamer libraries reference the local backbone conformation an-
gles (phi and psi) (Dunbrack and Karplus, 1993) unlike their independent counterparts.
Because a backbone-dependent rotamer library takes its surrounding environment into
account it is preferable.

SCWRL, a backbone-dependent rotamer library, selects the most appropriate ro-
tamer by first building all the possible rotamers. The method to find the optimal
rotamer begins by first freezing all possible disulphide bonds. The most favourable
rotamer is then checked for steric clashes with the backbone of the protein. If a clash
is found SCWRL moves to the next most preferable rotamer and again checked for
steric clashes. This continues until a rotamer is found which does not clash with the
backbone. Although clashes with the backbone will have been eliminated, clashes with
other side-chains will still occur. These clashes will have their side-chains placed in a
group and then rotated through less favoured rotamers (which do not clash with the

backbone). As these side-chains are rotated they will sometimes cause clashes with
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His Phe

Figure 5: Examples of rotamer libraries for different amino acid residues. For each
amino acid residue the side chain is shown in each of its possible conformations. Figure
taken from Shetty et al. (2003).
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side-chains outside of the group. These are added to the group and rotated through
their possible rotatmer positions. Eventually the groups will stop adding members and

at this time the rotamers with the least steric clashes are searched for and chosen.

1.5.5 Refining the Model

Protein models can be refined using energy minimization or molecular dynamics. Mod-
els are refined in order to alleviate clashes that would not be found in the native fold
of a protein. Molecular modelling packages such as such as CHARMM (Brooks et al.,
1983) and NAMD (Kale et al., 1999) can perform both of these refinement procedures.

In energy minimization (EM), the force field is used to calculate forces on the atoms
and standard minimization techniques such as steepest descents or conjugate gradients
(Fletcher and Reeves, 1964) are used to minimise the energy. Steepest descents is a
simple ‘downhill’ algorithm. The algorithm iterates taking steps starting at a point
P; and moving in the direction of the local downhill gradient 57 f(P;) to a point P;, ;.
Steepest descents can be rather inefficient as each step is orthogonal to the previous
step. Thus the algorithm takes many small steps in descending a long narrow energy
well even when this adopts a perfect quadratic form (See Press et al. (1986)). In
conjugate gradients, each step is taken in a direction which is a ‘conjugate’ of the
previous direction and the steepest downhill step, leading to a more efficient descent
of the energy surface. All minimization methods are sensitive to local minima.

In molecular dynamics (MD), atoms are initially assigned random velocities for
a given temperature from a Boltzmann distribution. The force on each atom is then
calculated from the force field and using the equation F' = ma, the acceleration on each
atom can be calculated. From the accelerations, the velocities are updated and a time-
step is taken to recalculate the atomic coordinates (McCammon and Harvey, 1987).

The procedure then iterates. Typically, the Verlet Leapfrog algorithm is employed in
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which velocities at time ¢ + % are calculated from the velocities at time ¢ — % using the
accelerations calculated at time t¢:
f@)

1 1

where v(t) are the velocities of the atoms at time ¢, f(¢) are the forces on the atoms
at time ¢ and m are the masses of the atoms. The coordinates are then updated based
on the new velocities:

r(t+ Af) < r(t) + Atult — %At)

where r(t) are the coordinates of the atoms at time ¢. Minimizing snapshots from an
MD simulation can help to overcome the local minima problem of EM.

Molecular dynamics is more capable of reducing major clashes than energy mini-
mization. Energy minimization programs simply seek to find a local energy minimum,
and therefore can fail to find the global energy minimum. Molecular dynamics seeks to
provide a dynamic simulation that mimics the dynamics of the protein either in vacuo
or in the environment of a solvent. However classical molecular dynamics is limited by
the amount of real time that can be simulated with current methods and computers,
and most of that time is usually spent computing the interactions among water atoms

(Nymeyer and Garcia, 2003).

1.5.6 Evaluating the Model

If the structure of a protein has been solved by experimental methods, then the quality
of a model can be assessed directly. In these cases, this evaluation also allows the
quality of the modelling methods to be assessed (Siew et al., 2000; Cristobal et al.,
2001).

The overall accuracy of useful comparative models spans a wide range, ranging from
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models with only the correct fold to more accurate models that are comparable to struc-
tures determined by low resolution X-ray crystallography or medium resolution NMR
spectroscopy (Baker and Sali, 2001). Once the structure of a protein has been solved
experimentally then the model and structure can be compared and an RMSD (Root
Mean Square Deviation) can be calculated. The RMSD is calculated by superimpos-
ing the structures over one another and minimising the difference between equivalent
points such as the coordinates of the backbone of the protein. For proteins that are
approximately 90% identical in sequence, the RMSD for their backbones, excluding
loops, will be expected to be below 0.5A whereas if the sequence identity drops to 30%
then, the expected RMSD increases to approximately 4A or higher (Contreras-Moreira

et al., 2003). The equation to calculate the RMSD is:

N 2
RMSD = \/% (2)

where N is the number of equivalent atom pairs and d is the distance between the
atoms in these pairs.

The benefit of using RMSD as a measure of how accurate a modelled structure
is that it is a single simple number. This allows for simple comparison of the global
accuracy of different models. However the problem with RMSD is that it is sensitive
to a few bad outliers or a single bad torsion which can skew the value of an otherwise
good model. The RMSD for a model which is mostly correct, but has one bad region
can be very high (Cristobal et al., 2001).

An alternative to the RMSD value is RMS/coverage graphs (Hubbard, 1999). The
method is sequence-length dependent and samples the lowest ranked residues in terms
of RMSD from a large number of structural superpositions, each having a different
number of equivalent residues (Siew et al., 2000). Figure 6 shows the RMS/coverage

graph for a number of predictions of the same protein sequence. The coverage refers to
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Figure 6: Example of a RMS/coverage graph for the CASP3 target T0046. This is
created by sampling the lowest ranked residues in terms of RMSD from a large number
of structural superpositions. Taken from (Hubbard, 1999).

the fraction of the target being predicted for the number of residues being considered
(Hubbard, 1999). The residues being considered in the coverage do not have to be
consecutive. Therefore residues 1,3,10,88 can be considered as a coverage of 0.04 just
as residues 1-4 are (Hubbard, 1999).

However in a real modelling situation the structure has not been solved so there is
no known structure with which to compare the model.

Therefore in order to assess the model, other factors must be examined. In general,
errors in comparative models include errors in side chain packing, distortions and shifts
of core segments of the fold, errors in modelling of insertions (e.g. loops) and errors
resulting from an incorrect alignment and fold assignment (John and Sali, 2003). Ob-

viously the sequence identity between the parent and target sequence is an important
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indicator of model quality. With a sequence identity of greater than 70-90%, then the
modelled structure is likely to be highly accurate though there may be some differ-
ences between it and the correct structure in the loop regions. However if the sequence
identity is below 30%, then the model is extremely likely to contain errors.

Insertions and deletions and their placement within the structure will also affect
the accuracy of the model. If large insertions or deletions are required error will prob-
ably have been introduced into the model. This will be especially true if the in-
sertions/deletions are within regions of secondary structure. Insertions are generally
worse than deletions as there is nothing to guide their structure.

There are programs, such as ProCheck (Laskowski et al., 1993), which are capable
of evaluating a modelled structure. ProCheck assesses a modelled structure by looking
at the geometry of its amino acid residues. It compares the bond angles and lengths
against to the ‘ideal’ values found by the analysis of the Cambridge Structural Database
(CSD) done by Engh and Huber (1991). However, while it can be useful for finding
errors such as D-amino acids, it is not very effective in evaluating model quality as the
parameters it evaluates are those that have been optimized while building the model
(for example during energy minimization).

Programs such as PROSA II (Sippl, 1993) are used specifically for predicting the
quality of a model. PROSA 1II is based on the inverse folding approach and evaluates
the environment of each residue in a model with respect to the expected environment
as found in the high resolution X-ray structures (Sasin and Bujnicki, 2004).

If the evaluation of the model suggests that it contains a great deal of error then
we return to the sequence alignment and try to adjust it. The cycle of comparative
modelling can continue until the evaluation suggests that the model may be accurate.

There are a number of comparative modelling servers such as Swiss-Model which are
capable of evaluating the models that they create. For example Swiss-Model calculates

a confidence value for each atom in a protein model. This confidence factor is calculated
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using:
1. The number of template structures used
2. The deviation of the model from the template(s)

3. The distance trap value used for framework building (Schwede et al., 2003)

The confidence factor is calculated as:

85 (%) (2%) for non-fully constructed atoms

0= (3)

99 for fully constructed atoms

where C' is the confidence factor, N is the number of selected template structures and
D is the distance trap value.

The distance trap value is also used during the model building process. The tem-
plates are fitted, then each residue is examined to see if one template differs from
the others by more than the distance trap. If it does, this template is not used for
that residue. More specific information is not available in the literature or on the

Swiss-Model web site.

1.6 MODELLER

The difference between MODELLER and the nine stages set out earlier is that it does
not treat the SCRs and SVRs separately. Instead it produces the structures of both
at the same time. The program models a structure by satisfying spatial constraints
(Sali and Blundell, 1993; Fiser et al., 2000). The spatial constraints that MODELLER

works with can come from a variety of sources. These sources include:

e protein structures

e NMR experiments
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>P1;1hstAlawcAseq0

sequence:pdblhst::A::A::::

———————————————————————————— SHPTYSEMIAAATIRAEKSRGGSSRQSIQKYIK-
SHYKVGHNADLQIKLSIRRLLAAGV--LKQTKGVGASGSFRLAK-——---—--—- *

>P1;1awc

structure:pdblawc::A::A::::
IQLWQFLLELLTDKDARDCISWVGDEGEFKLNQPELVAQKWGQRKNKPTMNYEKLSRALRY
YY----DGDMICKVQGKRFVYKFVCDLKTLIG-YSAAELNRLVIECEQKKLARM*

Figure 7: Example of a MODELLER alignment file. 1hst (a chicken histone protein)
is the target sequence and lawc (a mouse GA-binding protein) is the parent.

e rules of secondary structure packing
e cross-linking experiments
e fluorescence spectroscopy

e residue-residue and atom-atom potentials of mean force

It can also perform many additional tasks, including de novo modelling of loops
in protein structures, optimization of various models of protein structure with respect
to a flexibly defined objective function, and multiple alignment of protein sequences
or structures (Webb, 2005). Examples of the files that MODELLER requires can be
found in figures 7 and 8.

After MODELLER has been given a sequence alignment and one or more parent
structures as input, it calculates Ca distance and dihedral angle restraints for the
target. These restraints are encoded in the form of a probability density function
(PDF). The PDF is derived from an analysis of a database of 105 family alignments
that include 416 proteins with known 3D structure (Sali and Overington, 1994). If
there is more than one parent used then the PDF is calculated so that the model will
be more restrained in those regions where the parent structures are more conserved.

The spatial restraints include the distance between carbon alphas, hydrogen bonds and
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INCLUDE
SET ATOM_FILES_DIRECTORY = ’./:/data/pdb/’
SET PDB_EXT = ’.ent’

SET STARTING_MODEL = ’1°
SET ENDING_MODEL = ’1’
SET DEVIATION = ’0°

SET KNOWNS = ’lawc’

SET HETATM_IO = off

SET WATER_IO = off

SET HYDROGEN_IO = off

SET ALIGNMENT_FORMAT = °PIR’

SET SEQUENCE = ’1hstAlawcAseq0’

SET ALNFILE = ’/home/lhstAlawcAseq0.alignment’
CALL ROUTINE = ’model’

Figure 8: Example of a MODELLER control file. 1hst (a chicken histone pro-
tein) is the target sequence and lawc (a mouse GA-binding protein) is the parent.
1hstAlawcAseq0.alignment is the alignment file shown in figure 7.
main-chain and side-chain dihedral angles. These restraints are then transferred to the
target sequence. The final model tries to satisfy the restraints to give a final model.
When modelling loops, MODELLER first concentrates on the non-hydrogen atoms,
by optimizing their positions within a fixed environment. This optimization relies on
a protocol consisting of the conjugate gradient minimization and molecular dynamics
with simulated annealing (Fiser and Sali, 2003). The CHARMM-22 potential function

(MacKerell et al., 1998) then restrains:

bonds

angles

some dihedral angles

improper dihedral angles (Fiser and Sali, 2003)
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Comparative modelling is not without problems. The greatest source of error in
protein modelling is the alignment of the parent and target sequences. The final mod-
elled structure from a mis-aligned parent/target pair is going to be different from the
correct structure. The fold will still be right but the threading of the residues onto the
structure will be wrong and the RMSD will be high.

However no modelling method can be more accurate than the alignment it is given.
If the alignment between parent and target is wrong then this will limit the accuracy
of the model.

Another source of error in comparative modelling is the modelling of SVRs, the loop
regions of proteins. Loop regions are capable of varying greatly even between proteins
of similar structure and function, which is why they cannot be directly inherited from
the parent structure. Attempts have been made to categorise loops in the hope that
it would extend the applicability of using a database search approach (Ring et al.,
1992; Oliva et al., 1998; Rufino et al., 1996). However, the database methods are
limited because the number of possible conformations increases exponentially with the
length of a loop (Jacobson and Sali, 2004). The general rule is that the longer the loop
is, the more likely it is to be incorrect as the different possible conformations of its
structure increase.

Creating a protein model by hand is far more time-consuming and liable to error
than creating the model via automated methods such as Swiss-Model or MODELLER.
With a computer modelling program the main error is in the original alignment that
is fed into it. When modelling by hand the possibility of human error at each stage
must also be considered when evaluating the final result.

MODELLER was used in this research rather than Swiss-Model as Swiss-Model
makes no attempt to build difficult loops (i.e. those with large insertions/deletions)
(Martin et al., 1997). Not being able to compare the loop regions would have made

some portions of this study meaningless. The ability to run the MODELLER program
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Figure 9: Sequence alignment and structural alignment do not always agree with one
another.

locally was another reason why it was chosen for this research.

1.7 Why doesn’t aligning by sequence always work?

For successful modelling, the sequence alignment derived from aligning the structures
is the alignment that is required. However, as illustrated in figure 9, since the target
structure is not available, one must use the standard sequence alignment in order to
predict the structural alignment. Since the sequence alignment and structural align-
ment may differ, this can be a difficult problem.

Looking at figure 10 it can be clearly seen that if there is a high sequence identity
between the two sequences then the alignment is likely to match the structural one.

However if the sequence identity is low, 30% or less, then the sequence alignment can
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Figure 10: The relationship between percentage sequence identity and the percentage
correct sequence alignment. The dataset used to compile this graph is the same initial
dataset used in Chapter 3. Each pair of NReps within a CATH homologous family
has been aligned by SSAP and Needleman and Wunsch. SSAP is taken as the gold
standard, the correct alignment. Twelve outlying points have been removed after
being identified as occurring due to errors in the CATH database (Dr. A.C.R. Martin,
personal communication).
be completely different from the structural alignment. With a low sequence identity,
the sequence alignment can totally fail to match the correct structural alignment.
Here sequence alignment is defined as an alignment created with the Needleman
and Wunsch algorithm using the Dayhoff 78 matrix, a gap opening penalty of 10 and
an extension penalty of 2. This calculates the optimum global sequence alignment

between two sequences. Its concept of ‘optimum’ is based solely on a similarity matrix.

It fails to take into account things such as:

1. secondary structures

2. charges
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3. hydrophobicity
4. distance constraints affecting indels

These factors, which influence how the protein folds, may mean that the sequence

alignment does not agree with the correct, structural alignment.

1.7.1 Suboptimal Alignments

A sub-optimal alignment is an alignment whose score is close to, but lower than, that of
the optimal score (Naor and Brutlag, 1994). Since, the sequence alignment may deviate
from the structural alignment, sub-optimal sequence alignments can be generated in
order to see if they better reflect the structural alignment. However the range of sub-
optimal alignments can be large and often inconsequential differences in alignment can
be reported (Jaroszewski et al., 2002).

When similar regions, or consensus elements, between two sequences are searched
for, the alignment corresponds roughly to an ordered subset of the similarities (Vingron
and Pevzner, 1995). This subset of similarities can then be used to give a range of
alignments. Waterman (1984; 1986), Sobel and Martinez (1986), Karlin et al. (1988)
and Vingron and Argos (1989) have all developed algorithms that search for these
consensus elements (Vingron and Pevzner, 1995).

However it would not be possible to use suboptimal alignments in order to find
the correct alignment when MLSAs (Misleading Local Sequence Alignments) occur
(Chapter 3). In these areas the alignment is unambiguous and suboptimal alignments

are unlikely to be identified.
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1.8 Machine Learning

Machine-learning techniques are ideally suited for pattern recognition tasks where rel-
atively large amounts of data are present and where the patterns are ‘noisy’ and not
easily described by a compact set of rules (Nielsen et al., 1999). The field of ma-
chine learning is very diverse as learning can accompany any kind of problem solving
or process and so it can be studied in many different ways, such as decision making,
classification, sensory signal recognition, problem solving, task execution, control or
planning (Kodratoff and Michalski, 1990). There are a number of different methods of

machine learning, including:
e Support Vector Machines (SVMs)
e Bayesian methods
e Decision Trees
e Neural Networks (NNs)

Support Vector Machines are based on Vapnik’s Statistical Learning Theory (Vap-
nik, 1995). SVMs ‘project’ data into a higher dimensional space where they are linearly
separable. The points closest to the dividing line are the support vectors. The technique
tries to maximise the distance between the points and the dividing line as figure 11
illustrates.

This technique is less susceptible to over-fitting than other methods, and it achieves
better results when dealing with new examples (Spinosa and de Carvalho, 2005). Other
benefits of using SVMs are that they have good generalization accuracy and are fast
to learn (Hearst et al., 1998). However Support Vector Machines were not used within
this research as they can be slow to train when using a large data set. SVMs are only
binary classifiers, which in the case of this research also made them unsuitable as some

of the problems dealt with had more than two outputs.
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Figure 11: How a Support Vector Machine projects the data into a hyperspace where
it is linearly separable and then maximises the distance between the support vectors
and the dividing line.

Bayesian methods are based on Bayes’ theorem:

Pr(H)
Pr(E)

Pr(E|H) = [ ]Pr(H\E) (4)

where Pr(H|FE) is the direct probability of a hypothesis conditional on a given body
and Pr(E|H) is the inverse probability of the data conditional on the hypothesis (See
http://plato.standford.edu/entries/bayes-theorem/). Once new data is pre-
sented to this method it alters the existing probability based on that data, adjusting
the weights by which it produces its predictions. It must therefore start with an ex-
isting prediction of the problem’s distribution. This distribution is then altered with
each new set of presented data (Sebastiani et al., 2003). The benefits of using Bayesian
methods are that they are simple to use and easy to interpret the results. However it
does require prior knowledge of the distribution in order to create the initial distribu-
tion. This made it unsuitable for this research where it was not possible to know what
the distribution would be like.

Decision Trees create a set of rules from which a classification can be made. They
take as input an object or situation described by a set of properties, and output a

set of yes/no decisions (Russell and Norvig, 2002), which is easily understood. A
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Initial dataset:
5 members

of a family

Male: Female:
3 2
Hair Hair
colour? colour?
Black: Blond: Brown: Blond:
1 2 1 1

Glasses?

Yes: No:

Figure 12: Example of how a decision tree works.

simple example of this method can be seen in figure 12. Each node of the decision
tree corresponds to a particular attribute and each edge to alternative values for those
attributes while the leaves of the tree (the final outcomes) correspond to objects with
an identical classification (Michalski, 1983). Data starts at the top of the decision tree
and is tested against the different attributes until it reaches a leaf and is classified.
This type of machine learning is most often used for data mining and classification and

would not have been practical for our purposes.
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1.8.1 Artificial Neural Networks

Molecular biologists and information scientists have frequently used machine learning
techniques aimed at problems, which could not yet be captured by explicit physical
laws (Dietmann and Frommel, 2002). Artificial neural networks (ANNs) are an example
of this kind of technique. Neural networks have been shown to be reliable tools for
protein structure prediction purposes (Rost and Sander, 1994) and attempt to mimic
the learning processes of the brain in order to solve problems by learning that certain
patterns of input should have a certain pattern of output. Neural networks resemble

the brain in at least two respects:

1. knowledge is acquired by the network through a learning process, and inter-
neuron connection strengths (known as synaptic weights) are used to store knowl-

edge (Wei et al., 1998; Reckwitz et al., 1999; Forrest, 1993)

2. “the NN is adaptive, fault tolerant, capable of very large-scale integration of infor-
mation using neurobiological simulation principles, and produces a highly struc-

tured uniformity of analysis and architecture when finalised” (Veltri et al., 2002)

A neural network is made up of a number of artificial neurodes. Each neurode

within the network is defined as:

e ‘“receiving a mnumber of inputs from either the original input/external
source or from the outputs of other neurodes from within the network”
(see http://www.statsoft.com/textbook/stneunet.html and

http://www.willamette.edu/~gorr/classes/cs449/ann-overview.html).

e “producing  output  passing the  activation  signal  through an
activation  function  (also  known as a transfer  function)”  (see

http://www.statsoft.com/textbook/stneunet.html)
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The architecture of a neural network is made up of the following six categories of

topological data (Zupan and Gasteiger, 1993):

1. the number of inputs and outputs,

2. the number of layers,

3. the number of neurodes in each layer,

4. the number of weights in each neurode,

5. the way the weights are linked together within or between the layer(s),

6. which neurodes receive the correction signals.

The input layer is also known as the passive layer because it has no weights asso-
ciated with it while the hidden and output layers are known as the active layers (each
preceding set of weights being associated with the layer).

The neurodes each have one or more inputs and an output. The
inputs come by way of a connection that has a strength (or weight);
these weights correspond to synaptic efficacy in a biological neuron (see
http://wuw.statsoft.com/textbook/stneunet.html). The weight of each
connection is responsible for the ability of the network to predict an output given the
correct input. In the training phase of creating a neural network the net is exposed to
a number of different patterns. As it is exposed to these patterns the network adjusts
the weights associated with each connection so that it will give the correct output in
the testing phase. An example of these connections between the different nodes can
be seen in figure 13.

The basic operation of a neurode is always the same; it collects a net

input, y;, and transforms it into an output signal, y;, using a transfer function
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Input Layer Hidden Layer Output Layer

Figure 13: The layout of a neural network. The squares represent the different layers;
blue being the original input layer, red being the hidden layer nodes and yellow rep-
resenting the final output layer. The black lines indicate the connections between the

different nodes.
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v, = f (szij _Yj)

Figure 14: A neural network node. The node receives a number of inputs, w, weights
them and combines them using the function, f(), in order to calculate its output.
(Zupan and Gasteiger, 1993), f(), of the weighed sum of its inputs (see

http://wuw.willamette.edu/~gorr/classes/cs449/ann-overview.html):

Yi = f(z Wi;Y;) (5)

where w represents the weights placed on the inputs. Figure 14 shows this graphically.
These nodes can be built up in layers as can be seen in figure 13. Further details on
neural networks and training methods can be found in Appendix A.

Typical neural net used here consisted of three layers: an input layer, a hidden

layer and an output layer.



Chapter 2

Scoring Alignments With Empirical

Potentials

2.1 Empirical potentials

A model must be assessed in order to evaluate the accuracy of modelling methods
that were used in its construction. One of the bottlenecks for accurate prediction of
protein structures and the structures of binding complexes is the immense number of
possible conformations accessible to polypeptide chains (Dill and Chan, 1997; Dobson
et al., 1998; Honig, 1999). If the structure has also been solved experimentally then
model and structure can be compared to calculate the RMSD. When dealing with
sequences whose structures have not been solved by x-ray crystallography or NMR
there is nothing with which to compare the model. Therefore the RMSD can not be
used to used to represent the accuracy of the model.

Enthalpic, or molecular mechanics, potentials are of the form:

40
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+2> " k(0 — 6,)°

+% % kg1 — cos(mg — 0)]

s [Ai,j _Bij 449
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where b is the bond length, by is the optimum bond length, # is the bond angle and
fy is the optimum bond length. ¢ is the torsion angle, m is the periodicity, J is the
off-set, k are the weight constants and r is the separation between the two atoms. A
and B are constants, ¢; and g; are charges on atoms, ¢ is the permitivity of a vacuum
and ¢, is the distant dependent dielectric.

