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Abstract

Inherited genetic variation is critical in defining disease susceptibility. PDs, or pathogenic devi-

ations, are mutations reported to be disease-causing, while SNPs, or single nucleotide polymor-

phisms, are understood to have a negligible effect on phenotype. With recent developments in

biotechnology—most relevant being increased reliability and speed of sequencing—a wealth

of information regarding SNPs and PDs has been acquired. Quite apart from the analytical

challenge of analysing this information with a view to identifying novel therapies and targets

for disease, the challenge of simply storing, mapping and processing these data is significant in

itself.

This thesis describes the development of a large-scale, automated pipeline that provides hy-

potheses as to what the structural effects of these genomic variations might be. This includes

the development of nine new analyses. Eight of these new methods are structural, identify-

ing mutations that disrupt various aspects of protein structure, including the interface, binding

sites, folding mechanics and stability. The final new analysis is a novel method of identifying

highly conserved residues from sequence. Here, the distribution of conservation scores from

a multiple sequence alignment (MSA) is analysed to generate an MSA-specific threshold for

high conservation. In order to construct MSAs for the sequence analysis, a novel method for

identifying functionally equivalent proteins has been developed.

Further, PDs and SNPs are characterised with respect to these structural analyses, and with

respect to basic sequence and structural features. The findings support trends elsewhere in

the literature: PDs are more often found in the core of proteins and at highly conserved sites;

they most often affect the stability of protein structures; and they more often are between very

different amino acids. In addition to the implications for disease therapies, these findings are

informative in the more general context of protein structure.
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Chapter 1

An introduction to mutations

The human body is a complex machine. Occasionally, individuals inherit very slight modifica-

tions that have a significant impact on their health. Other inherited modifications have little or

no effect on health. This chapter will explore the biology of inherited disease-associated mu-

tations, define the investigative scope to be pursued and introduce the scientific questions that

will be asked throughout this thesis.

1.1 Deoxyribonucleic acid: the blueprint for life

Deoxyribonucleic acid (DNA) is the blueprint for many living organisms. It encodes proteins

and other functional molecules that are necessary for the organism throughout its lifespan

and is the vehicle through which offspring inherit information from their parents. It is a dou-

ble stranded helical structure, comprising a sugar-phosphate backbone and a sequence of nu-

cleotides or ‘bases’: adenine (A), cytosine (C), guanine (G) and thymine (T). Complementary

base pairing between purine (A/G) and pyrimidine (C/T) bases (specifically between A/T and

C/G) bases hold the two helical strands together (Figure 1.1).

It is the complete sequence of these four nucleotides—the genome—that defines the organism.

In Homo Sapiens, the genome is approximately 3.2 billion base pairs long (International Hu-

man Genome Sequencing Consortium, 2004). Approximately 1.5-2% of the genome encodes

26
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Figure 1.1: Deoxyribonucleic acid: DNA
The nucleotides are shown here, attached to the sugar-phosphate backbone. Figure obtained from Creative Commons.

proteins (Lander et al., 2001), biomolecules that do much of the ‘operational’ work in the organ-

ism. These ‘coding’ regions of the genome are organised into ‘genes’, distinct protein encod-

ing units that define individual proteins. The remaining ≈98% of the genome is ‘non-coding’.

Previously erroneously referred to as ‘junk’ DNA, some of these non-coding regions are now

known to be well conserved (Bejerano et al., 2004; Prabhakar et al., 2006). Further, the recent EN-

CODE project suggests that the genome is exhaustively transcribed (The ENCODE Project Con-

sortium, 2007). It is now commonly accepted that the non-coding regions of the genome per-

form other essential tasks in the cell, for example, the regulation of protein expression (Sandelin

et al., 2004; Couzin, 2002; Biémont and Vieira, 2006).

1.2 Variation in the genome

The genome of individual organisms within a species varies; it is variation between organisms

that allows species to evolve via differental responses to external stimuli. The various different

forms of a gene that exist in a population are described as ‘alleles’.

There are various kinds of genomic variation and various mechanisms by which genomic vari-

ation can arise. This thesis will investigate one kind of small-scale genomic variation: the point

mutation, where a single nucleotide is exchanged for another. Specifically, it will look at point
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mutations in coding regions of DNA that lead to a single amino acid mutation at the protein

level (see Section 1.4).

Point mutations can be ‘germline’ or ‘somatic’. Germline mutations are transmitted to offspring

via germ cells (in humans, the egg and sperm). Somatic mutations however are acquired by the

organism during its lifespan and are not transmitted to offspring. Somatic mutations, therefore,

are a failure of the DNA repair mechanisms to identify errors in DNA replication.

In sexual reproduction, offspring inherit half of their DNA from their mother and half from

their father. The inherited genomic information is combined to create the offspring genome,

and as such, children may inherit mutations from their parents. Rare alleles can come to persist

in the population if they offer some advantage to the individuals that carry them or if they

are completely neutral in their effect. Some pathogenic alleles may persist if their effects do

not come into play until after the reproductive lifespan of the parent (e.g., propensity towards

cancer or heart disease).

Throughout this thesis, the word ‘native’ will be used to describe the genotype containing the

most common allele, while the word ‘mutant’ will describe the genotype containing mutations.

1.3 The vast phenotypic spectrum of mutations

The term ‘genotype’ describes the specific genomic information that defines an individual or-

ganism, i.e., the sequence of nucleotides in the organism’s genome. The term ‘phenotype’ refers

to the observable manifestation of the genotype. For example, human eye colour has been

shown to be associated with genomic variation near the OCA2 gene (Duffy et al., 2007); in this

example, the genotype is the specific genomic variation near the OCA2 locus and the phenotype

is the resulting eye colour.

Genomic abberations do not have a consistent effect on phenotype: some have negligible or

no effect on phenotype, some introduce variation in phenotype without compromising health,

some result in increased susceptibility to disease, some are directly causitive of disease and

some are fatal. It is important to appreciate that, in disease research, the most severe, fatal mu-

tations will never be observed in a patient: any cell encoding a fatal mutation will die without
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being replicated.

In this thesis, point mutations that have been shown to be causitive of disease are described

as Pathogenic Deviations or PDs and point mutations that have not been shown to be associ-

ated with disease are described as Single Nucleotide Polymorphisms or SNPs. The term SNP

(The International Hapmap Consortium, 2005) is often used to refer to any point mutation, but

strictly SNPs are defined as alleleic variants where the least common allele occurs in ≥1% of

a normal population. So, while they may be associated with a complex disease, they cannot

be involved in high penetrance Mendelianly inherited disease states. The most conservative

estimates suggest that SNPs occur once every 1000 base pairs (Collins et al., 1998; Taillon-Miller

et al., 1998) although others suggest that SNPs may occur as often as once every 100-300 bases

(Wang et al., 2006).

1.4 Genomic mutations manifest at the protein level

Figure 1.2 gives a broad overview of protein synthesis. The double stranded DNA helix is

unwound to expose a single strand of DNA. Complementary base pairing forms messenger

ribonucleic acid (or mRNA) in a process called transcription (note that thymine is replaced by

uracil at the mRNA level). The mRNA is then translated into a series of amino acids, using the

genetic code. The protein is the resulting sequence of amino acids.

The four letter alphabet of nucleotides encodes an alphabet of twenty amino acids. The amino

acids vary in atom composition, size, charge, polarity, affinity for water (hydrophobicity) and

so on. They are the building blocks of protein sequences. Further complexity at the protein

level is afforded by post-translational modifications: chemical alterations of residues occurring

after the protein sequence has been translated.

Given the redundancy in the genetic code and the structure of the genome, point mutations are

differentially manifest at the protein level. The first differentiation to be made is between coding

and non-coding mutations. Coding point mutations occur in coding areas of the genome. Non-

coding point mutations occur between the coding areas of the genome (i.e., in the ‘junk’ DNA,

see Section 1.1); see the T>C mutation shown in orange in Figure 1.2 for an example.



CHAPTER 1. AN INTRODUCTION TO MUTATIONS 30

RCCV

G

TRANSCRIPTION

TRANSLATION

T > A

G > T

A > G

V R

3’ 5’

CGACCC GA A A T

3’5’ GCUGGG C CU U U A

T > C

DNA template

Protein

mRNA

(1)

(2)

(4)

(3)

(5) R

Figure 1.2: A broad overview of protein synthesis
A section of DNA is shown at the top of this figure with the coding regions (i.e., genes) in blue and the non-coding
regions marked in grey. Proteins are synthesised from genes and proceeds as follows: (1): The double stranded helix
is broken to expose a DNA ‘template’; (2): The DNA is transcribed (using complementary base pairing) into RNA
(ribonucleic acid), specifically (3): mRNA ‘messenger RNA’ (note that thymine has become uracil); (4): the mRNA
is then translated according to the genetic code, where each three letter combination of RNA bases corresponds to an
amino acid; (5): the protein is formed by forming peptide bonds between the encoded amino acids (shown as grey
circles). Four mutations are marked in purple, green, red and orange in the DNA. The respective base changes, at the
DNA and mRNA levels are given in the corresponding colour. Coding mutations are marked with a triangle in the
corresponding colour above the appropriate nucleotide at the single-stranded DNA level. The native protein sequence
(i.e., the protein that would be synthesized without the mutations) is given below the mutant protein sequence in a light
blue box. The purple T>A mutation is same-sense/synonymous/silent, inducing no change in the protein sequence
(both GUU and GUA encode valine). The green G>T mutation is a nonsense mutation, introducing a premature stop
codon (indicated with the thick vertical line). The red A>G mutation is a missense/non-synonymous mutation, that
replaces the native cysteine residue (encoded by UGU) with an arginine (encoded by CGU). The orange T>C mutation
is non-coding as it occurs outside of a gene.
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Coding mutations can be further classified as synonymous, non-synonymous or nonsense.

Synonymous mutations (also described as same-sense or silent mutations) do not alter the pro-

tein sequence (e.g., the purple T>A mutation in Figure 1.2). Non-synonymous mutations (also

described as mis-sense mutations, nsSNPs (non synonymous SNPs) or SAAPs (single amino

acid polymorphisms)) induce a change in the amino acid sequence; see the red A>G mutation

in Figure 1.2 for an example. Finally, non-sense mutations replace the native amino acid with

a stop codon, resulting in an incomplete protein sequence.