These potentials aim to replicate the energetics within a protein structure, however
they do not work for distinguishing correctly folded proteins as the hydrophobic effect
is not calculated. Consequently they can yield comparable energies for native and
completely unrelated folds (Casari and Sippl, 1992).

The failings of semi-empirical potentials were most clearly shown in a study by
Novotny et al.. They showed that these semi-empirical potentials were unable to dis-
tinguish between the native folds and misfolded models (Novotny et al., 1984; Novotny
et al., 1988). They constructed two incorrectly-folded proteins by taking the sequence
of a mainly alpha-helix protein and threading it onto the structure of a mainly beta-
strand protein of the same length, and vice versa. After energy minimization the
incorrect structures were compared with their correctly-folded counterparts and an

enthalpic potential of the form shown in Equation 7 from CHARMM (Brooks et al.,
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1983) was used to see if it could find the correct structure. They found that the po-
tentials were unable to distinguish between the correct and incorrect models. It was
also discovered that the incorrect side-chains could be incorporated readily into both
types of structures with only small structural adjustments.

Protein structure is governed by a number of forces such as hydrophobic interac-
tions, electrostatic forces, the packing of side-chains and the optimization of hydrogen
bonds. Therefore a database of protein structures solved by X-ray crystallography
must contain, in some coded form, all the information on the many interactions that
stabilise the native structure (Casari and Sippl, 1992). By statistical analysis of the
contacts between atoms in known 3D structures (Labesse and Mornon, 1998) we can
derive a set of mean-force, empirical potentials. These potentials form a useful tool
for analyzing comparative models. These knowledge-based potentials are attractive
because they are simple to construct and easy to use (Zhang et al., 2004).

Two kinds of derivation methods are used for knowledge-based potentials:

1. The interactions in a database of known protein structures are assumed to obey

a Boltzmann distribution,

2. ”"The stability of the native folds relative to a manifold of misfolded structures is

optimised” (Zhang and Skolnick, 1998).

The earliest attempts to derive potentials from a database of known structures were
reported by Tanaka and Scheraga (1976), almost thirty years ago (Sippl, 1993). The

general definition of database-derived mean force potential is:

E(r) = —kTn[f(r)] (7)

where, 7 is the distance between two atoms, E(r) is the energy at r, f(r) is the prob-

ability density at r, k is the Boltzmann’s constant and 7" is the absolute temperature
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(Sippl, 1995; Sippl, 1990). The equation to calculate the mean force potential between
atom type a and atom type b, where s is the separation between the two is calculated

by:

E°P(r) = ~KTIn[f*"(r) ®)

where f%%(r) is approximated by relative frequencies obtained from a data base of
known structures (Sippl, 1995).

Potentials of mean force implicitly take into account all forces (electrostatic, van
der Waals, etc.) acting between atoms as well as the influence of the surrounding
medium on the interaction (Sippl, 1995). Because they take into consideration all the
different forces acting on and between the atoms they should be able to differentiate
between a correctly and an incorrectly folded protein structure. However to calculate
the potential correctly, redundant information needs to be removed. The redundant
information can be calculated by a suitably defined reference state (Sippl, 1995). It is
an average over all atom and residue types (Sippl, 1995). For intra-molecular protein

interactions, the reference state can be calculated by the equation:

E*(r) = —kTIn[f*(r)] (9)

Where:
folr)y =3 fo"(r) (10)

a,b
By removing the redundancy value the specific potential of the interaction can be

calculated. The final equation is then:

AEobss (r) = Ea,b,S(T) — E°(r) = —kThn lfj;s,(si;)] (11)

Empirical potentials attempt to quantify the free energy of a system (Pierce and
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Winfree, 2002). Empirical potentials can be at an atomic or a residue level. Studies
have shown that even simple residue level empirical potentials without atomic details
may be sufficient to determine the overall fold of a protein (Crippen, 1991; Finkelstein
and Reva, 1991; Maiorov and Crippen, 1992; Sippl, 1993; Kocher et al., 1994; Mat-
suo and Nishikawa, 1994; Huang et al., 1995; Park and Levitt, 1996; Thomas and
Dill, 1996; Miyazawa and Jernigan, 2000). Thus a set of empirical potentials derived
from a database of protein structures solved by x-ray crystallography can be used to
distinguish between a group of models.

It is known that the most frequently observed states, the native folds, correspond to
low energy states (Reva et al., 1997). So if the potentials are applied to a model, a lower
final value will indicate that the structure is more likely to be accurate than a higher
final potential. In a study by Casari and Sippl (1992) a hydrophobic potential was able
to identify the correct fold in 66% of all cases. In a further 14.7%, the native fold was
among the five conformations of lowest energy (Casari and Sippl, 1992). Exceptions
to this would include those that contain large prosthetic groups, Fe-S clusters, or

polypeptide chains that do not adopt globular folds (Hendlich et al., 1990).

2.2 RAM Potential

Since we hoped to be able to distinguish quite subtle variations in structure, it was
felt that an atom level potential would be more effective and the RAM potential was
chosen. It is a potential of mean force between all groups observed in native protein
structures (Samudrala and Moult, 1998). It was downloaded from the ProStar po-
tentials site (http://prostar.umbi.umd.edu/index.shtml). As with other empirical
potentials it is assumed that the experimentally solved structures of proteins in the
Protein DataBank represent the lowest energy of the preferred conformations of amino

acids.
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Other potentials such as PROSAII have been developed specifically for screening
modelled structures. However the intention of this study was to develop a new potential
based upon the original. As the code for PROSAII is not distributed as source code it
would have been impossible to modify it to form a new potential. Also PROSAII works
at the level of the residues and it was felt that an atom-level potential was needed to
distinguish between very similar models. The RAM potential was implemented in two

forms, a Perl program written by myself and a C version written by Dr. A.C.R. Martin.

2.3 Large Scale Analysis

To assess the ability of the RAM potential to pick out the more accurate model on a
large scale, a computer farm was used. The Qlite (Martin, 2000a) software package
was used to queue the jobs on the computer farm. All the proteins that were used
had already had their structure solved by either NMR or x-ray crystallography. The
dataset contained all the NRep pairs within each homologous family from the CATH
database (v1.6) which contained 18,556 domains with 1028 homologous superfamilies,
which could be further clustered into 672 fold groups and 36 distinct architectures
(Pearl et al., 2000). These domains were extracted from 13103 chains from 7703 PDB
files.

Two types of alignment files were used for each parent and target alignment, one
was aligned by sequence using the Needleman and Wunsch algorithm. The other
was aligned by structure using SSAP (Taylor and Orengo, 1989). SSAP uses double-
dynamic programming, at the residue level to align two protein structures (Harrison
et al., 2003). For each homologous family in CATH every representative at the N-level
(near identical sequence representatives, NReps) was compared with every other NRep
in that CATH family. This created a data set of approximately 56,000 alignment pairs.

The data set was previously prepared by Dr. A.C.R. Martin.
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These alignments were used to build two models for each pair; one from the sequence
alignment and one from the structure alignment so that the potential energy value of
both could be compared. It was expected that the models built from the structural
alignment would be more accurate and that the RAM potential would rank these
models as having lower energy.

The alignment files were run through a series of Perl programs that first prepared
the correct files for MODELLER (v6). The model creation and analysis was controlled
by a single program which submitted the files to the computer farm. Each model
had a job file created for it, with a list of commands for the computer to carry out.
An example of one of these files can be seen in figure 15. Qlite then used to queue
the job files. The programs that were written and used for this can be found on the
accompanying CD.

The job file, once run, caused a model to be created using MODELLER. The
program Fitpdb.pl took that model and calculated its RMS using ProFit (Martin,
2001) to the corresponding structure in the Protein Data Bank. This value was then
saved to a separate results file. The potentials_final.pl program calculated the potential
energy of the model and wrote it to the same results file as the RMSD value. An

overview of the potentials_final program can be seen in figure 16.

2.3.1 Testing the RAM potential

Using the RAM potential to analyze a large number of models it is possible to esti-
mate how often it can correctly select the model based on the structural alignment by
assigning it the lowest energy.

As can be seen in Table 2, 89.1% of the time the RAM potential was able to pick
out the model created from the structural alignment by giving it the lowest potential

value. One might expect that the RMSD for the model generated from the structural
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f = /home/users/danielle/control_files
g = /home/users/danielle

modelname = lhstAlawcAseq

pdbfilel = 1hstA

topfile = $f/1hstAlawcAseq.top

cd $f

source /home/shared/ro/apps/modeller6/bashrc

/home/shared/ro/apps/modeller6/bin/mod6v2 $topfile

cd /home/users/danielle/

export DATADIR=/home/users/danielle/

$g/Fitpdbl.pl /data/pdb/pdbihst.ent $f/${modelname}.B99990001.ent \
A hst $g/data/ ${modelname}.zone

$g/potential -d $g/RAM.gen.par $f/${modelname}.B99990001.ent \
>> $g/data/output . ${modelname}

rm $f/${modelname}.B99990001.ent

rm $f/${modelname’}.D00000001

rm $f/${modelname}.V99990001

rm $f/${modelname}.alignment

rm $f/${modelname}.ini

rm $f/${modelname}.log

rm $f/${modelname}.rsr

rm $f/${modelname}.sch

rm $f/$topfile

rm $f/${modelname}.zone

rm $f/${pdbfilel}${modelname}.pf

rm $f/profit.${pdbfilel}${modelname}

rm $f/$CompareCreateModeller

rm $f/${pdbfilel}${modelname}.txt

Figure 15: An example of a job file containing all the commands needed to create a
single model and calculate the RMS and potential energy of that model.
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Model built from
either sequence or
structural alignment

Y

Get corresponding
PDB file

For each atom group within
each amino acid

Sum values to
calculate total
energy of structure

A

Y
Calculate distance Distance used to
between atom and »  work out which
all groups after it matrix to use
y y

Get value from
correct matrix and
position

Y

Atom type used to
work out position
within matrix

Type of atom
group identified

Y

Figure 16: Overview of the potentials_final.pl program.

Structural alignment Structural alignment | TOTAL

model RMS lower model RMSD higher
Structural —alignment | 67.0% 22.1% (89.1%)
model potential energy
lower
Structural alignment | 6.1% 4.7% (10.8%)
model potential energy
higher

TOTAL | (73.1%) (26.8%)

Table 2: Percentage of proteins where the potential energy of the model from the
structural alignment was lower or higher than its sequence aligned counterpart (these
figures have been rounded down to one decimal place).
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Sequence alignment

Seq 1  ACCHGGGILIKPRSVYILL
Seq 2  CCCHGG-IIIGGGRTTILL

Structural alignment

Seq 1 ACCHGGGILIKPRSVYILL
Seq 2 CCCHGGI-IIGGGRTTILL

Figure 17: The single gap shift that caused the sequence alignment-based models to
have a lower RMS than the structural alignment-based models.

alignment would always be lower than that from the sequence alignment. However this
was only true 73.1% of the time. As this was unexpected some of the cases where this
happened were examined by hand. In these cases it was found that the difference in
RMSD between the two models was usually less than 0.05A.

A program was written to examine all of the cases where the sequence alignment
formed a better model than the structural one. In all cases it was the shift of a single
gap between structural and sequence alignment that formed the only difference between
the alignments as illustrated in figure 17.

In fewer than 5% of cases were both the potential energy and RMS deviation higher
for the model produced from the parent and target being aligned by sequence. All the
RMSD values are given in Angstroms and calculated over the carbon alpha chain of
the protein structures.

Looking at a graph (Figure 18a) of the potential energy plotted against the RMSD
for all proteins regardless of whether they were aligned by sequence or structure, no
clear trend of lower potential energy being equivalent to a lower RMSD can be seen.
However this graph contains the values for several protein models that are partially
unfolded due to tail regions. These tail regions have been taken into account when
calculating the RMSD and the potential energy, therefore giving very high values for

both. If only those models with a RMSD of 10A or lower are plotted (Figure 18b)
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Figure 18: The potential energy (in kcal/mol) of models created from both structural
alignment and from sequence alignment plotted against the RMSD (in Angstréms). a)
all models b) only those models with RMSD < 10.0A.

then a trend for lower potential energies equating to lower RMSD values is much more
clearly seen.

Separating the models into those aligned by sequence and those aligned by structure
the same trend can be seen. Figure 19 shows the RMSD against the potential energy
for models produced from a sequence alignment. Figure 20 shows the RMSD against
potential energy for models produced for structural alignments.

The distribution of the potential energies is approximately normal. Figure 21 shows
this distribution for all the models created, regardless of their RMSD value or whether
they were created from a sequence or structural alignment. The only limit for the
graph is that all the models had a potential energy of less than 200 kcal/mol. There
were only a few models, those with unfolded portions, which had a potential energy in
excess of 200 kcal/mol. Once again separating the results of the sequence (Figure 22)
and structural (Figure 23) alignments the same normal distribution can be seen. The

peak for the structurally aligned models is slightly more negative than for the models
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Figure 19: The potential energy (in kcal/mol) of models created from sequence align-
ment plotted against the RMSD (in Angstroms). a) all models b) only those models
with RMSD < 10.0A.
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Figure 20: The potential energy (in kcal/mol) of models created from structural align-
ment plotted against the RMSD (in Angstréms). a) all models b) only those models
with RMSD < 10.0A.
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Figure 21: The distribution of the potential energies (in kcal/mol) of all models with
a potential energy of less than 2000.

created by a sequence alignment. This indicates that on average the models produced
from a structural alignment had a lower energy as evaluated by the RAM potential
than their sequence aligned counterparts.

On the whole the RAM potential seems capable of selecting between models by
assigning the one from the structural alignment with the lower energy. However it
is not able to do this consistently. As this section has shown there is a trend in the
models of lower potential energy being equivalent to a lower RMSD value. However
there are exceptions to this. Some of these exceptions could be due to the slight

differences in RMSD values between sequence alignment-based models and structural
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Figure 22: The distribution of the potential energies (in kcal/mol) of all models pro-
duced from a sequence alignment and with a potential energy of less than 2000.
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Figure 23: The distribution of the potential energies (in kcal/mol) of all models pro-
duced from a structural alignment and with a potential energy of less than 2000.
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alignment-based models where only a single gap shift separates the two alignments.

2.4 Testing the potentials program with varying
alignments

The potentials program was also tested to see if it could choose the most likely model
of a protein from within a number of slightly different alignments. The alignments
from which the assessed models were made had only slight differences between them.
Therefore the models would only be slightly different. If the RAM potential was unable
to choose between these subtle differences in structure it would not prove to be very
useful for future work.

A Perl program called Random_alignment.pl, which can be found on the accom-
panying CD, was written that was able to create alternative alignments from a single
alignment file. It takes an alignment and introduces a random insertion somewhere
within it. The program randomly chooses the position and length (between 1 and 5)
of the insertion in both the parent and target sequences. An overview of this program
can be seen in figure 24.

The A chain of the protein 1hst (Ramakrishnan et al., 1993) (chicken histone pro-
tein) and the A chain of lawc (Batchelor et al., 1998) (mouse GA-binding protein) were
chosen because of the large variation between the RMS and potential energy value of
their structurally aligned and sequence aligned models. The A chain of 1hst was cho-
sen to be the target with the A chain of lawc as the parent structure. Both sequences
have a structure that has been solved by x-ray crystallography, allowing for comparison
between model and experimentally solved structure.

The Random_Alignment.pl program was run multiple times to create one hundred
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Aligned parent and
target sequence

Choose length of
gap randomly <
(between 1 and 5)

For parent sequence

Repeat until enough
Insert gap alternatives are

random|y generated

For target sequence

Insert gap
randomly

When enough alternatives
are generated

Remove duplicate
alternatives

Figure 24: Overview of the Random _alignment.pl program. This program introduced
random insertions into the sequence and structural alignments.
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and seventy different alignments each from the original sequence and structural align-
ments. The program also created the control files needed and the models were once
again produced by MODELLER. Each model was then run through the potentials pro-
gram to calculate its potential energy, before the RMS deviation between it and the

experimentally determined structure was calculated using ProFit.

2.4.1 Results of testing with varying alignments

One hundred and seventy permuted alignments were created for both the structural
and sequence alignment of 1hstA and lawcA (the A chains of chicken histone and
mouse GA-binding protein respectively). Unlike the comparison of models that were
aligned either via structure or sequence the difference between these models was far
more subtle, providing a more difficult test of the potential set.

The potential energy of the models created from these variations on the original
alignments can be seen in figure 25a. Figure 25b just shows the data for alignments
based on the original structural alignment while figure 25¢ shows data for alignments
based on the sequence alignment. The trends are quite good when based on the struc-
tural alignment but poor when based on the sequence alignment.

The distribution of the potential energies achieved by these models can be seen in
Figure 26. Unlike the large scale analysis of radically different alignments the distri-
bution does not appear to be normal. This was probably due to the difference in the
number of models made, as far fewer were produced for the variable alignments.

The RAM potential did not perform as well in distinguishing between subtly differ-
ent structures as it had with the earlier larger scale analysis. This would suggest that
while the RAM potential can select the better model when the differences between the

models are significant it cannot perform as well when the differences are small.
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Figure 25: The potential energy (in kcal/mol) plotted against the RMSD (in
Angstroms) of a series of models of 1hst, chain A, each with slightly different align-
ments, generated from a) the original sequence and structural alignments, b) the orig-
inal structural alignment and c¢) the original sequence alignment.
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Figure 26: The distribution of the potential energies (in kcal/mol) calculated for the
models based on a) the original structural alignment and b) the original sequence
alignment.

2.5 CASP 5 Experiment

2.5.1 CASP

Every two years an experiment known as CASP (Critical Assessment of Structure
Prediction) (Moult et al., 1997; Moult et al., 1999) is run to get a better idea of
the current state of protein modelling. The CASP experiment attempts to address the
problem of comparing and evaluating models in order to learn how accurate and reliable
the model producing methods are (Siew et al., 2000). There have been six experiments
completed so far. CASP was set up partly because of claims in the literature at that
time that the protein folding problem had been ‘solved’ without producing tangible
benefits, since most of the ‘solutions’ included a strong dependence on the test set
(Samudrala and Levitt, 2002). CASP provides a large-scale, blind environment for
protein structure prediction techniques to be tested and analyzed. The number of
groups participating in CASP has grown steadily as can be seen in table 3.

In CASP, a few dozen proteins of known sequence, but unknown structure, are
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CASP Experiment Year No. of groups and prediction
servers contributing

CASP1 1994 35

CASP2 1996 72

CASP3 1998 98

CASP4 2000 163

CASP5 2002 215

CASP6 2004 208 (unique)

Table 3: The increasing number of groups participating in the CASP experiment.

used as prediction targets (Fischer et al., 2000). At the same time as groups attempt
to model the proteins, others are solving the structure with x-ray crystallography or
NMR for a final comparison. All types of methods for predicting protein structure are
considered, including comparative modelling, fold recognition and ab initio prediction.
The predicted structures must be submitted before the actual structure is released and
are then compared with the solved structure.

In the most recent completed experiment, CASP6 held in 2004, there were 201
groups registered and a further 65 prediction servers with 87 target sequences to work
on. Some of these sequences had relatively high sequence identity with proteins of
known structure in the Protein Data Bank, so choosing a parent protein was not a dif-
ficult task. However other proteins had only low sequence identity with the sequences of
existing structures, making their structure far more difficult to predict. Such sequences
were modelled using threading, fold recognition or ab initio techniques.

For CASP5, the combined bioinformatics groups at Reading entered several mod-
els created over the course of a week through a combination of manually corrected
alignments and MODELLER. The RAM potential was used in order to select between
alternative alignments and its success was then evaluated. There was a total of 67
target sequences to work on in CASP5. These sequences were divided up between

the group in order to find out which ones we were most likely to be able to model.
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The sequences were then run through both BLAST and Psi-BLAST to identify parent
structures.

Once the BLAST searches were completed the sequences were also run through
a number of secondary structure prediction servers as well as threading and fold-
recognition servers. This was done to see whether their results would agree with the
templates found through Psi-BLAST and BLAST. The secondary structure prediction
servers available for use were PSI-Pred (McGuffin et al., 2000), JPred (Cuff et al., 2000),
NNPredict (Kneller et al., 1990), GOR-IV (Garnier et al., 1996) and PHD (Rost and
Sander, 1993), while the threading and fold recognition servers used were GenThreader
(McGuffin et al., 2000), 3D-PSSM (Kelley et al., 2000), FUGUE (Shi et al., 2001), and
SAM-T99 (Karplus and Hu, 2001). The results of using these servers and the BLAST
and Psi-BLAST searches divided the target sequences into three groups, those that
appeared as though they could be easily modelled, those that were possible with some
work and those which had no obvious parent structures. The sequences in the first two
categories were attempted while those in the third were set aside.

After a suitable parent structure had been found, its structure and function were
looked at in greater detail. Important sections of secondary structure for stability and
function could then be identified. These sections are the ones likely to be conserved
between related proteins. Knowing where these secondary structures were would later
help during the alignment phase of comparative modelling.

Parent and target sequences were aligned using ClustalW (Thompson et al., 1994).
The alignment was then examined and corrected by hand so that insertions and dele-
tions did not occur in the middle of secondary structure elements, but where possible
in loop regions. The information gathered about the parent structure was used in this
phase so that close attention was paid to regions that were structurally or functionally
important. For some sequences multiple alignments were created.

To produce the models, MODELLER was used through the interface Mint (Martin,
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1995). This interface was used so that only an alignment file was needed in order to
create a model. Mint itself creates the control file and calls the MODELLER program.
When run on each alignment MODELLER had the DO_LOOPS option turned on.
This option caused the program to create several structures that differed only in the
loop regions from a single alignment.

The protein model output of MODELLER could then be examined using Rasmol
(Sayle and Milner-White, 1995). This allowed for comparison between parent and
model as well as looking for anything likely to be poorly predicted such as an unfolded
tail. If the model did contain a section of unfolded chain then it was possible to enter
the model, but specify that analysis should take place only over a certain number of
amino acids which would not include the tail area.

The program Procheck (Laskowski et al., 1993) was used to produce a Ramachan-
dran plot to discover what percentage of the residues were in their most favoured
positions. An example of a Ramachandran plot created for one of the CASP entries
can be found in figure 27. Procheck identifies unusual bond angles which could indicate
any areas where the model was incorrect.

Models were also evaluated using the RAM potential (Samudrala and Moult, 1998).
The models with the lowest potential energy value were then chosen to be submitted
to the CASP competition. Multiple models could be submitted, but had to be ranked

by the submitters; the RAM potential was used for this purpose.

2.5.2 Results: CASP5

The group at Reading submitted forty-eight models in the CASP5 experiment, covering
a total of nineteen target sequences. In some cases only a single model was submitted
while in others up to five slightly different models where entered. The differences in

the various models for each sequence came from varying alignments or from the same
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Figure 27: An example of a Ramachandran plot of CASP5 target T0149. The amino
acids (black squares) that appear plotted in the red areas of the graph are in one
of their most favoured positions. The tryptophan (TRP125) and arginine (ARG123)
that are outside of these regions are in positions that are either not allowed by their

structure or are allowed but only rarely due to clashes or strains.
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alignment but with different loops created by MODELLER. The overall results of the

CASP?5 entry can be found in table 4.
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Target  Parent SeqID  RMSD Total Total
name structure(s) potential potential
energy of energy of
model structure
T0130_.1 1fsaA 1fa0A  15% 9.97 133.33 2746.25
T01302 1f5aA 1fa0A 15% 15.26 214.06 2746.25
T0130.3 1fsaA 1fa0A  15% 14.21 149.06 2746.25
T01304 1fsaA 1fa0A  15% 13.09 207.52 2746.25
T01305 1f5aA 1fa0A  15% 14.17 565.317 2746.25
T0133_1 1hgbA 1hxbA 13% 12.35 -1937.67 -6280.06
T0133.2 1hgbhA 1hxbA 13% 12.22 -1842.45 -6280.06
T0137_1 2ansB 43% 1.02 -676.55 -1036.44
T01372 2ansB 43% 1.08 -677.07 -1036.44
T0137.3 2ansB 43% 1.30 -664.98 -1036.44
T0142 1i9zA 26% 3.49 -1294.62 -2888.51
T0149_1 1fts 2ffhC  15% 17.28 658.40 -5471.10
1jpnA 1j8mF
T0149_2 1fts 2ffhC  15% 17.03 1509.90 -5471.10
1jpnA 1j8mF
T0149.3 1fts 2ffhC  15% 17.40 1545.34 -5471.10
1jpnA 1j8mF
T0150_1 1ck8B 37% 2.70 -2337.05 -2635.34
T01502 1ck8B 37% 2.66 -2336.75 -2635.34
T0152.1 1bgbA 17% 5.22 -135.86 -1652.02
T01522 1bgbA 17% 5.26 -94.67 -1652.02
T0152_3 1bgbA 17% 5.21 -94.60 -1652.02
T0153_1 leuwA 1f7rA  34% 5.64 -1524.44 -1788.67
T0153.2 TleuwA 1f7rA  34% 5.34 -1404.04 -1788.67
T0153.3 leuwA 1f7rA  34% 5.37 -1402.87 -1788.67
T0153 4 leuwA 1f7rA  34% 5.51 -1270.48 -1788.67
T0154.1 1lihoA 37% 6.95 -2921.82 -4439.26
T01542 1lihoA 37% 6.85 -2970.73 -4439.26
T0155 1dhn 33% 6.03 -1270.23 -1356.91
T0160-1 3mspB 22% 7.26 -744.34 -2330.65
2mspB 1grwD
T0160-2 3mspB 22% 6.83 -677.81 -2330.65
2mspB 1grwD
T0160-3 3mspB 22% 7.16 -743.96 -2330.65
2mspB 1grwD
T0160-4 3mspB 22% 7.43 -637.30 -2330.65
2mspB 1grwD
T0160-5 3mspB 22% 6.85 -675.51 -2330.65
2mspB 1grwD
T0164_.1 2bnh ladyD 19% 6.00 1338.82 -1330.71

Table 4 The overall results of the group’s CASP5 entry
(all RMSDs are calculated in Angstroms using ProFit
(calculated over the regions specified as confident), all

potential energies in kcal/mol) to 2 d.p. Continued. ..
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Target  Parent SeqID  RMSD Total Total
name structure(s) potential potential
energy of energy of
model structure

T01642 2bnh ladyD 19% 5.89 1357.18 -1330.71
T0164_3 2bnh ladyD 19% 5.92 1352.75 -1330.71
T0166_1 1jgsA 20% cancelled -2720.07 cancelled
T0166_2 1jgsA 20% cancelled -2102.18 cancelled
T0167_1 1jeoA 1jxaC 35% 5.44 -1213.22 -3003.94
T01672 1jeoA 1jxaC 35% 4.90 -1334.70 -3003.94
T0167-3 1jeoA 1jxaC 35% 5.15 -1221.40 -3003.94
T0167 4 1jeoA 1jxaC 35% 4.80 -1311.70 -3003.94
T01711 1a8q 1a83C 21% 9.20 -1917.65 -3319.92

lbroB  1brt

1la8uB
T01712 1a8q 1a83C 21% 9.66 -1319.99 -3319.92

1broB  1brt

1a8uB
TO179.1 1jg3A 2%  5.45 -2122.61 _2878.57
T01792 1jg3A 42% 5.48 -2250.15 -2878.57
T0182 Imat 41% 1.42 -2444.99 -2932.44
T01841 1jfzC 33% 3.86 -3540.66 -4688.91
T0184 2 1jfzC 33% 3.88 -2505.20 -4688.91
T0188 leolA 29% 2.32 -1924.56 -2722.91

Table 4: (continued) The overall results of the group’s
CASP5 entry (all RMSDs are calculated in Angstroms
using ProFit (calculated over the regions specified as con-
fident), all potential energies in kcal/mol) to 2 d.p.
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The group had varying degrees of success in the CASP5 experiment. In some cases
the RMSD between model and actual structure was as low as 1.02 A (from a model of
target T0137, a fatty acid binding protein from E. granulosus with a sequence identity
of just 43%). The majority of the models created had RMSD values of between 4 and
7 A. In all cases the energy of the model, calculated by the RAM potential, is lower for
the experimentally determined structure than it is for the modelled structures. Lower
potentials, as calculated by the Ram potential, tended to equate to models with lower
RMSD values. Overall it appears as though the models created from a single parent
structure fared better than those created from multiple templates.

The models for the competition were sent with the request not to include the protein
tails in the calculations.

Target 184 had a long unfolded tail (residues 165-240) which was requested not to
be included in the calculations. If this tail was included, the RMSD increased from
approximately 3.85 A to more than 52 A (figure 28).The potential energy also becomes
more negative for the models if it is calculated over the folded section alone, rather
than taking into account the unfolded region.

For those models where multiple models were submitted it is possible to see how
the RAM potential performed distinguishing between subtle differences in the models.
It would be hoped that the model with the lowest RMSD would also be the one with
the lowest potential energy. Table 5 shows whether this was the case for those targets
with multiple models. The table also has the ranking which is the count of how many
models are better than the model with the lowest RAM energy plus one. Thus when
the lowest energy model is also the lowest RMSD, then the ranking will be 1. The table
shows how well the RAM potential did at distinguishing the models with the lowest
RMSD by giving them the lowest energy.

In the majority of cases (> 70%) the RAM potential failed to pick the model with

the lowest RMSD. Again, this suggests that although the RAM potential is capable
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Figure 28: One of the modelled structures for CASP target 184. The reason for its
high RMSD is the long unfolded tail region.



CHAPTER 2. SCORING ALIGNMENTS WITH EMPIRICAL POTENTIALS 69

Target name Lowest RMSD model Lowest RAM potential model Ranking

T0130 T0130_1 T0130_1 1
T0133 T0133-2 T0133-1 2
T0137 T0137_1 T01372 2
T0149 T0149_2 T0149_1 2
T0150 T0150_2 T0150_1 2
T0152 T0152_3 T0152_-1 2
T0153 T0153_2 T0153_1 4
T0154 T0154_2 T0154_2 1
T0160 T0160_2 T0160_1 4
T0164 T0164_2 T0164_1 3
T0166 cancelled cancelled cancelled
T0167 T0167_4 T01672 2
T0171 T0171_1 T0171_1 1
T0179 T0179_1 T01792 2
T0184 T0184_2 T0184_1 1

Table 5: The lowest RMSD model and lowest potential (as calculated by the RAM
potential) model.

of distinguishing between models with large differences it does not perform so well
choosing between models with only subtle differences. This supports the view from the
experiments on 1hstA/lawcA.

The majority of the models produced and submitted to the CASP5 experiment
appear to have been fairly good. Those few exceptions with unusually high RMS
deviations appear to be due to unfolded tails, incorrectly modelled loop regions or
alignments that were not correct. CASP5 was a useful blind test of the potentials
program as it highlighted the RAM potential’s inability to distinguish between models

with only small differences.

2.6 Conclusions and Discussion

Models created from a structural alignment are more correct than those created from

a sequence alignment. In the cases where a model from the sequence alignment was
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‘better’, the two models were, in fact, virtually identical. The RAM potential is capable
of distinguishing correctly between these models the majority of the time.

When random inserts were introduced into the sequence and structural alignments
of 1hstA and lawcA it lead to the creation of models that had only subtle differences
between them. When these models were analyzed the RAM potential was no longer
capable of distinguishing between them consistently.

This was again shown in the CASP5 experiment where the RAM potential was used
to choose between a number of models built from different possible alignments between
the targets and the parents. The models that were built from these chosen alignments
did not always follow the pattern of lowest potential energy = lowest RMSD.

Overall it seems as though the RAM potential can be used to distinguish between
different models where the differences are quite pronounced. However where the dif-
ferences are more subtle the RAM potential is not as capable of choosing between the

different models correctly.



Chapter 3

Misleading Local Sequence

Alignments (MLSAs)

As previously stated, one of the major causes of error in modelling proteins is obtaining
the correct alignment between parent and target. If a model is to be accurate then it
is critically important that the threading of the target sequence onto the parent(s) is
correct. A misalignment is where the sequence alignment and the structural alignment
differ in some way. Some misalignments are minor while other misalignments are far
more severe and can affect the final model greatly. Even a mean alignment shift of a
single residue results in a best possible RMSD of around 3.8 A(the distance between
two adjacent alpha-carbon atoms) (Martin et al., 1997).

MLSAs (Misleading Local Sequence Alignments) are an extreme case of misalign-
ment which were originally studied by Saqi et al. (1998). They are regions where
structural similarity is clear and where the optimal sequence similarity was substan-
tially higher than that seen in the structure alignment (Saqi et al., 1998). These
misaligned areas are not restricted to protein pairs with particularly high or low over-
all sequence similarity. A good example of a MLSA occurs within an aligned pair of

cytochrome B reductase from pig and E.coli (Saqi et al., 1998). As figure 29 shows, the
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Pig VDLVIKVYFKDTHP -

\ A\ VA VA A\
E.coli ~-FDLLVKVYFKNEHP

Figure 29: The structural alignment of cytochrome b reductase from two different
species. The lines connecting the two sequences indicate what the sequence alignment
would be. Figure adapted from Saqi et al. (1998).

sequence alignment seems obvious, nine out of fourteen residues are the same in the

two sequences. However the true structural alignment shows that the two sequences

are actually shifted by one residue.

3.1 Identifying MLSAs

Software, written by Dr. A.C.R. Martin, was used to extract MLSAs. It was decided
only to look at the most extreme MLSAs to see the basic reasons why they occur. Also
it was necessary to have a data set small enough for manual analysis.

Structural alignments were created using SSAP while the sequence alignments were
created using nw (Martin, 1990), an implementation of the Needleman and Wunsch
algorithm. By aligning each pair of NReps within each homologous superfamily in the
CATH database (v1.6), 56,510 pairs were created. Each NRep is a representative of a
near identical group of sequences having > 95% sequence identity (Martin, 2000b).

MLSAs were searched for by looking for short segments of 10 amino acids containing
at least 5 matches which were not aligned. If it is assumed that all amino acids appear
with the same frequency within a sequence then the probability of obtaining a given

number of matches within a protein window of a given length is given by the equation:

P=yC,xp"x(1-p)"NT" (12)

where p is the probability of a match by chance, in this case 1/20, N is the size of
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the window, n is the number of matches and yC),, is the number of combinations of n
elements chosen from N. So for a window of 10 residues with 5 matches and a p value

of 1/20:

P =5.0935 x 107° (13)

Thus the chance of finding a group of 5 matches within a window of ten residues
by chance is very small (P < 0.0001).

The 10-residue window was slid along sequence 1 of the structural alignment. For
each position ¢, a 10-residue window was placed at positions 7z - 10 < 7 < 7 + 10 in the
second sequence of the structural alignment. A MLSA was recorded if when comparing
these windows, 7 # j, the window scored at least 5 matches in sequence 1 and if it scored
more matches with both windows at position ¢ or position j. If a MLSA was identified
then the window was jumped along by a full ten residues to avoid identification of
multiple overlapping MLLSAs. An example of this can be seen in figure 30.

Of the 56,510 pairings, 8%, or roughly 4,500 pairs, fit the initial parameters for
a MLSA (5 out of 10 residues misaligned). This number was reduced by looking at
those pairings that had six or more amino acids mis-aligned within the ten residue
window. This gave a data set of eighty-two, of which thirty-one pairs scored at least
twice as well in the sequence alignment as they did in the structural alignment. These
were then analyzed manually to identify genuine MLSAs (table 6), here, and elsewhere,
domains are identified as in CATH. 22 sequences were discarded at this final stage for
a variety of reasons. Some were due to errors in CATH domain assignments. Others
were caused by errors in the SSAP structural alignments. Still others were caused
by arbitrary structural alignments, such as having highly flexible regions within the
protein structure. After this process, only nine protein pairs remained in the data set:

the most extreme cases of MLSA.
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Structural alignment

10 20 30
I I I
ok ok kokok ok ok kK
Seq 1  ACTSRVNMYLSVDSTLRSTRSCVSLMNPQL
Seq 2  TCRACTSRPRSVDYHILACRSCVSCMNTMS

Windows at i - 10 < j < i + 10 in Seq 2

Seq2 window NMatch
TCRACTSRPR
CRACTSRPRS
RACTSRPRSV
ACTSRPRSVD
CTSRPRSVDY
TSRPRSVDYH
SRPRSVDYHI
RPRSVDYHIL
PRSVDYHILA
RSVDYHILAC
SVDYHILACR
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Figure 30: An example of how the sliding windows identified MLSAs. In this case
the window in Seq 1 being examined is ACTSRVNMYL. Looking at the windows in
sequence 2 it can be seen that j = ¢+ 3 scored 5 matches. Where j = ¢, there was
only one match. If the window in Seq 2 at j = i is compared with its currently aligned
window (SRVNMYLSVD) it only scores 3 matches. Therefore this would be flagged
as a MLSA.
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Structure Sequence Structure Structure Sequence
Pair Score Score Alignment Alignment
1noyAl 1waj01 10 0 KRMEDIGLEA KRMEDIGLEA
WI--KRMEDI KRMEDIGLEA
lucyHO letrH1 10 0 IVEGQDAEVG IVEGQDAEVG
GQDAEVGLS- IVEGQDAEVG
2hntC0 lahtH1 10 1 IVEGSDAEIG IVEGSDAEIG
—————— IVEG IVEGSDAEIG
lenvA0Q 1eboA0 10 4 QIEDKIEEIL QIEDKIEEIL
EILSKIYHIE QIEDKIEEIL
lenvA0Q 1leboA0 10 4 KIYHIENEIA KIYHIENEIA
EIARIKKLIG KIYHIENEIA
11tsCO0 1xtcCO0 9 2 VKRQIFSDYQ VKRQIFSDYQ
YQSDIDTHNR VKRQIFSGYQ
laksAO 1sluB1 8 1 IVGGYTCAAN IVGGYTCAAN
SVVALPSSCA IVGGYTCQEN
Immd06 1mma06 8 1 GFPNRIIYAD GFPNRIIYAD
FPNRIIY--A GFPNRIIY--
1sriAQ 1swfAQ 8 2 GRYDSAPASG GRYDSAPASG
DSAPATDGSG GRYDSAPATD
lenvAQ 1leboA0 8 4 IKKLIGEARQ IKKLIGEARQ
ADGLIEGLRQ IKKLIGEADG
laksAO 1a0jA1l 7 0 IVGGYTCAAN IVGGYTCAAN
SAVALPSSCA  IVGGYECRKN
1hgu00 1lhwgAO 7 0 KQTYAKFDNS KQTYAKFDNS
QTYSKFD--- KQTYSKFD--
1ab9B0 lazzAl 7 1 IVNGEEAVPG IVNGEEAVPG
SWVGLPSTDV  IVGGVEAVPN
1hgu00 lhwgAO 7 1 -ESIPTPSN -ESIPTPSN
SIPTPS---N FSESIPTPS-
lisaAOQ 3sdpAOt 7 1 VINLNNLIKG VTNLNNLIKG
YVVNLNNLVP  VVNLNNLVPG
1bmfD3 1skyE3t 7 3 VLIMELINNV VLIMELINNV
VGKTVLIQEL VLIQELIHNI
1ab9B0 1fujAl 6 0 IVNGEEAVPG IVNGEEAVPG
AQPHSRVQLP IVGGHEAQPH
lisaA0Q 3sdpAOt 6 0 ELPALPYAKD ELPALPYAKD
PPLPYAHDA- --PPLPYAHD
1vewAO 3sdpAOt 6 0 TLPSLPYAYD TLPSLPYAYD
PPLPYAHDA- --PPLPYAHD
51dh01 91dtAl 6 0 ATLKEKLIAP ATLKEKLIAP
—-ATLKDQLIH ATLKDQLIHN
1mfel.2 lospLL1f 6 1 QPKSSPSVTL  QPKSSPSVTL
----DIQMSQ QSSSSFSVSL

Table 6 Details of the thirty-one sequences identified as

MLSAs.

ued. ..

1The most extreme of the MLSAs.

Contin-
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Structure Sequence Structure Structure Sequence
Pair Score Score Alignment Alignment
1vomO06 1br2A6 6 1 GFPNRI---- GFPNRI----
VFQEFRQRYE GFPNRIVFQE
1vom06 Ilmma(06 6 1 —-IYADFVKR --IYADFVKR
KATDAVLKHL -IIYADFQKA
1ak200 lakeAOT 6 2 LKATMDAGK- LKATMDAGK-
—SELGKQAKD AKDIMDAGKL
1failLl 1tcrAl 6 2 DRVTISCRAS DRVTISCRAS
ASLQLRCKYS ARVTVSEGAS
1gafl.2 lae6L1t 6 2 TVAAPSVFIF TVAAPSVFIF
——-DIVMTQA TQAAPSVPVT
1ikfLL1 1terAl 6 2 DRVTISCRAS DRVTISCRAS
ASLQLRCKYS ARVTVSEGAS
ImamL1l 1tcrAl 6 2 DRVTISCRAS DRVTISCRAS
ASLQLRCKYS ARVTVSEGAS
1nmbL0 1tcrAl 6 2 DRVTISCRAS DRVTISCRAS
ASLQLRCKYS ARVTVSEGAS
lvgeH1  lhyxH1t 6 3 VKLLEQSGAE  VKLLEQSGAE
EVKLLESGGG VKLLESGGGL
2fbjH1 lvgeH1T 6 3 VKLLESGGGL  VKLLESGGGL
KLLEQSGAEV  VKLLEQSGAE

Table 6: (continued). Details of the thirty-one sequences
identified as MLSAs. {The most extreme of the MLSAs.
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Sequence pairs  Residues involved
lisaAO 3sdpAO0  35-44:35-44
1bmfD3 1skyE3 164-173:166-175
lisaAQ 3sdpAO0  5-12:5-12
1vewAQO 3sdpAO0 3-12:5-13
1mfel.2 lospLLl  111-120:6-15
1ak200 lakeAO  65-73:49-57
1gaflL.2 1lae6L1  109-188:5-14
lvgeH1 1hyxH1 2-11:2-11

2fbjH1 1vgeH1  2-11:2-11

Table 7: Details of the sequences identified as containing the most extreme MLSAs.

The process of whittling down the initial data set from roughly 56,000 pairs to the
final nine can be seen in figure 31. The details of these sequences can been seen in

table 7.

3.2 Analysis of MLSAs

3.2.1 Visual analysis

Firstly the domains that were involved in the nine MLSAs were examined visually,
looking at where they occurred within a sequence and where they occurred within the
structures using Rasmol.

One apparent MLSA (1ak200 lakeAOQ) was identified as occurring within a hinge
region. Looking at the sequence identified no obvious indels in either sequence to
account for a MLSA occurring at that point within that protein pairing as can be seen
in figure 32. The residue that acts as the fulcrum for a hinge must be flexible. Indeed
it has been shown that mutating the amino acid that acts as the fulcrum can stabilise
the protein and prevent the occurrence of swapping between one conformation and
another (Odaert et al., 2002). In the pl13sucl protein from Schizosaccharomyces pombe

there is a hinge region with a proline acting as its fulcrum. If the proline is mutated
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Sequence alignments Structural alignments
by Needleman-Wunsch by SSAP
algorithm

Initial data set
~56,000 pairs

10 residue window where at
least 5 amino acids are
mis-aligned

Y

~8% of original set
~4.,500 pairs

10 residue window where at
least 6 amino acids are

mis-aligned
y g

o

.13% of original set
82 pairs

Sseq greater than
or equal to 2Sstruc

Y

31 pairs

Genuine?

Y

Final data set
9 pairs

Figure 31: How the nine most extreme and genuine MLSAs were found.
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Structure alignment

LKATMDAGK-
-SELGKQAKD

Sequence alignment
LKATMDAGK-
AKDIMDAGKL

Figure 32: The sequence alignment and structural alignment over the window of ten
amino acid residues in the protein pairing 1ak200 lakeAO.

Hinge Region

Figure 33: The superimposed structures of the 1ak200 and lakeAO protein domains
with the hinge region shown to the left, as indicated by the arrow.
into an alanine the hinge no longer works.

The structures of 1ak200 and lakeAO can be seen in figure 33. It can be seen
that the position of the hinge region in each structure is different. This is because
each structure has been solved with the hinge in a different conformation. Fitting the
structures with SSAP resulted in a distortion of the structural alignment. It appears
that the two parts of the structure separated by the hinge should be treated as separate

domains.
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Structural alignment

sokokok ok okok ok ok ok
lvewA0  --——-——- SYTLPSLPYAYDALEPHFDKQT
3sdpA0 ————-————- PPLPYAHDA--LQPHISKET

Sequence alignment

sokokok ok okok ok ok ok
lvewA0  --——-——- SYTLPSLPYAYDALEPHFDKQT
3sdpA0 ——————————- PPLPYAHDALQPHISKET

Figure 34: The MLSA within the 1vewAO 3sdpAOQ pairing showing that it occurs near
the terminal of the protein. The sections indicated with asterisks are the MLSA regions.

In the remaining eight identified most extreme MLSAs, the domain structures in-
volved revealed that six of the eight occurred in terminal regions, (figure 34). At the
termini regions constraints are not present to the same extent as they are in other areas
of protein. As a result when indels occur the constraints are not present to force the
amino acids to take up a different position and make the necessary changes elsewhere
as demonstrated in figure 35.

Looking further at the sequences and structures showed something unusual in two
of the sequences. Both had already been identified as occurring at terminal regions by
the visual analysis, but further analysis also suggested that the MLSAs were influenced
by the presence of bulky residues and glycine. In both the 1vgeH1 1hyxH1 pairing and
the 2fbjH1 1vgeH1 pairing there was a glycine present in a conformation that only it
can adopt. Glycine is the smallest of all the amino acids with its side-chain being made
up of a single hydrogen atom. In the structures of the proteins involved the domain is
structured in such a way that if it were to exist as the sequence alignment suggests it
would force another, larger residue into the position occupied in the true structure by
the glycine.

In the case of the 2fbjH1 1vgeH1 pairing, no other amino acid would be able to

fit into the space without its side-chain interfering with the rest of the structure. The
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Y Y
Y Ny

Figure 35: How lack of force constraints affect termini structure. The lack of force
constraints at the termini mean that indels are not accommodated elsewhere as the
residues are not forced into different positions.
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proteins are aligned so as to keep the prolines in the same position in each case. Fur-
ther towards the terminal end of the protein the protein structure has been conserved
between the two due to the presence of some larger residues like glutamine and glu-
tamate. However this forces a kink into the protein structure between the prolines
and the larger residues. Only a glycine could adopt the conformation necessary to fit
within the kink due to backbone configuration. Hence the shift between the structural
alignment and the sequence alignment.

The is same is true of the second pairing, 1vgeH1 and lhyxH1. In this case the
glycine is once again the only residue capable of being in the position that it is. Because
of larger, bulkier residues on either side the glycine is forced to adopt a conformation

that no other amino acid would be able to because of the size of their side-chains.

3.2.2 Hydrophobic and hydrophilic residues

The placing of hydrophobic and hydrophilic residues within the structure of a protein
is a primary driving force in protein folding. A major contribution to the free energy
of the natural structure of a protein is due to interactions between hydrophobic amino
acids that tend to form a core in the three-dimensional structure shielded from the
surrounding environment by hydrophilic residues (Jiang et al., 2003). Exposing hy-
drophobic residues to the aqueous environment surrounding a protein destabilises its
overall structure. Therefore a protein will tend to cluster its hydrophobic residues away
from the outside. It is possible that the reason that MLLSAs occur is partly to keep the
hydrophobic and hydrophilic residues pointing either outwards or inwards to stabilise
the protein.

For each pairing of the remaining six most extreme genuine MLSAs, both the se-
quence alignment and the structural alignment were examined and their hydrophobic

and hydrophilic residues identified. This identification can be seen in figure 36. If
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the presence of the MLSA is partly caused by the positioning of hydrophilic and hy-
drophobic residues, then it should be seen that the structural alignment ensures that
more hydrophilic residues are facing outwards. Looking at figure 36 it is clear that
the hydrophobic and hydrophilic residues are not always aligned in the same place in
the structural and sequence alignments. Examining these alignments, it would appear
that the hydrophobic residues are better aligned in the sequence alignment rather than
the structure alignment. The other alignments appeared to show a similar trend. This
would suggest that the positioning of the hydrophobic and hydrophilic residues is not
related to the occurrence of MLSAs.