The vast majority of proteins are globular: once the protein sequence has been synthesised, the

string of amino acids fold together to adopt a three dimensional globe-like structure (as opposed

to a fibrous structure) with a substantial buried ‘core’. It is the folded structure that is functional.

There are four levels of protein structure. The first (or primary) level describes the one dimen-

sional string of amino acids that comprises the sequence. Hydrogen bonds are formed between

the backbone atoms of the amino acids to form helical (α) and sheet (β) ‘secondary structures’

in the secondary level. In the third (or tertiary) level, further bonds are formed between the

residues to fold the entire protein chain into a single globular unit. In the fourth (quaternary)

and final layer, multiple globular units (or ‘chains’) may be combined to create the functional

protein.

Figures 1.3 and 1.4 show the four levels for Equus caballus alcohol dehydrogenase (chain A)

[UniProtKB:P00327/ADH1E HORSE], an enzyme that breaks down otherwise potentially toxic

alcohols to ketones and aldehydes1. Figure 1.3(a) shows the primary structure, the sequence of

amino acids (obtained from UniProtKB/Swiss-Prot and shown in FASTA format). Figure 1.3(b)

shows the same sequence annotated with the α (shown as purple helices) and β (shown as

purple arrows) secondary structures. The tertiary structure of ADH1E HORSE is shown in

Figure 1.4(a), with the same α and β structures highlighted in pink and gold respectively (turns

are shown in blue). The structure of ADH1E HORSE is complete when two identical structures

as shown in Figure 1.4(a) are combined to form a homodimer (i.e., a structure containing two

copies of the same chain). The completed quaternary structure is shown in Figure 1.4(b), where

the two chains are coloured different shades of blue.

Each chain in the homodimer is bound to the ligand NAD, or nicotinamide-adenine-

dinucleotide, which is embedded within the structure (see Figure 1.4(b)). This demonstrates

1http://www.expasy.org/enzyme/1.1.1.1
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(a) Primary structure: the sequence of amino acids

(b) Secondary structure: α and β structures are formed by hydrogen bonds

Figure 1.3: The primary and secondary structure of alcohol dehydrogenase
Figure 1.3(a) shows the UniProtKB/Swiss-Prot FASTA representation of ADH1E HORSE, with the header line em-
boldened. Figure 1.3(b) shows a representation of secondary structure elements in the protein, as described in the PDB
structure 6adh (diagram obtained from PDBSUM at the EBI). The α and β structures are shown as purple helices and
arrows respectively (for the purposes of this discussion, other annotations can be ignored).
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(a) Tertiary structure: globular chains are formed

(b) Quaternary structure: multiple chainsare combined to create the biologically relevant
multimer

Figure 1.4: The tertiary and quaternary structure of alcohol dehydrogenase
Figure 1.4(a) shows the structure of 6adh, chain A. α secondary structure elements are shown as pink helices, β sec-
ondary structure elements are shown as gold arrows (an alternative secondary structure element, the turn, is shown
in blue). Figure 1.4(b) shows the complete quaternary structure for ADH1E HORSE. Here, two chains as described in
Figure (shown in different shades of blue) 1.4(a) form a single structure, the biologically relevant multimer (specifically,
a homodimer). A ligand (nicotinamide-adenine-dinucleotide or NAD) can be seen embedded in each chain.
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the close structure/function relationship of proteins: if the structure were altered near the

ligand binding site, NAD may not be able to bind to the protein. The specific biochemical

action of alcohol dehydrogenase is to convert the bound NAD ligand into NADH by

converting alcohol to ketones and aldehydes. Therefore, should the structure be mutated so as

to inhibit binding to NAD, the creation of NADH may be inhibited or completely eradicated.

Given the process described in Figure 1.2 and the alcohol dehydrogenase example described

above, it is clear that mutations at the genome level could induce a change in the protein se-

quence, thus altering the protein structure, and potentially affecting protein function.

1.5 An introduction to protein structure

Although protein structures vary immensely, they adhere closely to the same basic principles.

This section will introduce these underlying concepts of protein structure. At a very general

level, protein structure must (1) be stable; (2) fold correctly and (3) function properly. This

section will conclude with a brief description of the two major methods by which the struc-

tures of proteins are determined experimentally: X-ray crystallography and nuclear magnetic

resonance (NMR).

1.5.1 Hydrogen bonding

Hydrogen bonds form between (i) an electronegative atom and (ii) a hydrogen atom bonded

to an electronegative atom (Baker and Hubbard, 1984). In the context of amino acids, the elec-

tronegative atom is either oxygen or nitrogen. In this interaction, the hydrogen atom is de-

scribed as the donor atom and the electronegative atom is described as the acceptor atom. The

sidechains of Arginine, asparagine, glutamine, histidine, lysine, serine, threonine, tryptophan

and tyrosine can act as hydrogen bond donors and the sidechains of asparagine, aspartic acid,

glutamic acid, glutamine, uncharged histidine, serine, threonine and tyrosine can act as hydro-

gen bond acceptors; the sidechains of the nine remaining residues (alanine, cysteine, phenyl-

alanine, glycine, isoleucine, leucine, methionine, proline and valine) do not participate in hy-

drogen bonding. The backbones of all residues are able to both accept and donate a hydrogen

bond, save for proline, which may only accept a hydrogen bond, given its cyclic sidechain (Cuff
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et al., 2006).