However in order to investigate further whether the positioning of the hydrophilic
and hydrophobic residues affects the structures and therefore the MLSA it was neces-
sary to look at the 3-D structures of the proteins and not just the alignments. Figure 37
shows a section of the two structures of the aligned pairing 1bmfD3 and 1skyE3 using
Rasmol. It is clear that the proteins have structured themselves in such a way as to
minimise exposure of the hydrophobic residues. The hydrophilic residues are facing the
aqueous environment while the hydrophobic residues are buried in most cases. If the
sequence alignment had been the correct one, then more hydrophobic residues would
have been exposed. Such factors cannot be considered in simple sequence alignment.

This analysis was extended in a quantitative fashion using the PRIFT hydrophobic-
ity scale (Cornette et al., 1987) to investigate the hydrophobicity of the residues that
were more than 20% accessible to the outside aqueous environment. By calculating
values for both protein domains in both the sequence alignment and the structural
alignment these values could be compared. Table 8 shows the PRIFT hydrophobicity
scale used in the analysis. Figure 38 shows how the hydrophobicity was calculated for
both the structural and sequence alignments.

For each case, the MLSA region alone was examined and then the extended region

surrounding it. As figure 38 shows, the four values were calculated for each pairing
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Structural alignment

lisaao [7HYG VENCENLTRG - AFECHEED
& v ic

3sdpaAo - [ VIV INIT. VPGP i
Sequence alignment

lisaad0 [HYG VIS N TRGEA L]
Ssdpa0 [ v B VP G B PG

Structural alignment

1bmfD3
1skyE3

Sequence alignment
1bm D3 AGVGEIVILTMETL TRNVARARGG BV
1skyE3 ACVCHIV L1 BN A BB TEVE

Structural alignment

lgafLl
laeé6Ll

Sequence alignment

lgafLi
lae6Ll
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Figure 36: The sequence and structural alignments of the remaining six pairs of protein
domains containing MLSAs with hydrophilic and hydrophobic residues shown in green
and yellow respectively. The MLSAs are the ten residue wide boxes in the middle of

each sequence pairing.



CHAPTER 3. MISLEADING LOCAL SEQUENCE ALIGNMENTS (MLSAS) 85

Figure 37: The aligned structures of 1bmfD3 and 1skyE3, with the hydrophobic and
hydrophilic residues marked on in yellow and green respectively. Only the partial
structure near the MLSA region is shown.



CHAPTER 3. MISLEADING LOCAL SEQUENCE ALIGNMENTS (MLSAS)

Amino Acid Hydrophobicity
ALA 0.22
ARG 1.42
ASN -0.46
ASP -3.08
CYS 4.07
GLN -2.81
GLU -1.81
GLY 0.00
HIS 0.46
ILE 4.77
LEU 5.66
LYS -3.04
MET 4.23
PHE 4.44
PRO -2.23
SER -0.45
THR -1.90
TRP 1.04
TYR 3.23
VAL 4.67

Table 8: The PRIFT hydrophobicity scale.
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Str X Calculate mean hydrophobicity on Str X = X
Calculate mean hydrophobicity on Seq X’ = Xs

StrY Calculate mean hydrophobicity on StrY =Y
Calculate mean hydrophobicity on Seq Y’ = Ys

Ideally:
y <¥s
X <Xs

Figure 38: How the hydrophobicity was calculated for those residues greater than 20%
accessible for both the sequence and structural alignment, ‘x’ represents a site with
greater than 20% accessibility.

were:

1. X: the averaged hydrophobicity for structural alignment X
2. Xs: the averaged hydrophobicity for sequence alignment X'
3. Y: the averaged hydrophobicity for structural alignment YV

4. Ys: the averaged hydrophobicity for sequence alignment Y’

Analysis involved comparing the MLSA region of the first structurally aligned pro-
tein domain (str Y) with the section that aligned by sequence (seq X') and by structure
(str X) in the second sequence. Accessible residues in str Y were then marked and the
equivalent residues in str X and seq X noted. By referencing the PRIFT hydropho-

bicity scale the values of X and Xs could be calculated. This would then be repeated
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I
gE&L Y Averaged Y hydrophobicity = 2.36
VP Ys Averaged ¥Ys hydrophobicity = 0.96
;EE
L,

Figure 39: Hydrophobicity for the MLSA in the alignment pairing lisaA0 3sdpA0,
amino acids 35-44:35-44

X Averaged Xs hydrophobicity = 1.32

=l

% Xs Averaged X hydrophobicity = -0.09

VLIMELINNV
VGKTVLIDEL Y Averaged Y hydrophobicity = -2.82
VLIQELIHNI Ys Averaged Ys hydrophobicity = 0.46
IMEL Xs Averaged X hydrophobicity = 1.93
T TNNV X Averaged Xs hydrophobicity = 2.34
IQEL

Figure 40: Hydrophobicity for the MLSA in the alignment pairing 1bmfD3 1skyE3,
amino acids 164-173:166-175.

using the MLSA structure for X to calculate Y (for the structural alignment) and Ys
(for the sequence alignment).

If the MLSA has led to increased burial of hydrophobic residues, the value of X
should be less than that of Xs, and the value of Y should be less than Ys.

Figures 39, 40, 41, 42, 43 and 44 show the results of the hydrophobicity scores for
each of the remaining MLSAs. This data are compiled in table 9. In half the cases we
can see that the scores have X < Xs and Y < Ys. This is what would be expected
by chance. Thus, while hydrophobicity is therefore not a dominant effect it is quite
possible that it is partially responsible for some of the MLSAs. Due to the limited

amount of data it was not possible to do any further statistical tests.
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EJLPAILPYAKID

PP[L HDA - Y Averaged Y hydrophobicity = -0.24
——PPLPYAHL} Ys Averaged Ys hydrophobicity = -1.52
PATLPYAKDAL Xs Averaged X hydrophobicity = 1.09
ELPRALPYAKD X Averaged Xs hydrophobicity = -0.16
PPLPYAHDA -

Figure 41: Hydrophobicity for the MLSA in the alignment pairing lisaA0 3sdpA0,
amino acids 5-12:5-12.

TILIPISLIPYIAYS
PP[LPYIAHDA— Y Averaged Y hydrophobicity = -0.36
—-PPLIPYAHL Ys Averaged Ys hydrophobicity = -0.98

P DIAT, Xs Averaged X hydrophobicity = 1.00
TLPELPYAYD X Averaged Xs hydrophobicity = 0.54
P L}

Figure 42: Hydrophobicity for the MLSA in the alignment pairing 1vewAO 3sdpA0,
amino acids 3-12:5-13.

DPKISISPIS
IOMS Y Averaged Y hydrophobicity = -2.11
SISISISIFSVIS Ys Averaqed Ys hydrophobicity = -0.84
GGTKL Xs Averaged X hydrophobicity = -0.93
OPKSSPIS X Averaged Xs hydrophobicity = 3.44
————DIgMS

Figure 43: Hydrophobicity for the MLSA in the alignment pairing 1mfel.2 lospl1,
amino acids 111-120:6-15.



Alignment Residue X score Xsscore A Xand Y score Ysscore AY and
pairing region Xs scores Ys scores
lisaA0Q 3sdpAO0  35-44:35-44 -0.09 1.32 1.41 2.36 0.96 -1.40
1bmfD3 1skyE3 164-173:166-175 1.93 2.34 0.41 -2.81 0.46 3.27
lisaAO 3sdpA0  5-12:5-12 1.09 -0.16 -1.25 -0.24 -1.52 -1.28
1lvewAQ 3sdpA0 3 12:5 13 1.00 0.54 -0.46 -0.36 -0.98 -0.62
1lmfel.2 lospL1  111-120:6-15 -0.93 3.44 4.37 -2.11 -0.84 1.27
1gafl.2 lae6L1  109-118:5-14 2.16 -1.63 -3.79 -0.10 -1.43 -1.33

Table 9: The averaged hydrophobicity of the accessible residues in the MLSAs.

(SYSTIN) SINAWNNOITY HONANOAS TVOOT ONIAVATSIN € HALdVHD

06
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TVIAAPISVIFLF
!!HII A Y Averaged Y hydrophobicity = -0.10
T Ys Averaged Ys hydrophobicity = -1.43

I

TKVI[EI Xs Averaged X hydrophobicity = 2.16
TVARAPS X Averaged Xs hydrophobicity = —-1.63

Figure 44: Hydrophobicity for the MLSA in the alignment pairing 1gafl.2 1lae6L1,
amino acids 109-118:5-14.

3.2.3 Hydrogen bonds

Hydrogen bonds are the most important of all directional intermolecular interactions
(Steiner, 2002). They are formed when a hydrogen atom is effectively ‘shared’ by two
other atoms. The atom to which the hydrogen is more tightly linked is known as the
hydrogen donor with the second atom being the hydrogen acceptor. The bond between
the hydrogen and the acceptor is the hydrogen bond.

Hydrogen bonds are necessary in determining molecular conformation, molecular
aggregation, and the function of a vast number of chemical systems ranging from
inorganic to biological (Steiner, 2002). In proteins they are especially important in the
3-D structures as well as in some protein functions. It is the hydrogen bonds in alpha
helices and beta sheets that stabilise these structures. It is possible that the difference
between sequence and structural alignments that results in an MLSA is caused in part
by optimizing hydrogen bonding.

Once again, looking at the six remaining protein pairings with the most extreme
genuine MLSAs, the hydrogen bonds were examined visually through Rasmol using
both PDB files. The hydrogen bonds were examined using Rasmol’s hbond command.
This displays backbone to backbone hydrogen bonds in regions of defined secondary

structure (See http://www.umass.edu/microbio/Rasmol/rasbonds.htm#hbonds).
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Alignment pairing Residue region  Hydrogen Hydrogen Hydrogen Hydrogen
bonds bonds bonds bonds

within near within near

MLSA of MLSA in MLSA of MLSA in

first first second second

protein protein protein protein
lisaA0 3sdpA0 35-44:35-44 11 26 2 13
1bmfD3 1skyE3 164-173:166-175 17 17 18 16
lisaA0 3sdpA0 5-12:5-12 5 12 1 5
1vewAO 3sdpA0 3-12:5-13 4 12 2 4
1mfel.2 1lospL1 111-120:6-15 5 20 13 10
1gafl.2 1ae6L1 109-118:5-14 4 23 9 5

Table 10: Numbers of hydrogen bonds in the region of the MLSA in each protein.
Hydrogen bonds that are ‘near’ are those involving residues within ten amino acids
upstream or downstream of the MLSA.

The area of the MLSA and the region surrounding it were looked at to determine how
the hydrogen bonds might be contributing to the structure of the domain.

Table 10 shows the number of hydrogen bonds in and around each MLSA for each
protein in the alignment pairs. The table shows that there are quite a number of
hydrogen bonds involved in the area. Most of the MLSAs regions contain a number of
hydrogen bonds with either the acceptor atom or the donor in the region. Figure 45a
shows the structure of the MLSA region of 1lisaA0 and figure 45b the structure of the
MLSA region of 3sdpA0. Both figures show the hydrogen bonds.

There are quite a number of hydrogen bonds in and around the areas where MLSAs
occur. Some of the protein pairs have more hydrogen bonds in one structure than in
the other. For example in 1gafL2 there are a total of 27 hydrogen bonds in or around
the area of the MLSA. In lae6L1 there are only 14 hydrogen bonds. The difference
in the number of hydrogen bonds could be leading to a difference in the structure
of the protein in that area, therefore the stabilizing effects of these bonds could be
a contributing factor in the formation of the MLSAs. In other protein pairs such as

1mfel.2 1ospL1 there are a similar number of hydrogen bonds in both structures which
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Figure 45: The structure of the MLSA region of a) 1lisaA0 and b) 3sdpA0, showing the
hydrogen bonds. The thickest lines represent the hydrogen bonds.
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Positively charged Negatively charged Neutral residues

residues residues

arginine aspartate alanine

histidine glutamate asparagine

lysine cysteine
glutamine
glycine
isoleucine
leucine
methionine
phenylalanine
proline
serine
threonine
tryptophan
tyrosine
valine

Table 11: Charges of amino acids. Histidine is only positively charged at low pH.

suggests that hydrogen bonds may not be playing as large a part in the formation of

hydrogen bonds.

3.2.4 Charges in and around the MLSAs

Some amino acids are negatively or positively charged, they can be seen in table 11. All
buried charged residues must have a partner. It was possible that the charges or their
interactions were partially responsible for the remaining MLSAs. By comparing where
the charged residues were in the sequence alignments and the structural alignments it
was possible to see how the MLSAs affected the positioning of the charges.

Figure 46 shows what happens to the charged residues in the domains involved
when they are aligned by sequence as well as structure. In some of the protein pairs
the shifts in the charged residues between the two alignments are fairly minor, such as
in the first lisaA0Q 3sdp30 MLSA. However in others such as the 1bmfD3 1skyE3 pair

the charged residues are shifted quite significantly. In those alignments where there is
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a significant shift in the charged residues it could suggest that the charged interactions
do play a part in causing the MLSA.

Although the charges are seen to shift slightly between the sequence alignments and
the structural alignments it is the interactions between these charges that may prove
whether they do indeed play a part in MLSAs or not. If the charged residues are not
interacting with other residues or with the environment then whether they are shifted
or not within the MLSA area is unlikely to be important. However if the charges
are interacting with other charges then the shifts between sequence and structural
alignment are very likely to be caused by them.

Figure 47 shows the charges and their interactions in the MLSAs and surrounding
areas. It also shows whether or not there are equivalent interactions at the same point
in the aligned residue. So, for example, in the 1lisaA0O 3sdpAQ pairing there is an
interaction between alanine 12 and lysine 19 in 3sdpA0 and an equivalent interaction
between lysine 11 and glutamic acid 24 in lisaAQ). Whereas in the same pairing there
is no interaction involving alanine 20 even though its aligned equivalent, glutamic acid
24, is part of a charge interaction.

From looking at figure 47 there are a few charge interactions within or near the
MLSA region. Some have equivalent interactions to their aligned partners, some do
not. The charges may stabilise the structure of the protein around the MLSA region.

After looking at the results achieved thus far it seemed likely that both MLSAs
1lisaA0 3sdpA0 (amino acids 5-12:5-12) and 1vewAO 3sdpA0 (amino acids 3-12:5-12)
were most likely also to be caused by their closeness to the terminus of the protein
domains involved. The analysis done up to that point did not seem to indicate any
other significant cause for them and proximity to the terminal region of a protein
had already been used explain other MLSAs identified. However further analysis was
conducted on the remaining four proteins looking more closely at the 3-D structures

and charged residues involved.
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Structural alignment

lisaAo0 TYVTNLNNL IEG--TA SL
3sdpAo - TYVVNLNNLVPGTPH T.
Sequence alignment

lisaAo0 TYVTNLNNL IBGTA— SLE
3sdpA0 TYVVNLNNLVPGTPH LE
Structural alignment

1bmfD3 LFGGAGVGETVLIMHELINNV -—— -GG

1skyE3 LFG———-GAGVGETVLIQEL IBNIAQEEGG

Sequence alignment

1bmfD3 LFGGAGV VLI INNV GYSVF
1skyE3 LFGGAGVGETVLI IHENT A GISVF
Structural alignment

lisaA0 ———————— SFELPALPY LAPHIS
3sdpAl0 —————————— PPLPY ——LQPHIS]

Sequence alignment

lisaAld ———————— SFELPALPY LAPHIS
3sdpAl0 — PPLPY LOPHIS
Structural alignment

lvewA) ———————— SYTLPSLPYAYHALEP T
3sdpA0 —————————— PPLPYARMA —-LOPHIS

1vewAld ———————— SYTLPSLPYAYEALEPR T
3sdpAl0 — PPLPY LOPHIS
Structural alignment

imfelL2 —————————— OPEsspsvTLFPPSSHEHELET
losplLl —————————————] BIOMSQSSSSFSVSLG

Sequence alignment
Imfel2 —————————— QOPRESSPSVTLFPPSS BT
lospLl ————-] B1oMSQSSSSFSVSL——— TIT

Structural alignment

lgaflLl —————————- TVAAPSVFIFPPSHEBQOLESG
lae6Ll ————— ] B1vMTQAAPSVPVTRGHE

Sequence alignment

lgafrli, —————————— TVAAPSVFIFPPS LEsG
lae6Ll —————— B1vMTUAAPSYVPVTP - —GESLSIS

Figure 46: The positioning of the charged residues in and around the MLSAs in the
sequence and structural alignments. Positively charged residues are highlighted in blue,
negatively charged residues are highlighted in red.
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lisaAo0
3sdpA0

lbmiD3
1skvyE3

lisaaAo0
3sdpao

lvewAl
3sdpA0

Imfel2
lospLl

lgafLl
laesl1

TYVTNLNNL IRG——TA SL
= TYVVNLNNLVPGTPH L
||

Hothing Hothing
Thr 135
|
LFG————GA _ L IENIACEEGG
| |
Hi= 415 A=p 246
Glu 24 Hothing
| |
———————— SFELPALPYARIBALAPHIS
__________ PPLPYAHNA |- 1.OPHTIS
s T ¢

Ly=s 20 Glu 187

| |
________ SY[TLPSLPYA LEP T
__________ PPLPY —-LOPHIS

Lys 132

|
__________ PRSSPSVTLFPPSSHEELET
______________ IOMSQSSSSFSVSLG
|

Ile 106

Ly= 183

__________ TVAAPSVFIFPPSHEOLESG
__________ -~ BIVMTOAAPSVPVTPGH

Arg 77

97

Figure 47: The interactions of the charged residues in and around the MLSAs. Pos-
itively charged residues are highlighted in blue, negatively charged residues are high-
lighted in red. The black lines show charge interaction between residues, either within
the region of the structure illustrated or between these and other residues. For example
in the 1isaA0 3sdpAO0 alignment pair, in lisaAQ there is a lysine in the MLSA which
may be interacting with Glu 24 (not part of the MLSA). The equivalent amino acid
in 3sdpA0 is an alanine is not charged and so is shown not to be participating in a

charged interaction.
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Positively charged Negatively charged

residues residues
Lys 11 Asp 12/Glu 21/Glu 24
Lys 43 Glu 48

Lys 50/Arg 57 Glub3

Table 12: Charge interactions between amino acids 1-61 in 1isaAO.

Positively charged Negatively charged

residues residues
Lys 20 Asp 12/Glu 24
His 31 Asp 28
Lys 51 Glu 47/Glu 55

Table 13: Charge interactions between amino acids 1-61 in 3sdpA0.

For 1isaA0 and 3sdpA0 (for the MLSA at residues 35-44:35-44) figure 46 shows the
whereabouts of positively and negatively charged residues both in and near the MLSA
regions of this protein pair and the others examined. Residues 1-61 were examined for
the presence of interactions between charged residues that might be contributing to
the formation of MLSAs.

Figure 48 shows the actual 3-D structures of these protein sections and the charged
interactions that appear to be taking place. In both 1isaA0 and 3sdpAOQ there appear
to be three charged interactions occurring in or around the MLSA region. Table 12
and table 13 list the charge pairs in lisaAo and 3sdpA0 respectively that appear to be
interacting with one another. The number of charged interactions remains the same
between the two. This suggests that charged interactions may be playing a part in this
particular MLSA as if one had used the sequence alignment (i.e. shifted the residues
in lisaAO to match the alignment in 3sdpA0) then these charged pairings might not
have been maintained.

The MLSA which occurs within the protein pairing of 1bmfD3 1skyE3 (amino acids

164-173:166-175) was investigated in the same way as the previous one. As before the
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a) b)

Figure 48: 3-D structure of a) lisaA0 and b) 3sdpA0, with the MLSA region highlighted
in red, showing the charge interactions (residues involved have their sidechains visible).
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Positively charged Negatively charged
residues residues

His 179 Glu 136

His 173 /His415 Glu 170/418

Table 14: Charge interactions between amino acids in 1skyE3.

Positively charged Negatively charged
residues residues
Lys 151 Asp 330

Table 15: Charge interaction between amino acids in 1bmfD3.

region looked at for charged interactions was extended beyond what had previously
been examined. Tables 14 and 15 show the number of charge interactions in domains
1skyE3 and 1bmfD3. There appear to be more charged interactions in 1skyE3 than
in 1bmfD3. The differences in the number of charged residues could account partially
for the MLSA as they may be stabilizing a structure in 1skyE3 that does not exist in
1bmfD3.

The third protein alignment pairing to be examined in closer detail with regards to
charged residues was 1mfeL.2 lospL1 (amino acids 111-120:6-15). There were very few
charged interactions in the extended region (residues 108-135:1-75) that was looked at
for this pairing, there was only one charged interaction in each 3-D structure. This
might indicate that the structure of the area is not very dependent upon charges and
their interactions for stability.

Although the lack of charged interactions might suggest that they do not play a
large role in causing these MLSAs they were examined to confirm this. Tables 16 and 17
show the different charged interactions within the structures. Each domain had a single
charge interaction in or around the MLSA region. Maintaining this charge interaction

in each structure could be the reason for the MLSA. Using the sequence alignment to
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Positively charged Negatively charged
residues residues
Lys 132 Glu 127

Table 16: Charge interaction between amino acids in 1mfel.2.

Positively charged Negatively charged
residues residues
Lys 24 Asp 70

Table 17: Charge interaction between amino acids in lospL1.

build models of these protein structure rather than the structural alignment could be
enough to lose these interactions. Without the interaction in each domain the protein
may be unable to form the correct structure.

The final protein alignment pairing looked at was 1gafL.2 1ae6L1 (amino acids 109-
118:5-14). The final set of charge interactions between the protein pair was investigated
and the results found in table 18 and 19. As with lospL1 1mfel.2 there was only a
single charged interaction in the 3-D structure of each. However looking at figure 49 it
appears that the residues highlighted do not in fact form a charged interaction as their
side-chains are pointing in opposite directions.

There are charged interactions in and around the region of the MLSAs in these
aligned protein pairs. Although it would only take one charged interaction to make a
difference in the structure there seems to be little difference in the number of interac-

tions near the MLSAs. Possibly there may be charged interactions further away from

Positively charged Negatively charged
residues residues
Lys 103 Asp 85

Table 18: Charge interaction between amino acids in 1gaf[.2.
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Figure 49: 3-D structure of lae6L2 (the MLSA region is highlighted in red) showing
the charge interactions (residues involved have their sidechains visible).

Positively charged Negatively charged
residues residues

Arg 77 Glu 17

Table 19: Possible charge interaction between amino acids in 1ae6L1.
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the MLSA region that are having some kind of effect upon the structures of the protein

domains.

3.2.5 Secondary structure

Looking at the complete 3-D structures of the domains 1isaA0 and 3sdpAO0 (for the
MLSA at residues 35-44:35-44) it can be seen that the MLSA occurs mainly within
alpha-helices as figure 50a and b show. More of the structure of 1isaA0 is in the
alpha-helix conformation than 3sdpA0.

For 1bmfD3 1skyE3 once again the MLSA occurs in an alpha helix in both structures
as figure 50c and d show. The MLSA in 1bmfD3 is positioned at the end of an alpha-
helix. In 1skyE3 the MLSA is not so close to the end of the alpha-helix.

In the case of 1mfel.2 lospL1 the MLSA again mainly occurred within sections
of secondary structure. Unlike before the secondary structure was beta-strand rather
than alpha-helix (figure 51a and b). More of the MLSA is in beta-strand conformation
in 1mfel.2 than in lospL1.

Figures 51c and d show that the MLSA in 1gafl.1 also occurs within a beta strand.
However in 1lae6L1 the MLSA occurs in a loop region which is bordered by a region of
beta-strand. The difference in secondary structure between the two protein domains
may suggest why this particular MLSA occurs.

All four MLSAs have occurred within regions of regular secondary structure, it
could be that maintaining these regions of alpha helix and beta strand are the reason
for the misaligned areas. MLSAs are therefore caused by a combination of the factors

which have been investigated individually.
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c) d)

Figure 50: 3-D structures of a) lisaA0, b) 3sdpAO0, ¢) 1bmfD3 and d) 1skyE3. In each
case the MLSA region is highlighted in red.
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Figure 51: 3-D structures of a) 1mfeLl.2, b) lospL1, ¢) 1gafL.1 and d) lae6L2. In each
case the MLSA region is highlighted in red.
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3.3 Summary: Where and Why do MLSAs Occur?

It appeared that the nine MLSAs examined could be divided up into three distinct
groups depending on when and why they occurred. Of the nine, one occurred because
of a hinge section of protein structure as figure 33. The two structures that made up
the MLSA each had the hinge region present, but in different conformations leading to
differences in the structural alignment. It should therefore have been removed during
the filtering of the original 56,510 protein pairings because the MLSA was caused by
this highly flexible protein region. Indeed the two regions separated by the hinge should
have been classified as separate structural domains in CATH.