Most hydrogen bonds (68%) are formed between backbone atoms (Stickle et al., 1992); sec-

ondary structure elements (described in Section 1.4) are maintained largely by a scaffold of

backbone-backbone hydrogen bonding (see Figure 1.5). The remaining 32% of hydrogen bonds

are formed between backbone-sidechain and sidechain-sidechain atoms. Hydrogen bonds are

fundamental to the proper formation and stability of protein structure. It has been shown that

most buried, hydrogen bonding capable sidechains do form hydrogen bonds (McDonald and

Thornton, 1994).

1.5.2 Other important bonds

In addition to hydrogen bonds, protein structure is maintained by several other inter-residue

bonds. Salt bridges, ionic bonds that are formed between the positively and negatively charged

sidechains, also contribute to protein stability when found in the buried core of the structure

(Torshin and Harrison, 2001). Other Van der Waals (non-electostatic, non-covalent) interac-

tions, which arise from induced dipole-induced dipole interactions, also contribute to protein

stability.

Several covalent bonds can form between residues. The most well known of these is the disul-

phide bond, a bond that can form between two sulphur atoms of cysteine residues of certain

geometries (Hazes and Dijkstra, 1988); see Figure 1.6 for an example. Other covalent crosslinks

that are formed between amino acids include 4-amino-3-isothiazolidinone-L-serine2, a bond

that forms between cysteine and serine residues (for example in protein-tyrosine phosphatase

1B (van Montfort et al., 2003, see Figures 1(c) and 1(d) in manuscript)); N6-glycyl-L-lysine3 a

bond that forms between lysine and glycine residues (particularly important for interactions

with small proteins like ubiquitin (Cripps et al., 2006)), and N6-(L-isoglutamyl)-L-lysine4, a

bond that forms between lysine and glutamic acid residues (for example, between histone pro-

teins H4 and H2B (Shimizu et al., 1996, see Figure 1 in manuscript)).
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(a) Residues 1-20, secondary structure (b) Residues 1-20, hydrogen bonding

(c) Residues 40-60, secondary structure (d) Residues 40-60, hydrogen bonding

Figure 1.5: Backbone hydrogen bonding generates α and β secondary structures
A α helix (residues 1-20, Figures 1.5(a)-1.5(b)) and β sheet (residues 40-60, Figure 1.5(c)-1.5(d)) from the structure of
lysozyme (PDB ID 7lyz). Hydrogen bonds are indicated by thinner connections. Residues are coloured by structure
(with gold indicating β structures and pink indicating α structures).
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Figure 1.6: Disulphide bonding
Disulphide bonds in lysozyme (PDB ID 7lyz) are highlighted in orange. Four disulphide bonds are formed between
eight cysteine residues (6-127, 30-115, 76-94 and 64-80).
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Figure 1.7: Ligand binding
The structure of alcohol dehydrogenase (PDB ID 6adh). The ligand nicotinamide-adenine-dinucleotide (NAD) is shown
in blue; a zinc co-factor is shown in dark red, and residues within 4Å of the zinc co-factor (four cysteines at 97, 100,
103 and 111) are highlighted in orange (the rest of the protein is coloured grey, with secondary structure elements indi-
cated). Note that the NAD is embedded in a binding pocket and that the zinc co-factor is supported by the sidechains
of the four cysteine residues.
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1.5.3 Ligand binding

Proteins act on, or complex with, each other and a vast array of other biomolecules or ‘ligands’.

The ligands interact with the protein by way of a binding site, or pocket. Intra-molecular forces

(including ionic bonds, hydrogen bonds and Van der Waals interactions) secure the ligand to

the protein. Proteins can also incorporate metal ions in their structure. The sidechains of his-

tidine and aspartic and glutamic acids, and the sulfhydryl sidechain of cysteine bind to metal

ions in ‘metalloproteins’. See Figure 1.7 for examples of ligand and metal ion binding.

1.5.4 Hydrophobicity and folding

The composition of a residue’s sidechain defines whether the residue is hydrophobic (repelled

from water) or hydrophilic (attracted to water). Biochemically, hydrophilic residues are those

that can form hydrogen bonds with water and are polar, while hydrophobic residues are non-

polar and are unable to form hydrogen bonds with water. Many hydrophobicity ‘scales’ assess

the hydrophobic properties of amino acids. They can be constructed using (i) experimental data

that assess directly the behaviour of the residue in water (Yunger and Cramer, 1981) and/or (ii)

structural data that identify residues commonly found in the protein core (Chothia, 1976). Oth-

ers combine existing scales (Kyte and Doolittle, 1982). See Cornette et al. (1987) for a review of

38 hydrophobicity scales.

The driving force in protein folding is largely to bury hydrophobic residues in the protein core

so as to limit their contact with water (compare Figures 1.8(a) and 1.8(b)). Where hydrophobic

sidechains do occur in the hydrophilic core, their hydrogen bonding potential is always satisfied

(McDonald and Thornton, 1994).

1.5.5 Protein structure determination

There are two common methods of protein structure determination. Most widely used is X-

ray crystallography. Here, the protein of interest must be ‘grown’ as a crystal; that is, the

2http://www.ebi.ac.uk/ontology-lookup/?termId=MOD:00349
3http://www.ebi.ac.uk/ontology-lookup/?termId=MOD:00134
4http://www.ebi.ac.uk/ontology-lookup/?termId=MOD:00133
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(a) Lysozyme (7lyz)

(b) Lysozyme (7lyz), sliced in half along the Z-axis

Figure 1.8: Hydrophobic residues are buried in the protein core
Hydrophobicity in lysozyme (PDB ID 7lyz). Blue indicates hydrophilic residues, red indicates hydrophobic residues.
Figure 1.8(a) shows the whole protein; Figure 1.8(b) shows the same protein, sliced in half along the Z-axis, to expose the
patterns of hydrophobicity in the core of the structure. Hydrophilic residues cluster on the surface, while hydrophobic
residues predominantly form the core.
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Figure 1.9: The process of X-ray crystallography
Crystalline forms of proteins and bombarded with a stream of X-rays. The resulting diffraction pattern can be inter-
preted as an electron density map, placing the electrons in 3D space. From this electron density map, a model can be
constructed. A process of iterative refinement results in the best model for the diffraction pattern. Image obtained from
Wikimedia commons.
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same protein structure must be arranged in a repeating, symmetric array. The crystal is bom-

barded with a stream of X-rays; on colliding with electrons in the crystal, some of the X-rays

are diffracted. The pattern and intensity of diffraction is recorded by an X-ray detector placed

behind the protein crystal. The pattern of diffraction and the intensity of the diffracted X-rays

can be mathematically transformed to yield an electron density map, to which model structures

can be fitted (see Figure 1.9). A process of iterative refinement is applied to find the structure

that corresponds most closely to the diffraction pattern. Although the structural representation

is largely static (large scale motions are inhibited owing to the fact that the structure is in a

crystal and where regions do undergo large movements, these are invisible as they are not de-

scribed by the diffraction pattern) the B-factor, a measure of the electron density spread of each

atom, can provide some idea of local mobility. An estimate of confidence, called the R-factor,

can be made from the data, by comparing the eventual model with the diffraction pattern. The

resolution of an X-ray structure indicates the angle at which the X-rays were diffracted by the

crystal (the larger the angle of diffraction, the higher the quality of diffraction pattern and the

higher resolution represented by a smaller number).

Nuclear magnetic resonance (NMR) spectroscopy is an alternative technology that exploits the

‘magnetic moments’ or ‘spin’ of certain atom isotopes. In NMR, a sample solution containing

the protein of interest is subjected to a brief magnetic field to disturb the atoms. When the

atoms return to their normal state, they emit radiation, which is measured. By comparing the

frequency of this radiation to reference values, the ‘chemical shift’ of each of the atoms in the

sample can be measured. Chemical shift data from different radio frequency pulses describe

different kinds of interactions (e.g., interactions through bonds or interactions between spatially

close atoms which may be distant with respect to sequence). By identifying ‘cross-peaks’ (pat-

terns of chemical shift peaks that are generated by specific amino acids) and combining data

from multiple chemical shift spectra, it is possible to define the interactions of each residue

in the sequence. Distance constraints, derived from the peaks in the chemical shift data, are

then used to generate possible structures. NMR structures are solved in solution and therefore

contain more information about flexibility.

Structures described by X-ray crystallography and NMR are complementary, and each method

has its strengths and weaknesses. For example, NMR is limited to small proteins, while crys-

tallography can determine the structure of large proteins, should it be possible to crystallise

them; crystallography requires that the protein structure be solid state, while NMR can more

successfully model the flexibility of protein structures as the structure is determined in solution;
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similarly, while NMR can capture dynamic processes such as protein folding, crystallography

allows the more precise characterisation of protein surfaces.

At the time of writing (November 2008), 85.50% (46570/54466) of the protein structures de-

scribed by the PDB are resolved using X-ray crystallography; 13.94% (7591/54466) are resolved

by NMR, and 0.56% (305/54466) are resolved by other means (e.g., electron microscopy). Both

kinds of structure are analysed by SAAPdb.

The structural information (including the secondary structure annotations in Figure 1.3(b))

shown in Figures 1.3-1.4 is derived from an X-ray crystal structure of the protein, described

by Protein Data Bank record 6adh (the Protein Data Bank, or PDB (Berman et al., 2000), will be

described in greater detail in Section 2.1.4).

1.6 Mutating protein structure can affect phenotype

As summarised in Section 1.5, protein folding is a complicated, hierarchical process that relies

on the proper formation of scaffolding bonds (particularly hydrogen bonds) between residues

in the protein sequence. Should a point mutation arise that alters the protein sequence, the

resulting protein structure may change, potentially affecting folding or function. In this thesis,

such a mutation is predominantly descrived as a SAAP, or single amino acid polymorphism

(see Section 1.4). A resulting functional change can either be (i) a gain of function, where the

protein acquires a novel (toxic) function; (ii) a loss of function, where the protein can no longer

perform its native function or (iii) both a gain and loss of function. Whether functionality is lost

or gained, the functional change caused by the SAAP may compromise native function and the

SAAP can be described as ‘deleterious’.

The most commonly cited structurally disruptive disease example is that of sickle-cell

anaemia. Here, a single mutation A>T replaces a glutamic acid (glu, codon GAG) with a

valine (val, codon GTG) at position six in the protein sequence. This SAAP is highlighted in

the haemoglobin structure in Figure 1.10. This mutation is distant from the ligand binding site

and distant from the other chains in the protein. How then does it cause a disease phenotype?