Of the remaining identified MLSAs, some had more than one reason for occurring.
One reason that occurred in six of the pairings was because the MLSAs occurred in
terminal regions of the alignments. This kind of MLSA occurs because it is ‘easier’ for
the pairing to accommodate a change at the terminal region of the protein rather than
further in the structure where conserved regions relating to structure or function are
more likely to occur.

When looking at the four protein pairings, lisaA0Q 3sdpA0, 1bmfD3 1skyE3, 1mfel.2
lospL1 and 1gafl.2 1ae6L2, it became clear that all four MLSAs occurred within regions
of secondary structure. The first two occurred within alpha helices and the second two
within beta strands. These structures can be seen in figure 50 and figure 51. Main-
taining these secondary structures appears to be the major reason for the difference
between the sequence alignment and the structural alignment.

Another reason for the MLSAs to occur may to be in order to minimise the exposure
of hydrophobic residues as figure 37 shows. Hydrophobic residues are usually kept
away from the aqueous environment that surrounds most proteins. Obviously if these
residues were exposed they would destabilise the protein structure. Therefore it is

better for the alignment to alter slightly rather than expose these hydrophobic residues.
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Alignment Residue region Causes
pair
lisaAO 3sdpAO0  35-44:35-44 Secondary structure

Accessibility of hydrophobic residues
Charge interactions

1bmfD3 1skyE3 164-173:166-175 Secondary structure
Accessibility of hydrophobic residues
Charge interaction

lisaAQ 3sdpAO0  5-12:5-12 Occurs in terminal region

1vewAO 3sdpA0 3-12:5-12 Occurs in terminal region

1lmfel.2 1lospL1  111-120:6-12 Secondary structure
Accessibility of hydrophobic residues
Occurs in terminal region

1ak200 lakeAO  65-73:49-57 Involved in hinge region

1gafl2 lae6L1  109-118:5-14 Secondary structure
Accessibility of hydrophobic residues
Occurs in terminal region

1lvgeH1 1lhyxH1 2-11:2-11 Occurs in terminal region

2fbjH1 1vgeH1  2-11:2-11 Occurs in terminal region

Table 20: Summary of MLSAs and their possible causes

In these extreme examples of MLSAs we did not find much data to support this idea
but it is possible that in some cases it may play a part.

Table 20 shows a summary of the MLSAs and their possible causes.



Chapter 4

Sequence-Structure Mis-Alignments

(SSMAs)

We have defined SSMAs (Sequence-Structure Mis-Alignments) as less extreme cases of
misalignment than MLSAs (Misleading Local Sequence Alignments). A SSMA is where
the structural alignment and the sequence alignment of a pair of aligned sequences do
not agree. A SSMA region is a continuous section of an alignment where the structural
and sequence alignment do not match.

The aim of this chapter was to study SSMAs in the hope that it would be possible

to predict them with the aid of neural networks.

4.1 What are SSMASs?

As defined above, SSMA regions are sections where the structural alignment and the
sequence alignment do not agree. The structural alignment is taken to be the correct
alignment, the one that will give us a close model to the actual structure. Figure 52
shows a good example of a SSMA region where the alignments differ between ligmHO0

(Immunoglobulin m (IgM) Fv fragment from Homo sapiens) and 1lap2A0 (Monoclonal

108



CHAPTER 4. SEQUENCE-STRUCTURE MIS-ALIGNMENTS (SSMAS) 109

1ap2A0  DIVMTQSPSSLTVTAGEKVTM

1igmHO  Sequence alignment  EVHLLESGGNL-VQPGGSLRL
1igmHO Structural alignment  EVHLLESG-GNLVQPGGSLRL
ok ok k

Figure 52: An example of a SSMA region found within 1ligmHO0. This occurs when
aligned with 1ap2A0, the section highlighted by * is the misaligned region, made up
of four SSMA positions. The figure compares the same sections of the structural and
sequence alignment of 1ligmHO so the difference between its sequence alignment and its
structural alignment can be seen.

antibody ¢219 from Mus musculus).

This type of misalignment is a lot more common than MLSAs. Although there are
many, less extreme cases of MLSAs than the ones that were looked at in the previous
chapter, they are still relatively rare when compared with SSMAs.

Predicting where these SSMAs occur would be a possible way of improving the
step of sequence alignment in comparative modelling. Sequence alignment is one of
the steps that introduces the most error into a comparative model of a protein with
unknown structure. If this error could be lessened then the final model would be more
accurate and therefore of more use. The prediction of the SSMAs was done using neural
networks. However the networks needed enough relevant input to make a prediction.
Obviously the sequences of the protein pairs formed part of this input but the SSMAs
themselves were looked at to discover whether there was anything else that needed to

be added to the input of the neural nets. The more relevant information that could be

added to the input files, the better the level of prediction was hoped to be.

4.2 Finding the SSMAs

The same data set was used as had been previously used as the initial data set for the

MLSA research, namely all the pairs of NRep sequences within each H-family within
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the CATH database (v1.6). This produced a total data set of approximately 56,000
protein pairs. Unlike when investigating the MLSAs, this data set was not filtered or
restricted.

The data set of protein pairs was used to produce both sequence and structural
alignments. The sequence alignments were produced by the Needleman and Wunsch
algorithm while structural alignments were produced by SSAP.

A program called Checkalignment.pl was written to run through the directory where
the alignments were stored. A flow diagram of this program is shown in figure 53.
This program compared the two alignments to discover where they differed from one
another, in other words, where the SSMAs existed. This program extracts all the
structural alignment files and enters them into an array. It then goes through each
structural alignment in turn and checks that the equivalent sequence alignment also
exists within the directory. Once both files had been identified the program extracts
the alignments from these files. This gives the program four strings of data to work
with. The program then compares the two data strings for each protein domain.

During the comparison the sequences are printed out and marked with an * where
the alignments differed, i.e. the SSM As. The secondary structures of the proteins were
also printed out.

The output from this file could then be analyzed to derive data such as how many

SSMAs occur within each alignment and where the misalignments begin and end.

4.3 Distribution of SSMAs in a Sequence Pairing

The first analysis was to discover the distribution of the number of SSMAs within a
protein domain sequence. Each output file from Checkalignment.pl was examined in
turn to count the number of regions of SSMAs using the program ssma_analysis.pl.

A program called analysis.pl gathered this information and then used it to produce a
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Figure 53: A flow diagram of how the program Checkalignment.pl works to find the

SSMAs.
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Figure 54: Distribution of the number of SSMAs within a protein domain sequence.

graph of distribution, as can be seen in figure 54.

Most comparisons of the sequence and structure alignment for a protein domain
had no SSMAs within them. Obviously the length of a protein domain plays some
part in this as a domain sequence can only contain a certain number of SSMAs. If the
sequence and structural alignments of a domain disagree significantly they are more
likely to form one large SSMA than many little ones. The alignment is more likely to
be shifted into disagreement in one or two places (which can affect a large or small
section of protein) than it is to be shifted many times over.

Secondly, the distribution of the total percentage of the protein sequence within a
SSMA was examined. The results of this analysis can be seen in figure 55. Only those
alignments which contained SSMAs were used in this analysis.

As the graph shows most of the proteins had less than 20% of their sequence’s
total length taken up with sections of SSMA. This would seem to indicate that most

SSMAs are fairly small sections of alignment. Those pairs of sequence and structural
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Figure 55: Distribution of the percentage of protein sequence which was within a SSMA
region.

alignment which had the majority of their sequence taken up by SSMA are most likely
to be alignments where there is a shift in the alignment near the beginning which

continues to the end or close to it.

4.3.1 SSMA Length Analysis

Next the lengths of the individual SSMA regions were examined. The analysis.pl
program was altered so that it checked through each output of the Checkalignment.pl
program and counted through each SSMA region to discover its length. The lengths
of the seg-str misalignments could tell us if there was an optimum length for the
SSMAs or if there was a cut-off point to their length which could be introduced into
the alignment prediction program. These data could also be taken into account when
writing a program to generate alternative alignments.

The results of this analysis can be seen in figure 56. As the graph shows, the

lengths of SSMA regions vary, but the majority are fairly small. Cases of large SSMA
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Figure 56: Distribution of the lengths of SSMA regions.

regions were caused by shifts near the beginning of the alignment that caused the entire

sequences to be shifted in relation to one another.

4.4 SSMA Starting and Finishing Residues

In MLSAs it was observed that some occurred in regions of secondary structure. Sec-
ondary structure was examined to see if it played any part in SSMAs.

First, the SSMA regions were analyzed to look at the beginning of the misaligned
sequence. For each one the first amino acid of the SSMA was taken and its secondary
structure recorded. Secondary structure data were precalculated using the program
SS (Martin, 1999) based on the SSTRUC program (Smith and Thornton, 1989) which
is a modification of the DSSP algorithm (Kabsch and Sander, 1983). The secondary

structures were divided into six categories, these were:

e alpha helix
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Figure 57: Secondary structures of a) the first and b) the last residue in a SSMA region.
These data have been normalised to take into account the fact that the structures do
not appear in even amounts within the total data set.

e beta strand
e turn

undefined

310 helix

bridge (a single residue in a beta-strand structure)

The results of the analysis were normalised to take into account the fact that some
secondary structures occur more often than others. For example more residues are in an
alpha-helix than are in a § bridge conformation. The precalculated secondary structure
data were used to calculate how many residues were in each of our six categories of
secondary structure. The total number SSMA of regions beginning in each category
was then divided by the total number of residues in that category.

The results of this analysis show that the majority of SSMA sequences start within
a beta-strand. This can be seen in figure 57a. The second largest number of SSMA
regions began in a turn, with the alpha helices coming next.

The same analysis was done for the final residue of each SSMA region. The results

of this analysis can be seen in figure 57b.
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The distribution is extremely similar and the majority of the final residues occur
within beta strands. Slightly fewer SSMA regions finish within regions of 31y helix.

The two charts suggest that secondary structure may play a significant role in
causing the SSMA region.

Clearly SSMAs are not randomly distributed between secondary structures so in-
cluding secondary structure assignments in the input for the neural networks gives

those networks more relevant information on which to base their predictions.



Chapter 5

Predicting SSMAs Using Neural

Networks

Building upon the work detailed in the previous chapter it was decided to examine the
‘alignability’ of a sequence. In other words, could a neural network be used to predict
which regions of an individual sequence were likely to be in a region of SSMA when

aligned with a relatively distant homologue.

5.1 Using a neural network to predict SSMAs

In order to try to predict where SSMAs may occur in a single sequence, a neural
network was used. SNNS (Stuttgart Neural Network Simulator) (Zell et al., 1995) was
chosen as it has an easy graphical interface which allows interactive design of network
topologies and allows the use of many learning algorithms.

Because there was a strong preference for SSMAs to begin and end within certain
types of secondary structure (figure 57), input to the neural network consisted of a
sequence window together with secondary structure assignments. Pre-pattern files were

generated that were capable of presenting the neural net with a nine residue ‘window’

117
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Figure 58: An example of part of a pre-pattern file. The first column refers to the name
of the protein, the second column is the protein sequence, the third to the secondary
structure of the protein and the fourth to whether there is a SSMA or not. 1 = SSMA
0 = non-SSMA

of a sequence, along with its secondary structure and whether the middle residue was
a SSMA or a non-SSMA. The secondary structure classes used were the same as those
used in the previous chapter (a-helix, S-strand, turn, undefined, 319 helix and bridge).

The pre-pattern does not explicitly identify the middle amino acid as either a tran-
sition or a non-transition. Transition refers to whether or not the middle amino acid
position marks the point at which a sequence enters or leaves a region of SSMA. How-
ever, if a previous window was marked as a non-SSMA and the present window as a
SSMA, then that is an ‘in’ transition, as it marks the points where a SSMA begins.
If the present window is a non-SSMA and the previous window as a SSMA, then that
is an ‘out’ transition, as it marks the point where a SSMA ends. An example of a
pre-pattern file can be seen in figure 58.

The pre-pattern file was then converted into a SNNS pattern file in the form shown
in figure 59. Using a series of zeros and ones it describes the nine-residue window that
was laid out in the pre-pattern file. The pattern file can be split into nine lines of twenty
digits (representing the amino acid sequence), nine lines of six digits (representing the
secondary structure) and the last four digits which indicate the presence of a SSMA
and a transition.

The neural networks were each set up to have a twenty by nine input unit layer
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Figure 59: Pattern file representing the sequence and corresponding secondary struc-
ture; CFFGDWNRK HHHHEEEEH. The first set of nine lines (twenty numbers long
for each possible residue that it could be) each represent a single amino acid residue in
binary format. The second nine lines (each six numbers long for the six different sec-
ondary structure assignments used:helix, strand, turn, undefined, 3;¢ helix and bridge)
represent the secondary structure of each of the nine amino acids in turn. Again the
secondary structure is in binary. Of the final line the first two digits are for whether
the central residue of the 9-residue window is a non-SSMA or an SSMA. As the binary
code is ‘1 0’, this is not an SSMA which would be represented by the binary code ‘0 1.
The second two digits of the final line are for where the central residue is a transition
or a non-transition. ‘0 1’ indicates that it is a non-transition, ‘1 0’ would indicate a
transition.
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for the sequence, then a six by nine input unit layer for the secondary structure. As
described above, the secondary structure was split up into six categories; a-helix, 3o
helix, S-strand, turn, bridge (single residue in S-strand conformation) and unidentified.

The programs that were used to generate these pre-pattern and pattern files can

be found on the accompanying CD. They were:

e NNprepare.pl
e chooserandom.pl

e makepattern.pl (written Dr. A.C.R. Martin)

The networks had a twenty node hidden layer fully connected to the input and
output layers (figure 60). The network was trained to give a yes or no answer to the
questions of “Is this residue in a SSMA?” and “Is this residue the transition?”. The
basic layout of the neural nets can be seen in

Later networks were implemented to distinguish between transitions into a SSMA
and out of a SSMA. These were identical except that they had a five node output layer.
As before, the first two numbers indicated whether the central residue was a SSMA
or not. The last three digits represented transitions (1 0 0 = In-transition, 0 1 0 =

Out-transition, 0 0 1 = non-transition).

5.2 Training and test data sets

Previous work had used pairs of NReps within CATH homologous families. A pair
of NReps can show SeqID of up to 95%. At such high sequence identities, SSMAs
are unlikely to occur. For all future work SReps were used. The S family (Se-
quence family) level of the CATH database is set between the Homologous super-

family level and the NReps (Non-identical) level. As described on the CATH website
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Figure 60: A typical single-hidden-layer neural network. Some neural networks had
more than one hidden layer, but they were the same size as all others, consisting of
twenty nodes.
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(http://cathwww.biochem.ucl.ac.uk/), this level of the database clusters domains
that have a sequence identity of > 35%. As structure is conserved more than sequence
during evolution, domains that share more than 35% identical residues nearly always
have highly similar structures.

Each SRep in a homologous family was aligned against all others within that family.
The programs listed above then used these alignments as input in order to create one
large data set within a single file comprising 99,290 SSMA patterns and 5,524,115 non-
SSMA windows. From this single file random patterns were drawn using pickrandom.pl
to form the prepattern file.

The pickrandom.pl program takes the number of SSMAs (Ny), the number of non-
SSMAs (NV,,) and the target number of patterns (7) required for training or testing. In
order to obtain a set with an approximately 1:1 ratio of SSMAs and non-SSMAs, this
target number is divided by two to obtain the target number of each type of pattern
(ts = t, = T/2). The program then runs through each pattern. If the pattern is a
SSMA, then it generates a random number, r,, where 0 < ry < N,. Then if ry < £,
the pattern is output and the count of SSMAs is incremented. Similarly, if the pattern
is a non-SSMA, it generates r,, where 0 < r, < N,; if r, < t, the pattern is output
and the count of non-SSMAs is incremented. Patterns not output are written to a list
of unused patterns from which further training and test sets can be drawn.

If transitions are also being considered, the algorithm is slightly more complex.
By definition, there will be an equal number of SSMA and non-SSMA transitions.
Therefore, the program takes the number of transitions (N;) and deducts half of this
value from the number of SSMAs and the number of non-SSMAs (N, + Ns — N;/2;
N, <+ N, — Ny/2). As before, the program runs through each pattern. Given a target
number of transition patterns, t¢;, (either 10% or 50% of the total target size, T') if
the pattern is a transition, then the program generates a random number r;, where

0 <r, <N, Ifry <ty, the pattern is output and the count of SSMAs or non-SSMAs is
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Dataset SSMA Non-SSMA Transition Total

patterns patterns patterns patterns
Set 1 46380 45886 7719 92266
Set 2 46702 46181 7569 92253
Set 3 58070 47059 9476 105129
Set 4 46616 49354 9239 95970
Set 5 14080 13598 7904 27678
Set 8 11147 12046 8208 23193
Set 7 9991 11792 8843 21783
Set 8 13768 12965 8911 26733

Table 21: Datasets used in the training and testing of neural networks.

incremented as appropriate (there is an equal probability that a transition is a SSMA
or a non-SSMA). If the pattern is not a transition, then the algorithm proceeds as
before except that the target number of transition patterns, ¢;, will be a subset of the
total target number of patterns, T, so t; = t, = (T — t;)/2.

Once the pickrandom.pl program had finished the prepattern file was then con-
verted using makepattern.pl into the correct pattern file for training or testing a neural
network. The ‘Unused’ file could then be used to create further data sets while being
certain it held none of the patterns already used.

Four training and testing sets were used in this research. The details of these sets
can be found in table 21. These were chosen at random (by the pickrandom.pl Perl
program) and no pattern could be used in more than a single dataset. Sets 1 to 4
had an approximate ratio of SSMA patterns to non-SSMA patterns of 1:1, while the
ratio of transition patterns to non-transition patterns was 1:9. Sets 5 to 8 had a 1:1
ratio of SSMA patterns to non-SSMA patterns and a ratio of transition patterns to
non-transition patterns of approximately 1:1. The first set of neural networks were
trained using one of the datasets 1 to 4 and then tested using the other three. The
networks trained to focus more on predicting transitions used datasets 5 to 8 in the

same way.
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The nets were trained with a 100,000 series of nine-residue patterns, complete with
secondary structure and an indication of whether they were a SSMA or not, transition
or not. The testing pattern file sets were of a similar size. A larger size of testing
and training pattern files was attempted, but computer memory limitations prevented
this. The only exceptions to this size of training and testing set were those where the
ratio of transitions to non-transitions was 1:1. Due to there only being around 36,000
transition sequence windows the test and training sets had to be reduced to 20,000. In
all other test pattern files the ratio of non-transitions to transitions was 9:1. However
in order to see if a more even number of transitions and non-transitions would improve
that area of prediction the ratio was altered. The ratio of SSMAs to non-SSMAs in

the pattern files was always 1:1.

5.3 Different Parameters of Neural Nets

Different parameters for the neural networks were used in an effort to improve their
predictive ability. For each series of neural nets a ‘control’ network was also trained,
this being a network where all the parameters were left as the default or as 0. This
gave an idea of how well each net performed when compared to an unparameterised
network. The basic layout of the neural networks can be seen in figure 60, containing
one passive (input) layer and two active (hidden and output) layers.

Some neural networks had more than one hidden layer. The second hidden layer
was connected to the secondary structure input layer and the output layer. In these
neural networks both hidden layers contained twenty nodes. A diagram of this layout
can be seen in figure 61.

The original series of neural networks were trained starting with the control and
then altering the parameters slightly each time based on previous results. Each new

set of parameters was selected with the previous sets in mind. These sets of parameters
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Figure 61: Neural network layout consisting of a single passive layer and three active
(two hidden and one output) layers. The two hidden layers handle the sequence and
secondary structure data respectively.
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can be seen in table 22. The default parameters meant that the training method was
left as the default (standard back-propagation) and all values were left as 0 except for
the number of cycles trained. This control would allow for comparison with the other
neural networks to see how much of an improvement each change in parameters would
cause.

Some networks were ‘jogged’ during the training process to avoid the network get-
ting stuck in an energy minimum. Jogging adds a small random number, between
specified bounds, to the weights before each cycle of training. These limits were set to
either +0.1 or +0.01.

Neural nets were trained for 1000 cycles under a variety of other conditions. The
Rprop (Resilient backpropagation) training method was found to work well at cor-
rectly predicting the position of SSMAs. Nets were at first trained using just the
recommended settings for the training method; dy = 0.1 (the initial update-value),
Omaz = 50.0 (the limit for the maximum step-size) and o = 4 (the weight-decay ex-
ponent). The non-standard setting for the Rprop training method were 6, = 0.2,

Omaz = 0.0 and o = 4.

5.4 Results of Training Sets

Owing to the very large amounts of available data, jack-knifing or cross-validation was
not necessary - multiple separate large test and validations sets could be created.
Once trained, the neural nets were then tested using three pattern files other than
the one with which they were trained. These testing pattern files did not contain
any of the same protein windows as the training file. The output of the testing gives
confidence values which were then compared with the original pattern file to discover
whether the position was correctly predicted for SSMAs and transitions. These then

allowed for the calculation of percentages of correctly predicted SSMAs and correct



Network name

Training Parameters

SSMAtrained191103.net
SSMAtrained201103.net
SSMAtrained211103.net
SSMAtrained221103.net
SSMAtrained241103.net
SSMAtrained011203.net
SSMAtrained021203.net
SSMAtrained031203.net
SSMAtrained041203.net

SSMAtrained041203double.net

SSMAtrained(081203.net

All parameters left as default, no jogging, single hidden layer, trained for 1000 cycles

Rprop with recommended settings, single hidden layer, no jogging, 1000 cycles

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 1000
cycles

Rprop with recommended settings, single hidden layer, jogged every epoch -0.1 to 0.1, 1000
cycles

Rprop with recommended settings, double hidden layer, jogged every epoch -0.01 to 0.01,
1000 cycles

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 1000
cycles

Rprop with recommended settings, single hidden layer, jogged every epoch -0.1 to 0.1, 1000
cycles

Rprop with recommended settings, double hidden layer, jogged every epoch -0.01 to 0.01,
1000 cycles

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 2000
cycles

Rprop with recommended settings, double hidden layer, jogged every epoch -0.01 to 0.01,
2000 cycles

Rprop with non-standard settings, single hidden layer, jogged every epoch -0.1 to 0.1, 1000
cycles

SMUOMILAN TVHNHN ONIS1 SVINSS ONLLOIAHYd ¢ HHLdVHO

Table 22: Parameters of the first trained neural networks. 1SSMAtrained191103.net was used as a control. Datasets used in this
training had a 1:1 ratio of SSMAs:non-SSMAs, and a 9:1 ratio of non-transitions:transitions.

Lc1
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transitions.
The Matthews’ correlation coefficient (Matthews, 1975) (MCC) was calculated for

the results of each testing set. The coefficient is calculated using the equation:

TP, TN, — FP,FN,

MCC =
(TP, + FN,)(TP, + FP,)(TN, + FP,)(TN, + FN,)

(14)

where TP,, TN,, FP,, FN, are the numbers of true positives, true negatives, false
positives and false negatives for state . The value of MCC is between -1 and +1. A
value of -1 indicates total disagreement, +1 total agreement and 0 a completely random
prediction and yields easy comparison with respect to a random baseline (Baldi et al.,
2000).

The results of the initial neural networks trained can be seen in table 23. The
values in the table represent the averaged data from the three testing files. The con-
trol net (SSMAtrained191103.net) performed poorly, only predicting the presence or
absence of SSMAs correctly 50% of the time. This gave a good series of values with
which to compare the other neural network results. Two networks performed very
well, predicting the SSMAs over 86% correctly and the transitions over 96% correctly:
SSMAtrained211103.net and SSMAtrained031203.net (See table 22). Of all the net-
works, SSMAtrained031203.net predicted the SSMAs correctly most often while SS-
MAtrained081203.net predicted the transitions better by pure percentages.