Glutamic acid is a polar residue and as such is often found on the surface of proteins, where it
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Figure 1.10: Sickle-cell anaemia: the glu6val mutation
The glu6bval mutation known to cause sickle-cell anaemia is highlighted in red in chain B of the haemoglobin structure
(PDB ID 1bz0). Chain A, B, C and D are coloured dark blue, orange, light blue and green respectively. Haem ligands
are coloured using the CPK colour scheme.
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is solvated. Valine, however, is hydrophobic and is less often found on the surface of proteins.

Introducing the hydrophobic residue on the surface of the protein causes the protein to aggre-

gate; forming harmful fibrils (see Figure 1.11); deforming the erythrocytes and resulting in the

disease phenotype. However, it is found that the sickle-cell phenotype also gives some protec-

tion against malaria potentially offering a selective advantage, explaining why the deleterious

phenotype has persisted in areas where malaria is common.

However, it is also possible that a SAAP will not compromise function. Although the twenty

amino acids are all different, many share similar characteristics (for example, isoleucine, leucine

and valine are all small hydrophobic residues) and therefore may be able to replace each other

without affecting protein structure and therefore function. As such, SAAPs may also be de-

scribed as ‘neutral’.

1.7 Quantifying the effect on protein structure

The work in this thesis rests upon the hypothesis that it will be possible to identify any struc-

tural effect of a deleterious SAAP. That is, where a pathogenic variation in the genome induces

a change at the protein level, the deleterious phenotype will be attributable to some disruption

of the protein structure and therefore the protein function.

To identify or quantify the structural effect of a particular mutation, the introduced residue

must be considered in the context of the protein structure. It will then be possible to assess

whether the mutation violates any of the underlying principles of protein structure, as de-

scribed in Section 1.5. Throughout this thesis, the act of identifying the structural effect of a

mutation is described as ‘explaining’ the mutation. Note that there there is no deleterious effect

to be explained in the case of SNPs, but the word ‘explained’ is used to keep the terminology

consistent.

The hypothesis is that disease-associated SAAPs will have a different impact on protein struc-

ture from neutral SAAPs. Should it be possible to quantify the structural effect(s) of disease-

associated SAAPs and neutral SAAPs, this hypothesis can be tested by comparing the kinds of

structural effects associated with disease-associated and neutral SAAPs.
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Figure 1.11: Deleterious fibrils in sickle-cell anaemia
A single mutation from glu to val at position 6 in the haemoglobin protein results in aggregation, fibril accumulation,
malformed erythrocytes and, therefore, the disease phenotype. The image shows the mutated structure (PDB ID, 2hbs)
with the mutant residue highlighted in green in each protein chain. Image taken from the PDB and available from
Wikimedia Commons.
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1.8 Learning from mutation data

Andrew Martin’s group has previously concentrated on explaining mutations in individual

proteins, including G6PD (Kwok et al., 2002) and p53 (Martin et al., 2002). In addition, sophis-

ticated analyses have been developed to assess the more complex aspects of protein structure

(Cuff and Martin, 2004; Cuff et al., 2006).

One objective of the work described in this thesis is to build on this previous work, maintain-

ing and further developing the existing structural analysis pipeline to process SAAPs automat-

ically.

Should it be possible to hypothesize what the structural effect of an amino acid substitution

might be, it may also be possible to predict whether previously unseen non-synonymous mu-

tations will have a significant effect on protein structure or not, and therefore whether the muta-

tion will be deleterious or not. Predictive methods can only work if there is a difference between

PDs and SNPs. As such, it is important to characterise and compare both sets of data. Trends

identified here could inform which machine learning approaches would be most successful and

which data should be used to make predictions. The second objective of the work described

in this thesis is to characterise both sets of SAAPs and identify significant differences between

them.

Characterising PDs also contributes to the design of novel therapies: should the deleterious

effect of the mutant protein structure be attributed to a specific structural abnormality, it may

be possible to design a compound that nullifies the deleterious effect, thereby recovering native

function. For example, should the mutation destabilise the protein structure, a compound that

can either (i) stabilise the mutant form or (ii) chaperone the native structure may be a viable

therapy. Two such targets have been reported for cancers caused by destabilisation of P53

(Boeckler et al., 2008; Friedler et al., 2002).

1.9 Characterising pathogenicity: existing work

Table 1.9 summaries 18 characterisations of pathogenic deviations (PDs) and single nucleotide