Although all of the nets appear to have performed well in predicting the transitions
it must be remembered that each testing set had a ratio of 9:1 non-transitions to
transitions. This means that the network could always predict a position as being a
non-transition and be correct approximately 90% of the time. Consequently, further

networks were trained using a 1:1 ratio of transitions to non-transitions.
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Network name SSMAs MCC SSMAs Transitions MCC Transitions
predicted predicted predicted predicted
correctly  correctly correctly correctly

SSMAtrained191103.net} 50.0% 0.0019 94.9% 0.7338

SSMAtrained201103.net 59.0% 0.1897 92.2% 0.6276

SSMAtrained211103.net 86.4% 0.7285 96.5% 0.8052

SSMAtrained221103.net 75.9% 0.5183 95.5% 0.7628

SSMAtrained241103.net 64.3% 0.7023 86.0% 0.8344

SSMAtrained011203.net 82.6% 0.7230 96.7% 0.8464

SSMAtrained021203.net 78.1% 0.6441 95.5% 0.7917

SSMAtrained031203.net 89.1% 0.7978 96.5% 0.8592

SSMAtrained041203.net 83.9% 0.7343 96.4% 0.8070

SSMAtrained041203double.net  84.3% 0.7442 96.4% 0.8372

SSMAtrained081203.net 83.1% 0.7179 97.0% 0.8500

Table 23: Results of first trained neural networks. 1SSMAtrained191103.net was used
as a control.

5.4.1 Predicting SSMA Transitions

Five nets were trained using the 20,000 pattern files with the 1:1 ratios for both
SSMAS:non-SSMAs and transitions:non-transitions (datasets 5 to 8 in table 21). The
first four nets were different to one another to see if any one particular series of pa-
rameters would improve the number of correctly predicted sequence windows. Single
and double hidden layers were used, as were the recommended and non-standard pa-
rameters for Rprop. As before the recommended settings for Rprop refer to o = 0.1,
Omaz = 90.0 and o = 4, while the non-standard settings refer to dp = 0.2, 9,4, = 50.0
and o = 4. The final net was designed as a control using parameters that had previ-
ously given low numbers of correct SSMA predictions. The parameters of these nets
can be seen in table 24.

As before the networks were tested with different pattern files to those that they
were trained with. Testing was once again performed using three pattern files, this
time each of 20,000 patterns due to lack of transitions. The averaged results of the

three testing files for these networks can be seen in table 25.
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Network name  Training Parameters

Half110204.net  Rprop with recommended settings, single hidden layer, jogged ev-
ery epoch -0.01 to 0.01, 1000 cycles

Half120204.net  Rprop with non-standard settings, single hidden layer, jogged ev-
ery epoch -0.01 to 0.01, 1000 cycles

Half130204.net  Rprop with recommended settings, double hidden layer, jogged
every epoch -0.01 to 0.01, 1000 cycles

Half140204.net  Rprop with non-standard settings, double hidden layer, jogged
every epoch -0.01 to 0.01, 1000 cycles

Half150204.nett Rprop (parameters set to zero), single hidden layer, no jogging,
1000 cycles

Table 24: Parameters for neural networks trained with pattern files containing the 1:1
ratio of non-transitions:transitions. tHalf150204.net as used as a control.

Network name SSMAs MCC SSMAs Transitions MCC Transitions

predicted predicted predicted predicted

correctly  correctly correctly correctly
Half110204.net  83.5% 0.6697 94.8% 0.8882
Half120204.net  83.8% 0.6766 95.1% 0.8962
Half130204.net  84.2% 0.6846 94.1% 0.8736
Half140204.net  84.7% 0.6948 95.5% 0.9030
Half150204.nett  53.8% 0.0760 82.8% 0.6443

Table 25: Results of training the neural networks with a 1:1 ratio of non-transitions to
transitions. tHalf150204.net as used as a control.
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The control performed worse than the rest of the networks as expected. The neural
networks predicted the presence or absence of the transitions very well, though not as
well as some of the previous networks. They did tend to give slightly better values
for the Matthews’ correlation coefficient though. The SSMAs were also consistently
predicted well even with the much smaller pattern files. However they still did not do

as well as some of the initial series of networks did.

5.5 Predicting in/out transitions

The neural nets had been able to predict the occurrence of SSMAs extremely well.
They had also been capable of predicting where the transitions occur. The next neural
nets were altered from four outputs (SSMA, non-SSMA, transition, non-transition) to
five outputs (SSMA, non-SSMA | in-transitions, out-transition, non-transition), to train
and test nets with the intention of predicting an in-transition and an out-transition
separately.

For the first set of neural networks training and test pattern files using a 9:1 non-
transition:transition ratio were used. This meant that there were approximately 5%
in-transitions and 5% out-transitions in each pattern file. New datasets had to be
created to train and test these neural networks, these can be seen in table 26. The
parameters of all the neural nets trained with these pattern files can be seen in table 27.
The percentages of transitions and SSMAs predicted correctly can be seen in table 28.
As these neural networks produced three interdependent outputs the values for the
Matthews’ correlation coefficient equation had to be altered. The modified equation

to calculate the MCC values is:

(pi + pj)n — (u; + uj)o

MCC =
V(i + pj + 0)(pi + pj + ui +u;) (n + 0) (n + u; + uy))

(15)
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Dataset SSMA Non-SSMA In-Transition Out-Transitions Total

patterns patterns patterns patterns patterns
Set 1 51600 48631 4507 4759 100231
Set 2 49726 49028 3871 4692 98754
Set 3 49104 47737 4622 5027 96841
Set 4 50928 48914 4524 3816 99842

Table 26: Datasets used in the training and testing of neural networks where in-
transitions and out-transitions were predicted separately.

Network name Training Parameters

Alteredtrained070504.net  Rprop with recommended settings, single hidden layer,
jogged every epoch -0.01 to 0.01, 1000 cycles

Alteredtrained080504.net  Rprop with non-standard settings, single hidden layer,
jogged every epoch -0.01 to 0.01, 1000 cycles

Alteredtrained090504.net  Rprop with recommended settings, double hidden layer,
jogged every epoch -0.01 to 0.01, 1000 cycles

Alteredtrained100504.net  Rprop with non-standard settings, double hidden layer,
jogged every epoch -0.01 to 0.01, 1000 cycles

Alteredtrained110504.nett Rprop (no settings), single hidden layer, no jogging,
1000 cycles

Table 27: Parameters of the neural networks trained with pattern files containing the
1:1 ratio of in-transitions:out-transitions. fAlteredtrained110504.net was used as a
control.

where p; = the number of true positives, p; = half the number of positions correctly
predicted as transitions but incorrectly predicted as an in/out transition when it is an
out/in transition, n = the number of true negatives, o = the number of false positives
and u; = the number of false negatives, u; = half the number of positions correctly
predicted as transitions but incorrectly predicted as an in/out transition when it is an
out/in transition. The MCC values given in this way can be seen in table 28.

The previous neural nets were trained with only 5% in-transitions and a similar
number of out-transitions. The next set of neural nets was trained with the same pa-
rameters as the previous five nets but with different training and testing pattern files,

seen in table 29. The parameters of each neural network can be seen in table 30. Instead



Network name SSMAs In-Transitions OQOut-Transitions Non-transitions MCC

predicted predicted predicted predicted

correctly  correctly correctly correctly
Alteredtrained070504.net  85.0% 61.0% 65.7% 99.4% 0.8170
Alteredtrained080504.net  85.1% 55.7% 66.1% 99.4% 0.8050
Alteredtrained090504.net  82.8% 64.8% 66.1% 99.4% 0.8340
Alteredtrained100504.net  75.4% 65.4% 69.3% 99.2% 0.8250
Alteredtrained110504.nett 86.2% 43.6% 72.6% 99.3% 0.7778

Table 28: Results of the neural networks trained with pattern files containing the 1:1 ratio of in-transitions:out-transitions.

TAlteredtrained110504.net was used as a control.
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Dataset SSMA Non-SSMA In-Transition Out-Transitions Total

patterns patterns patterns patterns patterns
Set 1 9457 9952 3784 5004 19409
Set 2 11674 9739 4855 4706 21413
Set 3 9708 10468 4638 4271 20176
Set 4 10041 9510 3994 4087 19551

Table 29: Further datasets used in training and testing neural networks for predicting
In/Out-Transitions.

Network name Training Parameters

Alteredtrained180504.net  Rprop with recommended settings, single hidden layer,
jogged every epoch -0.01 to 0.01, 1000 cycles

Alteredtrained190504.net  Rprop with non-standard settings, single hidden layer,
jogged every epoch -0.01 to 0.01, 1000 cycles

Alteredtrained200504.net  Rprop with recommended settings, double hidden layer,
jogged every epoch -0.01 to 0.01, 1000 cycles

Alteredtrained210504.net  Rprop with non-standard settings, double hidden layer,
jogged every epoch -0.01 to 0.01, 1000 cycles

Alteredtrained220504.nett Rprop (no settings), single hidden layer, no jogging,
1000 cycles

Table 30: Parameters for the neural networks trained with pattern files containing the
1:1:2 ratio of in-transitions:out-transitions:non-transitions. tAlteredtrained220504.net
was used as a control.

of only using 5% of each transition, pattern files were created with only approximately
20,000 protein windows. Within each pattern file 10,000 protein windows were transi-
tions. Therefore each pattern file had roughly 25% in-transitions, 25% out-transitions
and 50% non-transitions.

The networks were tested with three test sets, each containing none of the pat-
terns from the training file or the other test files. These files contained 20,000 protein
windows with the transitions in the same ratios as they were in the training file. The
results of these neural nets can be seen in table 31.

Comparing the results in table 28 and table 31 it would seem that the
non-transitions are always predicted well. However in order to predict whether a

transition is into a SSMA or out of a SSMA it is necessary to increase the number of



Network name SSMAs In-Transitions OQOut-Transitions Non-transitions MCC

predicted predicted predicted predicted

correctly  correctly correctly correctly
Alteredtrained180504.net  84.8% 87.5% 90.0% 95.8% 0.8748
Alteredtrained190504.net  84.6% 84.6% 82.9% 95.8% 0.8481
Alteredtrained200504.net  84.4% 89.6% 90.7% 95.8% 0.8849
Alteredtrained210504.net  82.2% 85.9% 86.5% 95.8% 0.8594
Alteredtrained220504.nett 85.7% 87.7% 89.0% 95.6% 0.8726

Table 31: Results for the neural networks trained with pattern files containing the 1:1:2 ratio of in-transitions:out-transitions:non-

transitions. tAlteredtrained220504.net was used as a control.
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these types of transitions that the neural network is exposed to during the training
phase. This is as expected.

Altering the transition ratios does not seem to have had an effect predicting the
absence or presence of SSMAs correctly. Both sets of networks predicted the SSMA

positions between 75% to 86% of the time.

5.6 Confidence Scores

In addition to the Matthews’ Correlation coefficient a confidence was also calculated.
Outputs for predictions are not binary, but are a real value between 0 and 1. These
values for SSMA and non-SSMA can be combined to give a confidence score rather
than simply selecting the higher value.

In order to measure the confidence that the neural networks had in their predictions
the equation in figure 16 was used. The confidence score returned from this equation

was between -1 and 1. A value close to -1 indicated a confident prediction of a non-

SSMA and a value close to 1 indicated a SSMA.

Py

—— 7 05 16
Py + Pn ) (16)

Confidence score = 2 x (

where Py = predicted probability of the position being SSMA and Pn = predicted
probability of the position being non-SSMA.

The neural networks from table 24 were used for the calculation of confidence
scores. These nets were used because there was a good level of difference between the
control nets and the actual nets. If the neural nets were predicting SSMA positions
well then the graphs of confidence would favour the -1 and +1 sides of the graph. If
the neural nets were predicting the SSMA positions poorly because there was only a
small difference between its SSMA and non-SSMA score from the results file, then the

distribution would tend towards the values closer to 0.
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Figure 62: Distribution of confidence scores for networks trained with a 1:1 ratio of
transitions to non transitions: a) half110204.net b) half120204.net c¢) half130204.net
and d) half140204.net

Figure 62 shows the distribution of confidence scores for the neural nets (figure 63
is a control). The mean can be found in table 32. The nets were tested with a 20,000
protein window pattern file. All bar the control net figure 63 show the confidence
values favouring the -1 and +1 extremes. Only the confidence scores resulting from the
control neural net (Half150204.net) give a different pattern of results. As the control
net is supposed to perform poorly, confidence scores of close to 0 were expected.

The confidence of the other trained neural nets was calculated in the same way.
Of all the networks, SSMAtrained031203.net performed best for SSMA prediction as
figure 64a shows. The other networks had means closer to 0 and larger standard
deviations. This, coupled with its very good correct prediction rates and MCC values,
made this the best of the single sequence neural networks that trained. The only

network that came close was SSMAtrained081203.net, its confidence scores graph can
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Figure 63: Distribution of confidence scores for the control network, half150204.net

Network name

Mean for values less than 0 Mean for values greater

than than 0
half110204.net -0.841 0.823
half120204.net -0.880 0.872
half130204.net -0.822 0.810
half140204.net -0.848 0.839
half150204.net -0.059 0.091
SSMAtrained031203.net -0.952 0.966
SSMAtrained081203.net -0.926 0.916

Table 32: The mean values for data presented in figures 62, 63, 64. thalf150204.net

was used as a control.
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Figure 64: Distribution of confidence scores for networks trained with a 1:9
ratio of transitions:non-transitions. a) SSMAtrained031203.net and b) SSMA-
trained081203.net

be seen in figure 64b. For these reasons these two networks were later used for the

networks detailed in the later chapter “Dual Sequence Prediction”.

5.7 ROC Plots

Receiver operating characteristic (ROC) (Peterson, 1954; Swets, 1988; Gribskov and
Robinson, 1996) analysis is a powerful and widely used technique for assessing predic-
tive methods (Ison and Blades, 2005). A ROC curve is defined as a plot of test sensitiv-
ity versus its 1-specificity or false positive rate (Park et al., 2004) for different threshold
points of a parameter (See http://www.medcalc.be/manual/mpage06-13b.php). In
this research the threshold was the confidence of the neural network in its predictions
of a position being considered a SSMA or a non-SSMA. The neural networks predicted
two values, one for the chance of it being a SSMA and one for the chance of it being
a non-SSMA. If the prediction for it to be a SSMA position was higher than the pre-
diction for it to be a non-SSMA position then it was marked as predicted as a SSMA
position. This equates to using a threshold (confidence score) of 0.

A ROC plot was calculated for the best of each set of trained networks. In each

one, different threshold values of the confidence score between -1 and +1 were used
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and the true and false negatives and positives calculated. The true and false negatives
and positives were then used to calculate the sensitivity and selectivity of the networks

using that cutoff value. Sensitivity is calculated using the equation:

TP

TP+ FN (17)

Sensitivity =

where TP is the number of true positives and F'N is the number of false negatives.

The selectivity of the neural network at the threshold points were calculated using:

TN

—_— 1
FP+TN (18)

Selectivity =

where F'P is the number of false positives and T'N is the number of true negatives.
Figure 65 shows the ROC plot for SSMAtrained031203.net. As the graph shows
using a cutoff of 0 in this case seems to have been ideal as it has a high sensitivity
showing that it has the majority of the true positives. At the same time it has a low
1 — Selectivity which shows that it is not returning a large number of false positives.
The same is demonstrated again in figure 66 for half140204.net and in figure 67 for
altered020504.net. A different cutoff for deciding whether a position was predicted as
SSMA or non-SSMA would not have improved the number of true positives or decreased

the number of false positives by much.

5.8 Prediction of an Alignment Pairing

The networks were tested using a randomly chosen set of 9-residue windows but were
also tested using examples of actual domain sequences. The domain sequences chosen
all contained SSMAs and were randomly chosen from all the pairings that made up
the data set but had not been used in either the training or the testing pattern files.

Eight pairings were chosen as seen in table 33.
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Figure 65: ROC plot for SSMAtrained031203.net. The red point is the value used in
the confidence analysis, the black line is the value expected by chance.
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Figure 66: ROC plot for half140204.net. The red point is the value used in the confi-
dence analysis, the black line is the value expected by chance.
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Figure 67: ROC plot for altered020504.net. The red point is the value used in the
confidence analysis, the black line is the value expected by chance.

Sequence pairing % predicted correct
1rtfB1 1sluB2 84.4
3rp2A2 1rtfB2  91.2
3hhrB1 1cfb01 77.9
1zxq02 1firH2 90.9
1hrnA1l 1b5fA0 80.6
2plv40 1bev40 63.2
1ytiAO 1ThrnA1l 80.7
1firH2 12e8L1 92.9

Table 33: The eight alignments that were used in the neural network testing and the
% SSMA positions predicted correctly.



CHAPTER 5. PREDICTING SSMAS USING NEURAL NETWORKS 143

Prediction confidence Symbol

0.0<|C]<0.2 nothing
0.2 <|C| <04

0.4 <|C| <06 :

0.6 < |C|<0.8 |

0.8 <|C| < 1.0 4

Table 34: The symbols used by the graphical.pl program to represent the different
levels of confidence in a SSMA prediction.

++ ++ ++ ++ ++++  + Predicted transitions
sorokstokdok kokoksk skokskokskok kokokokokokokok sk skokokoskok sk sk ok ok ook Predicted SSMAs

R Y Confidence
sokokokkkk kakkk kkokkokok kokkokkokokok Kk kkkkkkkkkkkx  Actual SSMAs

PWQAAIFAKHRGERFLCGGILISSCWILSAAHCFQERFPPHHITVILGRTYR Domain sequence

++ o+ 4+ + + + + + ++ +4++
Kokok  kkkskokook kokokokkokok ok kokkskokok kkskskokok kokskokokk Kk skokokok

| -ttt i R | S i R
dokksokoskokokokokokokokokokokokok  skokokokokokokok kokokskokok sokakokokok ke keokoskokokok ok sk ok ook ok

VVPGEEEQKFEVEKYIVHKEFDDDTYDNDIALLQLKSDSSRCAQESSVVRTNYLDWIRDN

Figure 68: Example of the output of the program graphical.pl for the protein domain
1rtfB2.

The program graphical.pl, which can be found in the accompanying CD, was used to
take the raw output of the neural network and convert it into a visually comprehensible
annotated sequence. As well as indicating where the sequences were correctly and
incorrectly predicted as SSMA or transitions it also gave a graphical indication of how
confident the network’s predictions were. An example of the output of this program
can be seen in figure 68. The confidence (as calculated by Equation 17) is indicated

by symbols shown in table 34.



Chapter 6

Predicting With Two Sequences At

Once

The single sequence prediction neural networks in the previous chapter identified areas
of a sequence likely to be misaligned. The neural networks trained in this chapter
were designed to indicate where the alignment between two sequences was correct
or incorrect. Rather than using a single sequence with its secondary structure, the
input for these neural nets was created from an aligned pair of domain sequences and
the secondary structures of those sequences. The layout of these nets can be seen in

figure 69. Both SSMAs and transitions were predicted using these networks.

6.1 Training and testing data files

The datasets were created from the same SRep alignments as were used in the previous
chapter. These networks were trained and tested with pattern files of approximately
100,000 patterns. Once again a single training pattern file was used for each neural
network and tested with three test sets. Each pattern could appear only once in any

of the pattern files to ensure that if a network was trained with a certain pattern it

144
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Figure 69: The layout of the dual sequence neural networks. The blue boxes represent
the input layer, the red the hidden layer and and the yellow the output layer.

could not be tested with that same pattern.

The ratio of SSMAs to non-SSMAs was maintained at approximately 1:1. The
transitions were kept at a ratio of 9:1 non-transitions:transitions. This low level of
transitions was done even though previous nets had shown that a ratio of 1:1:2 in-
transitions: out-transitions:non-transitions predicted the transition positions better.
This was owing to the fact that only 20,000 protein windows could be used with that
ratio of transitions. Because of the increasing complexity of the patterns, a 100,000
pattern file was necessary for training these neural networks. There were not enough
in- and out- transitions to create four pattern files of 100,000 windows with 1:1 ratios.

These pattern files were generated by slightly altering the same set of programs
used in the single sequence SSMA neural networks. The datasets used for training and

testing can be seen in table 35.

6.2 Different Parameters of Neural Nets

The control network used Rprop but its parameters were left at 0 and trained for 1000

cycles. Other training parameters were then set up based on previous experiences with
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Dataset SSMA Non-SSMA Transition Total

patterns patterns patterns patterns
Set 1 46684 46529 6559 93213
Set 2 48439 45691 8631 94130
Set 3 49818 50742 9654 99923
Set 4 46832 46784 6602 93616

Table 35: Datasets used in the training and testing of neural networks when predicting
two sequences at once.

training the single sequence prediction networks. As the networks were trained and
tested the parameters were developed for successive networks based on the earlier ones.
All of the parameters can be seen in table 36.

Most of the networks had a single hidden layer of 20 nodes, if no other value is
specified in table 36 then the network had this type of hidden layer. In some cases
double hidden layers were used which were made up of two layers, each made up of 20
nodes. Two other types of hidden layer were tried, one small (5 node) and one large

(50 node) to try to improve the predictions of the neural networks.

6.3 Results of Training Sets

The results of the neural networks can be seen in table 37. The Matthews’ correlation
coefficient was calculated for both the number of correctly predicted SSMAs and the
number of correctly predicted transitions. As the results show although all but one of
the networks predicted above 60% they did not perform as well as the previous single
sequence prediction networks. It is important to note that these nets are predicting
something rather different, namely whether two sequences are correctly aligned, rather
than the ‘alignability’ of a single sequence. As the training and test pattern files
contained half SSMAs and half non-SSMAs if the network had predicted all the patterns

as SSMA then it would have been correct 50% of the time. Comparing this value to



Network name

Training Parameters

dualtrained100804.net
dualtrained110804.net
dualtrained120804.net
dualtrained130804.net
dualtrained160804.net

dualtrained170804.net
dualtrained180804.net

dualtrained030904.net
dualtrained060904.net

dualtrained130904.net
dualtrained160904.net
dualtrained200904.net
dualtrained210904.net
dualtrained220809.net

dualtrained240908.net

Rprop (no settings), single hidden layer, no jogging, 1000 cycles

Rprop with recommended settings, single hidden layer, no jogging, 1000 cycles

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 1000 cycles
Rprop with non-standard settings, single hidden layer, jogged every epoch -0.01 to 0.01, 1000 cycles
Rprop with recommended settings, single small (1 x 5) hidden layer, jogged every epoch -0.01 to 0.01,
1000 cycles

Rprop with recommended settings, double hidden layer, jogged every epoch -0.01 to 0.01, 1000 cycles
Rprop with recommended settings, single large (5 x 10) hidden layer, jogged every epoch -0.01 to
0.01, 1000 cycles

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 1000 cycles
Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 1000 cycles,
trained with four pattern sets

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 1000 cycles,
trained with pattern file with no gaps

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 1000 cycles,
based on dualtrained130904.net

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 1000 cycles,
trained with second pattern file with no gaps

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 10000 cycles,
trained with second pattern file with no gaps

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 1000 cycles,
trained without secondary structure patterns

Rprop with recommended settings, single hidden layer, jogged every epoch -0.01 to 0.01, 10000 cycles

Table 36: Parameters for the dual-trained neural networks. tdualtrained100804.net was used as a control.
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Network name SSMAs MCC SSMAs Transitions MCC Transitions

predicted predicted predicted

correctly  correctly correctly
dualtrained100804.nett 64.3% 0.2864 92.9% 0.6513
dualtrained110804.net  64.2% 0.2840 92.9% 0.6513
dualtrained120804.net  67.0% 0.3400 92.6% 0.6408
dualtrained130804.net  67.0% 0.3400 92.6% 0.6408
dualtrained160804.net  67.0% 0.3393 92.9% 0.6513
dualtrained170804.net  67.5% 0.3506 92.9% 0.6513
dualtrained180804.net  66.9% 0.3374 92.2% 0.6265
dualtrained030904.net  66.3% 0.3266 92.3% 0.6307
dualtrained060904.net  24.4% -0.5130 54.1% 0.0440
dualtrained130904.net  66.3% 0.3262 92.9% 0.6513
dualtrained160904.net  62.1% 0.2427 92.9% 0.6513
dualtrained200904.net  67.7% 0.3542 92.9% 0.6513
dualtrained210904.net  66.6% 0.3316 92.9% 0.6513
dualtrained220904.net  62.3% 0.3461 92.9% 0.6513
dualtrained240904.net  60.2% 0.2034 92.9% 0.6513

Table 37: Results for the dual trained neural networks. fdualtrained100804.net was
used as a control.

the ones reached by these networks shows that the networks did not predict more than
10-17% above this random value.