polymorphisms (SNPs) that exist in the literature.
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Table 1.1: Existing characterisations of PDs and SNPs
•: PDs were associated with this feature; ◦: SNPs were associated with this feature. ‘-’: no relationship was found.
?: the paper includes some prediction work. †: the paper considered only deleterious data. A blank cell denotes that
the feature was not considered. Datasets: A = LacI repressor (Suckow et al., 1996); B = T4 lysozyme (Rennell et al.,
1991); C = HIV protease (Loeb et al., 1989); D = dbSNP (Smigielski et al., 2000); J = uses natural residue variation across
species to represent ‘neutral’ SAAPs; M = HMGD (Stenson et al., 2003); N = HGVBase (Fredman et al., 2002); O = OMIM
(McKusick, 1998; Amberger et al., 2009); S = UniProtKB/Swiss-Prot VARIANT (The UniProt Consortium, 2009); X =
other LSMDB (various references). Structural data used: Y∗ = where PDB structures were unavailable, models were
used; Yi = structural features were inferred from sequence. AA: amino acid.
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Bao & Cui (2005) ? S Y Y • • • • •
Cai et al. (2004) ? AB Y Y • •
Chasman & Adams (2001) ? AB Y Y •◦ • • •
Clifford et al. (2004) ? DX Y Y∗ •
Dobson et al. (2006) ? S Y Y • •
Ferrer-Costa et al. (2002) S Y Y • • • • • •
Ferrer-Costa et al. (2004) ? AS Y Yi •
Khan & Vihinen (2007) † MX n Y • - •
Krishnan & Westhead (2003) ? AB Y Yi • • • •
Needham et al. (2006) ? AB Y Y • - • •
Ng & Henikoff et al. (2001) ? ABC Y n •
Saunders & Baker et al. (2002) ? AC Y Y - • • • •
Stitziel et al. (2003) DO Y Y • - • •
Steward et al. (2003) O Y Y • • •
Sunyaev et al. (2001) ?a DNS Y Y • • • • • •
Torkamani & Schork (2007) X Y Y •◦ • •
Verzilli et al. (2005) ? AB Y Y • • • • •
Vitkup et al. (2003) S Y Y • • • •
Wang & Moult (2001) b DM n Y •
Yue et al. (2005) ? JM n Y∗ • • •

a http://genetics.bwh.harvard.edu/pph/
b http://www.snps3d.org/
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Work has predominantly focussed on characterising PDs: compare the number of PD-feature

annotations (•) with the number of SNP-feature annotations (◦) in Table 1.9. If the objective

is to understand the molecular basis of disease and use that knowledge to design appropri-

ate disease therapies, this is the most important perspective from which to consider the data.

However, with a view to predicting whether a novel mutation will be deleterious or not, or with

a view to extrapolating findings to protein structure in general, it is important to characterise

both pathogenic and neutral polymorphisms. It may be the case that the most informative char-

acterisation of disease-causing mutations is a characterisation that describes which features are

absent rather than present. Indeed, using decision trees to build predictors for pathogenicity, Kr-

ishnan and Westhead (2003) found that rules predicting ‘no effect’ (i.e., neutral) were of higher

confidence than those predicting ‘effect’ (i.e., deleterious).

Most commonly, PDs are found (i) in the protein core (i.e., buried); (ii) at sites of high conserva-

tion and (iii) to introduce extreme changes in amino acid properties (including hydrophobicity

(Ferrer-Costa et al., 2002; Sunyaev et al., 2001; Saunders and Baker, 2002; Cai et al., 2004) and

volume (Ferrer-Costa et al., 2002; Khan and Vihinen, 2007)). Other features associated with PDs

are most commonly measurements of the structural environment of the mutation, including

overpacking or Cβ density (Saunders and Baker, 2002; Yue et al., 2005), B-factor (Chasman and

Adams, 2001; Verzilli et al., 2005; Needham et al., 2006) and UniProtKB/Swiss-Prot features

(Saunders and Baker, 2002).

Only one result challenges the reasonably consistent characterisation that emerges from the

other investigations: Stitziel et al. (2003) did not find PDs buried in the interior of the protein.

However, this is owing to a slightly different definition of ‘buried’. Stitziel et al. use a geometric

analysis of protein structure to categorize residues as belonging to one of three classes: (1) on

the surface (2) in a surface crevice or internal void or (3) completely buried in the interior of

the protein (i.e., remote from any void). They found that very few PDs nor SNPs belonged

to category (3). However, they did find that PDs are more than twice as likely to be found in

an internal void or crevice. This is consistent with the characterisation that emerges from the

other studies and draws attention to a subtlety of protein structure that has otherwise not been

considered: maintainance of the protein core may be dependent on essential, stabilising voids.

In making predictions, structural information is largely found to be more valuable than se-

quence information (Bao and Cui, 2005; Needham et al., 2006), although where structural in-

formation is unavailable or it is difficult to measure the structural feature (for example, flexibil-
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ity), sequence information can complement structural data when discriminating between PDs

and SNPs (Saunders and Baker, 2002). Further, significant differences have been found when

considering combinations of features (e.g., native/mutant amino acid and secondary structure

(Khan and Vihinen, 2007); B-factor and conservation (Verzilli et al., 2005); accessibility and con-

servation (Stitziel et al., 2003)).

Further, some associations may be more complex even within the same ‘feature’. For example,

Chasman and Adams (2001) identified conservation based features associated with both PDs

and SNPs: PDs were found to be at sites of high conservation, whereas SNPs were found at

sites where the introduced residues were identified as the native residue in another species

(Chasman and Adams, 2001), explaining the •◦ annotation in the corresponding cell in Table

1.9. Torkamani and Schork (2007) identified native and mutant amino acids associated with

both kinds of SAAPs.