The transitions were predicted correctly more than 92% of the time in all but one of
the networks. However with the non-transition to transition ratio being 9:1 this means
that had the network simply predicted all the patterns as non-SSMA it would have
been correct 90%. Taking this into consideration the prediction of the transitions for
these networks is not very good. Especially not compared to the transition prediction
rate that some of the networks had in the single sequence prediction.

The Matthews’ correlation coefficient values confirm this view. None of the SSMA
predictions managed to get more than 0.3542 although transition prediction reached

0.6573.
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Figure 70: Distribution of confidence scores for dualtrained200904.net.

6.4 Confidence Scores

The confidence scores were calculated as before using equation 16.

Encouragingly, in addition to the low accuracy and MCC scores, the confidence
scores were also low. Figure 70 shows the confidence scores of the best of the two
sequence SSMA prediction networks (dualtrained200904.net). Unlike previous neural
network confidence scores the majority of the confidence scores are clusters between

-0.5 to 0.5 rather than at -1 and 1.

6.5 ROC Curves

As had been done before a ROC curve was calculated for the best of the networks
trained in this chapter, dualtrained200904.net. Selectivity and Sensitivity were calcu-
lated according to the equations 18 and 19. Figure 71 shows the results of altering the

cutoff value for whether a position is predicted as a SSMA or non-SSMA. Compared
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Figure 71: ROC plot for dualtrained200904.net. The red point is the value used in the
confidence analysis, the black line is the value expected by chance.

with the ROC curves in the previous chapter, this graph shows that the neural network

performed poorly.

6.6 Prediction of an Alignment Pairing

Using these networks to examine an alignment would be expected to give us a poor
idea of where the SSMAs occur. Although the networks do predict correctly in places
the percentages of correct SSMA predictions would lead us to believe that approxi-
mately 40% of the alignment would be incorrectly predicted by these neural networks.
Figure 72 shows the alignment between 1rtfB1 (two chain tissue plasminogen acti-
vator from Homo sapiens) and 1sluB2 (anionic N143H, E151H trypsin complexed
to A86H ecotin from Rattus norvegicus) and where the best of the neural networks
(dualtrained200904.net) predicted it correctly. The diagram was produced using the

graphical.pl program as used in the previous chapter.
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Figure 72: The SSMA and transition predictions of dualtrained200904.net for the
alignment pairing 1sluB2 and 1rtfB1. All the predictions are at quite low confidence.
See table 34 for the confidence symbols.
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As figure 72 shows, these nets failed to correctly predict some of the position of the

SSMAs in this case. The confidence is also shown to be low.



Chapter 7

Dual Sequence Prediction

Since the networks that were designed to predict SSMAs using two aligned sequences
at once did not give the expected results, a different approach was taken, based on the
successful single sequence SSMA networks. This process used a sequence of two neural
networks, one that predicted where a single sequence was likely to have SSMAs and
one that then combined this information with an alignment in order to predict where
the SSMAs occurred within the alignment. A flowchart of this can be seen in figure 73.
A series of programs were used in order to achieve this (see the accompanying CD),

they were:

e genssmafile.pl (written by Dr. A.C.R. Martin) — using the sequence and struc-
tural alignment files, genssmafile.pl generates a file containing the true SSMA

positions in a sequence

e wrapgenssm.pl — given the directory name where the sequence and structural
alignments exist, this program takes each pair in turn and presents them to

genssmatfile.pl to generate SSMA files for all protein domain pairs in a directory

e getss.pl (written by Dr. A.C.R. Martin) — when presented with a PDB identifier,

getss.pl generates a file containing the secondary structure of the appropriate

153
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sequence. Secondary structure information is extracted from a pre-calculated

SST file generated by SSTRUC (Smith and Thornton, 1989).

e wrapgetss.pl — given the directory name where the sequence and structural align-
ments exist, wrapgetss.pl takes the name of each structural alignment file and
pulls out the PDB identifiers to present to getss.pl, one at a time, to generate

secondary structure files for all protein domain pairs

e makeinputl.pl (written by Dr. A.C.R. Martin) — takes an output file from genss-
mafile.pl and the matching output file from getss.pl and combines the SSMA
position information, alignments and secondary structure into a single entry in a

separate file

e wrapmakeinputl.pl — using the name of the directory containing the sequence
and structural alignment, this program uses makeinputl.pl to make a file con-
taining a table of SSMA positions, alignments and secondary structure for all

protein domain pairs

e blackboxSSMA.pl — using a sequence alignment file (in FASTA format) this
program uses a pre-made wrapmakeinputl.pl file to create a pattern file and
submit it to a trained single sequence prediction neural network. This is then
predicts the single sequence SSMAs within a sequence and creates a new table
within a new file containing SSMA position information, the predicted SSMA

position information, alignments and secondary structure

e blackboxSSMA2.pl — uses blackboxSSMA.pl to predict the single sequence SS-
MAs for each sequence in an alignment and then uses the results to prepare
and run a pattern file through a trained dual sequence prediction neural network
to predict the dual sequence SSMAs for a protein domain pair and print the

information to an output file
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e wrapblackbox.pl — when presented with a directory name, goes through each
sequence alignment and structural alignment pair of files and presents the files

to blackboxSSMAZ2.pl to generate dual sequence SSMA predictions

The pattern files for the dual sequence networks were significantly different from
those used in the previous chapter’s neural nets. It was hoped that by increasing
the amount of information provided to the network that there would be a greater
amount of success. Also by giving the second neural network the results of the single
sequence SSMA predictions it was hoped that this would help in SSMA prediction in

an alignment. The pattern files contained:

e The sequence of the first domain as it appears in the alignment

e The sequence of the first domain without any gaps

e The secondary structure of the first domain as modified by the alignment

e The secondary structure of the first domain without any gaps

e The single sequence neural network SSMA prediction for the first domain

e The sequence of the second domain as it appears in the alignment

e The sequence of the second domain without any gaps

e The secondary structure of the second domain as modified by the alignment

e The secondary structure of the second domain without any gaps

The single sequence neural network SSMA prediction for the second domain

The layout of the dual sequence neural networks can be seen in figure 74. The
trained neural network for the single sequence SSMA prediction used was SSMA-

trained031203.net. It had the best combination of SSMAs predicted correctly, highest
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Figure 73: A flowchart of the neural network setup used in this chapter.
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Dataset SSMA patterns Non-SSMA patterns Total patterns
Set 1 53635 49787 103422
Set 2 53356 50165 103521
Set 3 52751 51078 103829
Set 4 53264 49792 103056

Table 38: Datasets used in the training and testing of neural networks for dual sequence
prediction.

MCC values and best confidence scores. Only in one set of parameters was a different
single sequence SSMA prediction network used; SSMAtrained081203.net. It achieved
results that were almost as good as SSMAtrained031203.net. The layout of these net-

works can be seen in figure 74.

7.1 Different Parameters of Neural Nets

As before pattern files of approximately 100,000 9-residue windows were used to train
and test the networks. A 9-window pattern could only appear in one testing or training
set to prevent the networks being exposed to the same pattern on more than one
occasion. The datasets used for training and testing of these neural networks can be
seen in table 38.

The first network trained was once again a control, using Rprop but leaving the
parameters set to zero. Other networks were tried with differing training parameters
that were based on those that had been used before (see section 5.3). These parameters

can be found in table 39.

7.2 Results of Training Sets

These neural networks only predicted the presence or absence of SSMAs, not transi-

tions. Each neural network was tested with three pattern files and the values then
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Figure 74: The layout of a typical pattern file used in the dual sequence neural networks.
The inputs used were the sequences, secondary structures and SSMA prediction for
both windows of the aligned sequences.
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Network name Training Parameters

negcontrol untrained neural network
smoothing291104.net (control) Rprop (no settings), single hidden layer, no jogging,
1000 cycles

smoothing021204.net Rprop with recommended settings, single hidden
layer, no jogging, 1000 cycles
smoothing031204.net Rprop with recommended settings, single hidden
layer, jogged every epoch -0.01 to 0.01, 1000 cycles
smoothing101204.net Rprop with recommended settings, single hidden
layer, jogged every epoch -0.1 to 0.1, 1000 cycles
smoothing131204.net Rprop with recommended settings, single hidden
layer, jogged every epoch -0.001 to 0.001, 1000 cy-
cles
smoothing161204.net Rprop with recommended settings, single hidden
layer, jogged every epoch -0.01 to 0.01, 2000 cycles
smoothing161204.net Rprop with recommended settings, single hidden
layer, jogged every epoch -0.01 to 0.01, 4000 cycles
smoothing130105.net Rprop with recommended settings, single hidden

layer, jogged every epoch -0.01 to 0.01, 1000 cycles,
based off SSM Atrained081203.net

Table 39: Parameters of the dual sequence neural networks.
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Network name SSMASs predicted MCC SSMAs predicted
correctly correctly
negcontrol 48.5% -0.0243
smoothing291104.net (control) 69.9% 0.4045
smoothing021204.net 70.7% 0.4147
smoothing031204.net 83.3% 0.6660
smoothing101204.net 92.9% 0.6481
smoothing131204.net 82.7% 0.6542
smoothing161204.net 82.5% 0.6503
smoothing171204.net 85.1% 0.7027
smoothing130105.net 82.9% 0.6585

Table 40: Results of the dual sequence neural networks.

averaged. The results of the testing can be seen in table 40. The results of these
neural networks were much better than those found in the previous chapter with
smoothing101204.net predicting the SSMAs correctly 92.9% of the time. However,
the Matthews’ correlation coefficient values are not as good as those that the single
sequence neural networks achieved.

A negative control was introduced into this series of networks to compare with the
others. It was an untrained network, the same one that the others were trained from.
As expected it performed extremely poorly, making predictions at random (50% correct
predictions, MCC 0). Comparing the other networks to that value it is possible to see
how much better the others performed.

Using SSM Atrained081203.net as the single sequence SSMA prediction neural net-
work did not improve the training of the dual sequence network. It performed as well
as some of the other networks trained using SSMAtrained031203.net.

Of all the neural networks smoothing101204.net predicted SSMAs the best. It
achieved a correct prediction rate of 92.9%, better than even the single sequence SSMA
prediction networks were capable of. Of course those networks were predicting areas

in a single sequence that were likely to have SSMAs when aligned with another. These
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networks were predicting where an alignment was correct and where it was incorrect.

The Matthews’ correlation coefficients for smoothing101204.net were not as good
as for some of the other neural networks. Another network, smoothingl171204.net,
had an MCC average value of 0.7027, but predicted the positions as SSMA or non-
SSMA correctly 85.1% of the time. These values should be compared with the best

performance of 67.5% (MCC = 0.3542) seen in table 37 of the previous chapter.

7.3 Prediction of an Alignment Pairing

Taking smoothing101204.net as the neural network that performed best it was used
on an alignment pairing. As before the alignment between 1rtfB1 (two chain tissue
plasminogen activator from Homo sapiens) and 1sluB2 (anionic N143H, E151H trypsin
complexed to A86H ecotin from Rattus norvegicus) was used. The alignment was
converted into a pattern file using the programs listed above. This pattern file was
then fed into smoothing101204.net and the results analyzed.

As figure 75 shows the neural network was able to predict the presence of the SSMAs
in the alignment. Thus the method indicates where the alignment should be altered

as the sequence and structural alignments disagree.

7.4 Confidence Scores

These networks performed very well in terms of predicting the SSMA regions correctly.
The MCC values were not as good as the single sequence neural networks achieved but
still meant that the predictions seemed significant in terms of true and false negatives
and positives. The confidence values were also calculated to see how confident the
networks were. These in combination with the prediction rates and MCC values would

determine how well the networks had done.
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Figure 75: The SSMA predictions of smoothing101204.net for the alignment pairing

1sluB2 and 1rtfB1. See table 34 for the confidence symbols.

SSMAs 53751  51.8%
non-SSMAs 50078  48.2%
Total patterns 103829

Table 41: Counts and percentages for the smoothing141204.pat pattern file.

As before, the confidence scores were calculated using Equation 16.

All of the networks were tested using the same pattern file, smoothing141204.pat

which contained no patterns that any of them had been exposed to during the training

phase. The single sequence SSMA predictions that formed part of the neural network

input were based on predictions made by SSMAtrained031203.net. The numbers of

SSMAs and non-SSMAs used for training this network can be found in table 41.

Figures 76 and 77 show the graphs of the confidence scores for the nine nets tested.

The untrained negative control obviously performed very poorly, (figure 76a) showing

that the neural network had little confidence in its predictions.
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Figure 76: Distribution of confidence scores for a) negcontrol (negative control) and b)
smoothing291104.net (control).

The neural network that had performed well in the earlier tests, smooth101204.net
did very well in the confidence scoring as well (figure 77c). The majority of its predic-
tions were close to 1 or -1, showing that the level of confidence in its predictions was
high. This does however mean that when it predicted incorrectly, which it did for only
7.1% of the data, it was also confident that it was correct. However, these incorrect
predictions may have been within the lower confidence ranges of 0.5 <| C' |< 0.6 or

0.8 <| C|<0.7.

7.4.1 ROC Curves

Once again a ROC plot was calculated for the best of this set of neural networks,
smoothing101204.net. Selectivity and Sensitivity were calculated as before, using Equa-
tions 17 and 18. The graph of this can be seen in figure 78.

As the graph shows, using a cutoff of 0 to analyze this set of neural networks was

once again optimal.



CHAPTER 7. DUAL SEQUENCE PREDICTION 164

35000 40000

35000

of Predictions
of predictions

No
No

Confidence score confidence score

oV
~

o
~

50000 10000
45000 35000
30000
25000

20000

of predictions
of predictions

15000

10000

No
No.

5000

Confidence score Confidence score

o
~

o,
~

35000 40000
" 35000
: :
§ i1 30000
] P
P 0
Rl sl 25000
n °
d :
o 20000
8 v
4 15000
0
z o
= 10000
5000
o
A o > h 12 o ® °
confidence score Confidence score

)
N—

—~
N—

35000

30000

25000

20000

15000

of predictions

10000

No

5000

0

Confidence score

Figure 77: Distribution of confidence scores for the smoothing networks:
a) smoothing021204.net b) smoothing031204.net c¢) smoothing101204.net d)
smoothing131204.net e) smoothing161204.net f) smoothing171204.net g) smooth-
ing130105.net.
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Figure 78: ROC plot for smoothing101204.net. The red point is the value used in the
confidence analysis, the black line is the value expected by chance.

7.5 SSMA Prediction Website

A website was created that could be given an aligned pair of sequences as
input and predict where the SSMAs were.  This website can be found at
http://www.bioinf.org.uk/~danielle/. As figure 79 shows the website works by
being supplied with an existing protein domain alignment and at least one CATH
domain identifier. Using this information it can work on either two protein domains
of known structure or, more likely, an alignment comprised of a protein domain with
known structure and a domain of unknown structure.

The program checks if the CATH identifier actually exists. It also checks if the
sequence matches the one to which the CATH identifier is tied; this ensures that the
sequence has been entered correctly. If there is a problem at this stage the website
informs the user that there has been an error and also whether it relates to the sequence

or the identifier. The CATH identifier is also used to find the secondary structure of
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Figure 79: A screenshot of the SSMA prediction website.

the sequence(s) from a pre-made set of secondary structure files.

If only one CATH domain identifier has been included the program will use the
structural data of the known domain for both sequences when creating the pattern
files needed by the neural networks. It then feeds the pattern file into the neural
networks.

The output of the website indicates where SSMAs have been predicted along the
length of the original alignment. It presents the original alignment used as input and
uses asterisks to show where the program has predicted a SSMA position as shown in

figure 80. These data could then be used to adjust the original alignment.
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Figure 80: A screenshot of the result of the SSMA prediction website. The alignment
of 1sluB2 and 1rtfB1 was used to generate this output page.

The

website uses the best performing SSMAtrained031203.net

smoothing101204.net to make its predictions.

and



Chapter 8

Applying Predictions To Modelling

8.1 Creating alternative alignments

In order to apply the trained neural networks to improving the alignment between
protein sequences, the creation of a program capable of creating sensible alternative
alignments was necessary. The program needed to examine any given protein domain
alignment, predict the presence of SSMAs and then base permutations around its
findings.

The first program, alternative.pl, looks at each sequence using the previously trained
neural networks in order to identify possible SSMAs. If a predicted SSMA is found,
the program uses a number of random variables to alter the alignment. It begins by
choosing one sequence of the pairing to alter first. Then, based on the length of the
SSMA, it decides upon a number of gaps to introduce into the sequence. The longer
the region of SSMA, the more gaps that are introduced. The minimum number of gaps
that can be introduced is two, one that marks the beginning of the SSMA region and
one that marks the end.

The gap at the beginning of the SSMA region is then inserted, the length of which

is also randomly determined. A gap of the same length is then inserted into the second

168
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Sequence 1 AGHILLLGHPHNSCTYGGGLILL

Sequence 2 AGHLLLLGGGHRSCTT-GGIIIC
SSMA Kok KoKk *okk

Stage 1
.. .LLG--HPHNSCTY. ..
Gap inserted at the beginning of the SSMA Sequence 1

Stage 2

.. .LLGGGH--RSCTT. ..
Gap of equal length inserted randomly within the SSMA
region of Sequence 2

Stage 3
.. .LLG--HPHNSCTY. ..
.. .LLGGGH--RSCTT. ..
First insert completed

Figure 81: How gaps are introduced in the alternative.pl program.

sequence of the alignment to maintain the overall length of the alignment. Unlike the
first sequence the position of this second gap is randomly chosen but is still within the
predicted SSMA region. An example of how this works can be seen in figure 81.

After this the same is done with the point that marks the end of the SSMA region.
Which sequence it is introduced into, the length and position of the matching sequence
are all once again determined by random within the program.

Once the gaps have been introduced into each section where a SSMA region is
predicted to be, the program then compares the two sequences of the alignment. It
then removes gaps where both sequences have a gap at the same position.

The program then repeats this process for a set number of times in order to create
a number of alternative alignments based around the position of SSMAs. An overview
of this program can been seen in figure 82.

The first permutation program had a problem in that it could create a number of
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alignments that differed only slightly and could generate the same alignment multiple
times.

A second program, altalign.pl, was created by Dr. A.C.R. Martin that attempted to
create a wider variety of sensible alternative alignments based on the predicted positions
of the SSMA regions. The working of this second program can be seen in figure 83.
Unlike the first program it works by first smoothing the SSMA prediction data. This
means that it will remove a SSMA prediction if it is a single residue predicted as an
SSMA. It also joins together any SSMA regions that are separated by two or fewer
residue positions. This makes the SSMA predictions less fragmented.

The program then splits the alignment into blocks of either SSMA regions or non-
SSMA regions, so that they can be dealt with separately. Each SSMA block is then
dealt with individually. Firstly all gaps within the block are removed and the lengths
of the remaining residues compared. If the lengths of each alignment are different then
a suitable length gap is reintroduced. The reintroduction of the gap is done at each
possible position within the block to create the initial variety within the SSMA block.
Also, when the lengths differ, a gap from within the block is chosen and moved to a
different position at random.

If the two protein sequences within the SSMA block were the same length, then
a gap is introduced at random in each sequence, as in the first program of this type.
Again this stage is repeated for all the alignments previously created by the program.

All the alignments are kept from each stage so as to provide a wide variety of
possible permutations.

In a final clean up stage unlikely or repetitious alternative alignments for each
predicted SSMA block are removed. The cleaning up stage occurs in a number of
ways. Firstly the program removes any gaps which are matched up against gaps in the
second sequence, just as happened in the previous program. The program also goes

on to remove unaligned gaps that are adjacent to one another, something that also
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Figure 82: An overview of the alternative.pl program for creating permutations upon
alignments.
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Figure 83: An overview of the altalign.pl program for creating permutations upon

alignments.
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GHYTTILLIG-CCGVNRRK
GGTTTLLLL-ECGGVPHGK

By eliminating the
adjacent unaligned gaps

GHYTTILLIGCCGVNRRK
GGTTTLLLLECGGVPHGK

Figure 84: Removing unaligned gaps in altalign.pl.

GHYTTILL-I-GCGVNRRK
GGTTTLLLLEICGGVPHGK

Figure 85: An ‘unlikely’ alignment that would be removed by altalign.pl.

occurred in the first program. This can be seen in figure 84.

As well as removing those gaps that are aligned with other gaps and adjacent,
though unaligned, gaps, the program also screens the permuted SSMA blocks for ‘un-
likely’ alignments. The removed alignments are those with a lone non-terminal residue.
An example of these unlikely permutations can be seen in figure 85.

The program also ensures that the set of permutations given as output are unique
by removing any duplicates at this stage.

By this point the program can have created anything between two and a few hundred
alignments for each predicted SSMA block. The final stage of the program merges each
of the possible SSMA permutations with the original non-SSMA blocks to produce the
final selection of alternative alignments. By altering the parameter values within the
program it is possible to generate anywhere up to several million permutations of the
original alignment. Clearly the number of possible permutations is highly dependent

upon the number of predicted SSMAs within each alignment.



CHAPTER 8. APPLYING PREDICTIONS TO MODELLING 174

However the program does guarantee that there should be a good variation of
alternative alignments produced. It also guarantees that the permutations are different

from the very first stage.

8.2 Large scale testing

In order to test the effectiveness of the permutation program, large scale testing was
done using the large dataset created from the SRep pairs within each H-family of the
CATH dataset. Due to the fact that it would take a great deal of time to run the
program for each protein alignment of the roughly 20,000 that made up the data set
the permutation program was set so that it would produce fewer alignments. The
program based on introducing random gaps into each SSMA region was limited to only
creating twenty alignments for each pairing. The altalign.pl program had its parameter
values set so that it would only produce the minimum number of alignments. Another
program was created to ‘wrap’ around the alignment program and pick up the output
for the large scale testing. It also analyzed the alignments and their permutations.
Either permutation program could be inserted into the wrapper program. How this
worked can be seen in figure 86.

The percentage alignment scores for this large scale testing of the random insert
program did seem to back up earlier work that the neural nets are capable of picking
up on correct alignments. Figure 87 shows the percentage correct alignment scores for
all the original sequence alignments. Figure 88 shows the percentage correct alignment
scores for those alignments that the neural networks (SSMAtrained031203.net and
smoothing101204.net) predicted as not containing any SSMAs. As the graph clearly
shows, in the majority of cases the neural network correctly identified those alignments
which did not contain any SSMAs.

After removing from data shown in Figure 87 those alignments predicted not to
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Figure 86: Overall wrapper program used for large-scale testing of the permutation
programs.

contain any SSMAs (i.e. those shown in Figure 88), the remaining sequence pairs
were permuted using alternative.pl. For each sequence pair, the permuted alignment
predicted by the neural network to have the fewest SSMAs was selected as the ‘best’
alignment. However the graph in figure 89 shows that this ‘best’ permuted alignment
for each pair of sequences performed badly.

Thus, while figure 88 shows that the neural network performs well in identifying
the correct alignments, figure 89 shows that alternative.pl did not perform well in
generating good alternative alignments. These alignments were not very different from
one another, each tending to have similar percentage correct alignment scores. This can
be seen in table 42, where the results returned from twenty different permutations of
the same alignment are shown. The difference between them is rarely above 0.1%. This
suggests that although the program is creating a number of different alignments and
the neural net is capable of choosing between them, they are not sufficiently different
as to have any large effect upon the overall alignment or, therefore, the structure.

Figure 90 shows the results form using altalign.pl in place of alternative.pl. It can
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Figure 87: The percentage correct alignment scores for the original sequence alignments
of the domain pairs.
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Figure 88: The percentage correct alignment scores for the alignments of domain pairs
predicted by the neural network as not containing any SSMAs.
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Figure 89: The percentage correct alignment scores for the alignment permutations
created by alternative.pl and selected by the neural network as the best alignments.
Original alignments between domain pairs predicted as correct were first removed.

Alignment section (1hrnA1l and 1bf5A0) % correct alignment
PI-FDNII-SQG-VLKEDV-F-SFYYNRDSENS--LGG 68.1%
PVWY--NMLNQ-GLVKER-RFS-FWLNRNVD-EEE-GG

PI-FD-NIISQGVLKEDV-F-SFYYNRDSENS--LGG 68.4%
PVWY-NML-NQGLVKER-RFS-FWLNRNVD-EEE-GG

PIF--DNIISQGVLKEDVFSFYYNRDSE-NSL-GG 67.7%
PV-WYNMLNQGL-VKERRFSFWLNRNVDE--EEGG

PIFDNIISQGVLKEDV-F-SFYYNRDSE-NSL-GG 68.4%
PVWYNMLNQGLVKER-RFS-FWLNRNVDEE--EGG

PI-FD-NIISQG-VLKEDVFSFYYNRDSENS--LGG 67.9%
PVWY-NML-NQ-GLVKERRFSFWLNRNVD-EEE-GG

Table 42: A selection of alignments created by alternative.pl for part of the SSMA-
containing alignment pair 1hrnA1l 1bf5A0
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Figure 90: The percentage correct alignment scores for the permutations created by
altalign.pl.
be seen that the distribution of alignment quality is very different from that seen in
figure 89. As the graph shows the program performed better than alternative.pl but still
did not perform well enough to generate the correct alignments with any consistency.
The program shown in figure 86 was run a second time, but this time using the
structural alignments as the input. This was done to ensure that the neural net choosing
the ‘best’ of the permuted alignments was functioning correctly. If the neural net was
choosing badly between the alignments then it was expected that the percentage correct
alignment scores for the permuted sequences would be poor. The results of using
alternative.pl to permute the structural alignments can be seen in figure 91. As can be
seen the scores for this run are very high, with the majority being above approximately
95% correct. This confirms that the neural network was generally choosing correctly

between the alternative alignments that the random insert program was creating.
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Figure 91: Distribution of percentage correct alignment scores for those alignments
selected as ‘best’ by the neural network from permutations (generated by alternative.pl)
of the original structural alignments.

8.3 CASPS5 testing

Although both programs had been tested on a large scale data set it was decided to
test them on a smaller, but familiar, data set, namely that of the sequences in the
CASP5 experiment. The original structural models that had been entered did not take
into account the possibility of SSMAs and the alignments were often altered by hand.

The RMSD of a selection of the CASP5 original protein models as well as the
alternatives can be seen in table 43. The table also shows the average RMSD for each
group of models. As can be seen the alternative models generated by alternative.pl and
altalign.pl both improved the mean RMSD of the models with altalign.pl performing
the best. This agrees with the earlier analysis that altalign.pl was the better of the two
programs for generating alternative alignment for modelling. In table 44 the potential
scores, calculated using the RAM potential, can be seen.

The alternative models created by the program alternative.pl are significantly better
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Target name  Original model alternative.pl model altalign.pl model

RMSD RMSD RMSD
T0130 9.966 10.703 8.962
T0130 15.260 10.715 9.970
T0133 12.345 12.540 9.238
T0133 12.224 13.157 8.905
T0137 1.020 2.885 1.057
T0142 3.485 3.458 2.961
T0149 17.276 9.986 6.354
T0149 17.034 10.281 7.192
T0149 17.398 10.307 7.011
T0150 2.700 2.736 2.748
T0150 2.662 2.280 2.104
T0153 9.335 7.164 6.592
T0153 5.373 7.065 6.590
T0154 6.946 6.157 6.138
T0154 6.847 4.538 4.095
T0155 6.031 1.084 2.226
T0160 7.260 3.899 3.304
T0160 6.826 2.732 2.527
T0160 7.163 2.905 2.613
T0167 4.796 7.439 5.720
T0171 9.200 6.477 9.910
T0171 9.656 6.526 2.827
T0179 2.450 2.698 2.469
T0179 5.475 2.599 2.300
T0182 1.416 1.333 1.308
T0184 3.863 3.875 3.884
T0188 2.315 2.220 2.206
Mean RMSD  7.605 5.841 4.821

Table 43: RMSD values of the CASP5 models created by the different methods of
protein alignment.
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Target Actual structure alternative.pl altalign.pl model original model
name  potential, model potential, potential, potential,
kcal /mol kcal /mol kcal /mol kcal /mol
T0130 2746.25 133.33 153.87 1211.84
T0130 2746.25 214.06 141.09 862.06
T0133 -6280.06 -1937.67 -1855.41 -2175.55
T0133 -6280.06 -1842.45 -1886.25 -2417.10
T0137 -1036.44 -676.55 -349.01 -610.32
T0142 -2888.51 -1294.62 -1348.22 -1692.31
T0149 -5471.10 658.40 -2274.83 -3782.26
T0149 -5471.10 1509.90 -2305.57 -3003.89
T0149 -5471.10 1545.34 -2263.07 -3571.24
T0150 -2635.34 -2337.05 -2261.63 -2351.07
T0150 -2635.34 -2336.75 -2429.59 -2499.93
T0153 -1788.67 -1404.04 -1202.48 -1318.36
T0153 -1788.67 -1402.87 -1153.52 -1280.00
T0154 -4439.26 -2921.82 -3006.41 -3007.64
T0154 -4439.26 -2970.73 -3527.13 -3821.09
T0155 -1356.91 -1270.23 -1338.77 -1285.21
T0160 -2330.65 -744.34 -1549.54 -1558.48
T0160 -2330.65 -677.81 -1710.60 -1896.58
T0160 -2330.65 -743.96 -1592.47 -1807.12
T0167 -3003.94 -1311.70 -857.20 -992.57
T0171 -3319.92 -1917.65 -2319.04 -2983.54
T0171 -3319.92 -1319.99 -2265.85 -3030.82
T0179 -2878.57 -2122.61 -2271.97 -2493.25
T0179 -2878.57 -2250.15 -2337.11 -2596.10
T0182 -2932.44 -2444.99 -2506.28 -2544.93
T0184 -5907.72 -3540.66 -3494.85 -3451.28
T0188 -2722.91 -1924.56 -2006.32 -2111.63

Table 44: The RAM potential score of the CASP5 models created by the different
methods of protein alignment.
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than the originals in many cases. Of the 27 cases examined, the RMSD changed by
less than 0.2A in 5 cases. In 19 cases it got better by more than 0.2A (in some cases
by more than 10A) and in only 3 cases did it get worse by more than 0.2A. All of these
cases, where the RMSD got worse, had an original RMSD of worse than 4.7A and in
no case did the RMSD get worse by more than 1.3A.

The alternative alignment program, altalign.pl, proved to be better in this testing
that alternative.pl. Again this was expected as it had performed much better in the
large scale testing. In many cases it outperformed the original CASP5 models. Some
of its alignments proved to be a large improvement compared to the original, such as

target T0149, while in other cases it was only by a slim margin, such as target T0154.

8.4 Alternative alignment website

With two permutation programs investigated and the second program proving the
better, it was hoped that it would be possible to create a website that would make it
available to the public. However this did not prove to be the case as both programs

took too long to run to make this feasible.



Chapter 9

Conclusions

9.1 Empirical Potential

9.1.1 Large scale analysis: Testing the RAM potential

The RAM empirical potential appears to be quite effective at picking out the more
accurate of two protein models when alignments are highly different. 89% of the time
in the large scale analysis, it selected the protein produced by a structural alignment
over one produced by a sequence alignment. The structural alignments were produced
by overlaying the structure of the parent and target and would be expected to give a
better model than a sequence alignment.

However there were some cases where the potentials program and the RMSD values
favoured the sequence aligned model. This happened when there was a single residue
shift difference between the sequence alignment and the structural alignment.

The RAM potential energies of the modelled protein were normally distributed. The
mean energy was around -100 kcal/mol for the models produced from those proteins

aligned by sequence and around -1000 kcal/mol for the structural alignment models.

183
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9.1.2 Large scale analysis: Testing the RAM potential with
varying alignments

Varying the structural alignment by randomly adding insertions produced a multitude
of similar models for the RAM potential to choose between. While there was a general
trend of lower potential energy values relating to lower RMSD values, this was not as
clear as when comparing the structurally aligned and sequence aligned models. This
while the RAM potential was quite effective at selecting between very different models,
it was less effective at selecting between a set of approximately correct models. The
data set was a lot smaller than that used for analysis of widely different structures and

it is possible that if more models were created the trend would become clearer.

9.1.3 Large scale analysis: RAM potential Conclusions

The RAM potential was capable of distinguishing between larger differences in struc-
tures but had difficulty with more subtle variation. This is similar to the result obtained
by Pettitt et al. (2005) when they tested MODCHECK against three other model qual-
ity assessment programs (MQAPs). MODCHECK is based on classic threading poten-
tials and uses a set of mean force pairwise potentials (Pettitt et al., 2005; Hendlich et
al., 1990).

They concluded that MODCHECK was able to improve the top model quality selec-
tion ability for structure prediction servers that did not already attempt to incorporate
information from the 3D structure of the template protein and that it was consistent in
improving model rankings in these cases (Pettitt et al., 2005). However MODCHECK
also was shown to have a high level of false positives, as were the other MQAPS that
it was tested against (Pettitt et al., 2005).

Both MODCHECK and our own potentials program used potentials of mean force

to try to choose between protein models. Since these types of potentials can choose
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between protein models if the differences between them are great they could prove to
be useful in quickly choosing a number of likely structures out of a large number of

models.

9.1.4 CASP5

The CASP5 competition also showed that the RAM potential did not perform well
in selecting between slightly different alignments and loop conformations in the blind
test. It only picked the correct answer 25% of the time in those cases where the score
could be calculated.

The models were submitted for the experiment asking that they were assessed only
over those sections of the structure where we felt confident in our predictions. In this
way the assessed RMS for the two models of T0184 was around 3.8 A. However, if
the two models had been assessed over their entire length they would both have had
RMSDs of over 50 A. At the same time they both would have had total potential
energy values of less than -2000 kcal /mol whereas the correct structure had a potential
energy of -5907.72 kcal/mol. When looking at the entire models using Rasmol it could
quite clearly been seen that both models had long unfolded tails, the source of their
high RMSD values.

Overall the group fared well in the CASP5 competition although the RAM potential
did not contribute to improving the results. In some cases the protein models that were

submitted were within 1.5 A RMSD of the true structure.

9.2 MLSAs

Misleading local sequence alignments are an extreme case of misalignment and have a

number of causes. These causes are:

e Occurring in terminal region / Absence of force constraints
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e Presence of secondary structure
e Accessibility of hydrophobic residues

e Charge interactions

These causes were discovered from investigating the nine most extreme cases of
MLSAs found by an automated protocol. Table 20 shows the nine pairs of aligned
protein domains which contained the extreme MLSAs and the reasons that they oc-
curred. It is possible that there are other causes of these misalignments that might
be found through further study of these and less severe MLSAs. Other reasons for
the occurrence of MLSAs may include the packing of residues, hydrogen bonds and
charge-charge interactions. Study of the less severe MLSAs may bring to light even
more reasons for why and where they occur.

Visual analysis was used first to look for obvious clues. This lead to the realization
that one of the MLSAs (1ak200 1akeAO) occurred within a hinge region (figure 92). As
such this was not a true MLSA: the large structural differences confused the structural
alignment leading to arbitrary assignment of equivalent residues.

Six of the MLSAs occurred in the terminal regions of at least one protein domain
of the pairings. In these terminal regions the force constraints that exist elsewhere in
the protein structure do not exist to the same extent. Without the force constraints
when an indel occurs the residues cannot be forced into the expected positions.

The presence of secondary structure also appeared to play a role in the appearance
of MLSAs. Four of the MLSAs occurred within areas of secondary structure, two within
beta-strands, two within alpha-helices. The true position of the indel has moved to the
adjacent loop region to maintain the integrity of the secondary structure.

Hydrophobic residues need to be kept away from aqueous environment in order to

maintain the stability of the protein’s structure. In the same way proteins tend to
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Protein 1 ‘ ‘ Protein 2

Protein structures superimposed

Figure 92: An example of how a hinge in a protein domain can cause a difference in
aligned structures. When the two structures are superimposed upon one another the
two structures do not match over the area over the hinge. The structural alignment
between the residues in the hinge is thus arbitrary. If both had been experimentally
solved with the hinge in the same configuration there would be no difference in structure
and therefore no MLSA.
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expose their hydrophilic residues. Examples were seen where the structural alignment
increased the burial of hydrophobic residues compared with the sequence alignment.
There is no single reason why MLSAs occur. Rather they are brought about by a
combination of causes, not all of which are present in all cases of MLSA. It is most
likely that other reasons for this sort of misalignment would be brought to light by

further study on the less extreme cases.

9.3 SSMAs

Sequence-structure misalignments (SSMAs) are not as extreme as MLSAs. They are
simply areas where the sequence and structural alignments do not agree and are there-
fore a great deal more common than MLSAs. Within the data set of all the Srep
pairings within each homologous superfamily there were a total of 28,208,763 9-residue
windows. Of that total there were 226,812 that were identified as SSMAs. This large
data set meant that neural networks could be trained to predict where these SSMAs

might occur in both single sequences and in aligned protein domains.

9.3.1 Studying SSMAs

A number of programs (which can be found on the accompanying CD) were used to
study the SSMAs in order to find why and where they occurred.

Examination of SSMAs showed that they could be of any length, though smaller
SSMAs were more likely to occur than longer ones. The number of SSMAs within
a protein domain was also studied. A domain was more likely to have two or fewer
SSMAs than it was to have a large number of them. The higher the percentage of
residues in a SSMA the less likely it was to occur (figure 54). SSMAs were more likely
to consist of a small percentage of residues (figure 55).

The most significant conclusion of this study was that the SSMAs occurred more
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often within certain types of secondary structure. Approximately half of all SSMAs
began in areas that were in beta-strands. A little under a quarter of them began at
residues that were in turns with alpha-helices being the third most likely conformation
for the starting residue of a SSMA. A similar pattern was seen when looking at the
final residues of SSMAs. This bias towards beginning and ending in certain types of
secondary structure lead to the secondary structure of the sequences being included in

the input to neural networks designed to predict the presence of SSMAs.

9.3.2 Predicting SSMAs

The SNNS program was used to create a number of neural networks. The neural
networks can be divided into two distinct groups; the single sequence SSMA prediction
networks and the dual sequence SSMA prediction networks. The first group predicted
where a single sequence was likely to be misaligned when aligned with a homologue of
< 35% sequence identity. The second group of networks predicted where an aligned
pair of sequences was correctly and incorrectly aligned.

The training of the single sequence neural nets produced some surprisingly good
networks. Two in particular, SSMAtrained031203.net and SSMAtrained081203.net,
had good rates of prediction for both SSMAs and transitions, along with very good
Matthews’ correlation coefficient values and confidence scores. A number of differ-
ent training and neural network setups were used but none of them gave the same
combination of good prediction rates, MCCs and confidence values.

These networks were trained with 9:1 ratios of non-transitions to transitions. An
additional set of networks were trained using a 1:1 ratio to give the training net equal
exposure to both. However this meant reducing the total size of the training pattern
file to around 20,000 patterns. The prediction rates for both SSMAs and transitions

remained high using this smaller training set. However the Matthews’ correlation
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coefficients and confidence scores for the SSMAs indicated that the networks were not
performing as well.

Another series of networks, predicting the position of SSMA regions using two se-
quences at once did not prove to work as well as the single sequence networks. Although
they performed better than random they did not achieve the same levels of prediction,
MCC or confidence as the single sequence networks.

A third set of neural networks was then trained that built on the success of the single
sequence nets. By incorporating the predictions of the single sequence neural networks
along with sequence and structural information these networks proved themselves very
capable of predicting correctly and incorrectly aligned areas when given a sequence
alignment. Although the MCC values of these trained nets were not at the same level
as the initial single sequence SSMA prediction networks they still overall outperformed
the second series of networks.

One of this final series of networks, smoothing101204.net and the single sequence
SSMA prediction network SSMAtrained031203.net were used to create a website that
was capable of predicting where SSMAs would occur. This website can be found at
http://www.bioinf.org.uk/~danielle/ and given two sequences and at least one

CATH identifier will return a prediction of where any SSMAs may occur.

9.4 Permuted Alignments

With the neural networks capable of predicting where SSMAs are likely to occur the
next step of improving the alignment phase of comparative modelling is to create
sensible alternatives around the predicted areas of sequence-structure misalignment.
Two programs were written to create alternative alignments. The first of these
programs was alternative.pl. This program worked by inserting a number of gaps into

each SSMA region based on the length of that region. The smallest number of gaps
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used was two, one to mark the beginning and one the end. The numbers of gaps
introduced were based on the earlier study of SSMAs.

When tested on the CASP5 targets this program showed a slight improvement for
some of the target sequences. However when tested upon a large number of alignments
it proved to take too long to run and also showed little or no improvement.

The second program created was altalign.pl, created by Dr. A.C.R. Martin. This
program smoothed the SSMA prediction data and divided an alignment up into sections
of SSMA and non-SSMA.. It then treated each of the SSMA blocks individually to create
a number of alternative blocks which could then be fitted back together in a number of
ways to produce a large number of sensible and different alignments which could then
be screened using the neural network smoothing101204.net. This screening compared
the number of predicted SSMAs remaining in the alternative alignments and returned
the one with the smallest value as the most likely. This screening process was the same
in both programs.

The alternative alignments produced by altalign.pl proved better than those of
alternative.pl when used on the CASP5 targets. The average RMSD over all CASP
5 target predictions improved from 5.841A to 4.821A. It also performed better in the
large scale testing. However the results indicated that much more work needed to be

done on alternative alignment creation.

9.5 Discussion

This study has looked into the possibility of using potentials of mean force, namely
the RAM potential, in order to distinguish between alternative comparative models.
It has been shown that this potential is useful when there are large differences between
the models. However the potential does not prove as successful when the differences

between the models are more subtle. It would seem that this way of choosing between
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models needs to be combined with another method in order to be most successful.

The main source of error for a modelled protein structure is the alignment. Com-
paring the sequence alignment and the structural alignment highlights the areas where
alignment fails. Major errors like severe MLSAs are rare but difficult to identify when
there is only a sequence alignment present. MLSAs have a very obvious sequence align-
ment that proves to be incorrect when compared with the structural alignment. These
misalignments have several different causes and it is likely that further study of less
extreme MLSAs will highlight other contributing causes.

While MLSAs are severe cases of misalignment they are uncommon compared with
SSMAs. These misalignments appear in many alignment pairings and are areas where
structural and sequence alignments disagree. They seemed to favour starting and
ending in beta-strands, followed by turns, then alpha-helices. As secondary structure
seems to play an important role in their occurrence, this information was used in neural
networks to predict their occurrence.

Neural networks have proved very successful in identifying the SSMAs in both single
sequences and aligned protein pairs. Further work on these networks may further
improve even upon the levels of prediction and certainty so far achieved.

With the SSMAs capable of being predicted, then improving on the initial align-
ments is a necessary next step to improving comparative modelling. It was hoped that
creating varied and sensible alternative alignments that can be screened quickly would
produce useful results. In this study, permutations of the alignments were made by
randomly inserting gaps into the predicted SSMA regions. This did improve the pro-
tein models significantly, but took a great deal of time and left considerable room for
improvement. A better way of improving the alternative alignments may be to use a
genetic algorithm (Holland, 1975) instead.

Genetic algorithms simulate the process of biological evolution in computers (Lin

et al., 2005) and is a powerful tool for combinatorial problems of model optimization
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and feature selection when the ‘model space’ is complex and has many local optima
(Beiko and Charlebois, 2005). This type of algorithm has already been used success-
fully improve the alignments between two or more genomic sequences. The program
GenAlignRefine (Wang and Lefkowitz, 2005) uses a genetic algorithm to improve on
genomic alignments that are globally correct but fail to perform on a local level. It
is possible that this kind of approach to protein alignment could improve sequence
alignments.

A genetic algorithm begins with a pool of possible solutions. These possible solu-
tions are scored according to their ‘fitness’ and mated with one another. This effectively
produces a second generation of possible solutions which will again be scored as to their
fitness. The hope would be that this second generation is closer to the actual solution.
This generation are then mated and their offspring scored. Eventually an optimum
solution is hopefully found, in this case the correct alignment.

If a number of possible alignments were used as the original population then it
would be hoped that the mating of the alignments would eventually find the optimum
alignment.

Another way of generating a number of alternative alignments, once the SSMA
positions were predicted, would be to derive a number of sub-optimal alignments. By
generating sub-optimal alignments based around the position of the predicted SSMAs,

an alignment close to that of the structural alignment might be achieved.

9.6 Summary
The initial aim of this research was to answer two questions:

1. Can we identify correctly modelled proteins through potentials?

2. Can we identify correctly aligned sequences directly?
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In answer to the first question; yes but only in a limited fashion. It was shown that
the RAM potential is capable of distinguishing between correctly aligned models and
incorrectly aligned ones when the difference between those models is large. However if
the differences between the models are subtle it becomes unable to distinguish between
them with any reliability.

In answer to the second question we posed, we can also identify where sequences are
misaligned. After studying the severe cases of misalignment, the MLLSAs, several possi-
ble contributing causes were identified. When the more common cases of misalignment
were examined, the SSMAs, it was noted that they tended to begin and end within
certain types of secondary structure, most notably beta-strand. This allowed us to
incorporate secondary structure into the training and testing of neural networks which
proved capable of predicting where SSMAs occur in single and aligned sequences.

Creating programs that were able to permute an alignment based around the pre-
dicted occurrence of SSMAs had a reasonable level of success. However, this method
took far too long to run to allow creation of a viable web server. Using a genetic
algorithm to create the correct alignment may be a way of improving on the results
achieved. If the error gained through incorrect alignments could be eliminated from
comparative modelling it may help to close the gap between the number of known
sequences and the number of known protein structures.

While improving the generation of alternative alignments to be scored using the
methods developed here remains the biggest challenge, the results were extremely en-
couraging. Applying the methods to the CASP5 models shown in Table 43 improved
the average RMSD from 7.6A to 4.8A and in some cases, the RMSD was improved by
more than 10A. Tt is therefore clear that the methodology can contribute significant

improvements to automated protocols for comparative modelling.



Appendix A

Neural Network Training

A.1 Back-propagation of errors

The most common learning method for neural networks is standard back-propagation
of errors. Back-propagation is so called because the correction of its weights starts in
the last layer and then continues backwards as can be seen in figure 93. The equations

which correct these weights are (Zupan and Gasteiger, 1993):

Total weight change

Awéi = n&j-outé’l + ,qu;-gp revious) (19)

error in the last layer 5;““ = (y; = outé-‘”t)out;““(l = outé-“”) (20)

error in the hidden layer 5; = (Z réchwﬁfl)out;(l — outé-) (21)
k=1

Required weight change

in the last layer Awé‘fﬁ =n(y; — outé-““”t)outé-“t(l — outé-“”)outé-““_l (22)
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in the hidden layer Aw!; = n(i 8 wihhouth (1 — out’)out! ™ (23)

k=1
where w is the weight, [ is the index of the current layer, j identifies the current neuron
and 7 is the index of the input source. In these equation (5;- is the error introduced by
the corresponding neuron (Zupan and Gasteiger, 1993), last is the output layer, the
constant 7 is the learning rate and y is the momentum constant. The learning rate
constant can prevent sudden changes in the direction in which corrections are made,

while the momentum constant prevents the network from getting caught in shallow

local minima (Zupan and Gasteiger, 1993).

A.2 Resilient back-propagation

The training method most used in this research was resilient back-propagation (Rprop)
(Reidmiller and Braun, 1993). The resilient back-propagation algorithm is generally
faster than traditional back-propagation (Liu et al., 2002). It uses individual dynam-
ically tuned learning rates during the training of the neural network. In a study by
Schiffmann et al. (1993), Rprop was reported to outperform all other learning algo-
rithms in both speed and quality.It is also one of the best learning methods in terms
of accuracy and robustness with respect to its parameters (Anastasiadis et al., 2003).

The basic principle of Rprop is to eliminate the harmful influence of the size of
the partial derivative on the weight step (Anastasiadis et al., 2003; Zell et al., 1995).

®

The equation which calculates the weight-specific A;;” value that the size of the weight

change is determined by (Zell et al., 1995):

—AD peEY

AY= S (24)
t se0E ¢
Ajj if oy < 0
where 220 denotes the summed gradient information over all patterns in the pattern

Ow;;
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Figure 93: Weight (W) correction that occurs during back propagation training
method.
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file.

The second step of the learning method is to determine the new update-values AZ(;-)

(Zell et al., 1995). This is calculated by:

_ . -1
e x ALY B 080

011)1']' Hwij
) _ _ (t—1) .coE(t-1 _ gE®
Az] - 77 X A,L] lf e’wij X awij < 0 (25)
ALY otherwise

j

where n~ = 0.5 and n*1.2.
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