Two-thirds (12/18) of the methods include some attempt at pathogenicity prediction; as

yet, no particular learning method has emerged as superior. Results vary with respect to

overclassification—erroneously classifying neutral examples as deleterious (Bao and Cui,

2005)—and underclassification—erroneously classifying deleterious examples as neutral

(Cai et al., 2004; Krishnan and Westhead, 2003)—however, prediction accuracy is reasonably

consistent at approximately 70-85%. Prediction peformance has peaked at MCC=0.50, where

support vector machines were used to predict the pathogenicity of polymorphisms annotated

in UniProtKB/Swiss-Prot (denoted with S in Table 1.9) using a 94-dimensional vector of

sequence attributes (Tian et al., 2007) (see Section 2.3.5 for a description of binary classification

performance statistics, including MCC).

The characterisations in Table 1.9 portray PDs as mutations that primarily disrupt the stability

of proteins by altering the protein core. Further, it appears that extreme changes in the amino

acid property at the site of mutation are associated with pathogenicity. This motivates the

inclusion of both sequence and structural features in an analysis pipeline.

This thesis aims to contribute to this body of work, first by collating data in a resource called

SAAPdb (Single Amino Acid Polymorphism database), then by either consolidating or chal-

lenging the existing characterisation of deleterious and neutral mutations. The analysis will be

motivated by identifying features that will benefit future machine learning methods, and by an

understanding of the basic underlying principles of protein structure.
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The data generated by the methods described in this thesis have been made publicly available.

Only two servers currently exist that provide some characterisaton of both SNPs and PDs, with

respect to structure—SNP3D5 (Wang and Moult, 2001) and PolyPhen6 (Sunyaev et al., 2001)—

although many other servers exist that exclusively characterise SNPs (SNPeffect7 (Reumers et

al., 2006), LS-SNP8 (Karchin et al., 2005), StSNP9 (Uzun et al., 2007)) and others that simply col-

late mutation data (MutDB10 (Dantzer et al., 2005), SNP@DOMAIN11 (Han et al., 2006), SNAP12

(Li et al., 2007), TopoSNP13 (Stitziel et al., 2004)), providing external links to genomic, proteomic

and/or pathway data and records. Of these resources, TopoSNP, SNPeffect, LS-SNP, MutDB

and StSNP are updated at least once or twice a year (no information is available for the other

resources) (Uzun et al., 2007). The SAAPdb resource described in this thesis aims to contribute

to this field by providing regularly updated and extensive sequence and structural hypotheses

as to the effect of disease and neutral mutations.

1.10 A summary of aims

This thesis will investigate the differential sequence and structural properties and effects of

neutral and deleterious point mutations. At a general level, the work described aims to (A)

expand the pre-existing suite of analyses which aim to ‘explain’ the structural effect of a SAAP

and (B) compare and contrast the neutral and deleterious mutations with a view to developing

predictive methods that will classify a novel point mutation as neutral or deleterious. In order

to achieve this, the current SAAPdb pipeline has been extended, requiring the development

of several new structural analyses; a method for identifying functionally equivalent proteins,

and a method for identifying highly conserved residues. Very preliminary predictive work has

shown that the work described in this thesis should contribute significantly to the problem of

identifying deleterious mutations (see Appendix [A]).

5http://www.snps3d.org/
6http://genetics.bwh.harvard.edu/pph/
7http://snpeffect.vib.be/
8http://modbase.compbio.ucsf.edu/LS-SNP/
9http://glinka.bio.neu.edu/StSNP/

10http://mutdb.org/
11http://snpnavigator.net/
12http://snap.humgen.au.dk/
13http://gila.bioengr.uic.edu/snp/toposnp/



Chapter 2

An introduction to bioinformatics

methods

This thesis describes a database of single amino acid polymorphisms (SAAPs) that have been

mapped to structure and subsequently analysed to provide hypotheses as to their effect(s), if

any, on protein structure. The resource, named SAAPdb, employs several well established

data resources, data handling methods and data analysis methods. In this chapter, these are

introduced to provide the context for later chapters.

2.1 Resources

SAAPdb requires data from several sources. SNPs are obtained from dbSNP (Sherry et al.,

1999; Smigielski et al., 2000) and HGVBase (Fredman et al., 2002); genomic information

is taken from EMBL (Kulikova et al., 2007) and Genbank (Benson et al., 2008); PDs are

extracted from OMIM (Amberger et al., 2009) and several smaller locus-specific mutation

databases (LSMDBs); protein data are taken from UniProtKB (The UniProt Consortium,

2009) (predominantly UniProtKB/Swiss-Prot), and protein structures are taken from the PDB

(Berman et al., 2000). Further, the PDBSWS resource (Martin, 2005) is used to map sequence

data onto structural data. These resources and their contents are described in this section.

52
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2.1.1 dbSNP and HGVBase

2.1.1.1 dbSNP

dbSNP is a central repository maintained by the NCBI that collates data about small-scale ge-

nomic variation, the vast majority of records (>95%) describing single nucleotide polymor-

phisms (SNPs) (Sherry et al., 1999; Smigielski et al., 2000). dbSNP accepts submissions of both

disease-associated and ‘neutral’ SNPs and makes no assumptions about allele frequency. Map-

pings to protein sequence are provided.

The version of dbSNP currently described by SAAPdb is dbSNP build 1291, which was made

available in April 2008 and describes 14 708 752 records for Homo Sapiens. The dbSNP data

analysed in Chapter 7 is dbSNP build 126 2, which was made available in May 2006. This build

includes 11 961 761 records for Homo Sapiens and 6 491 554 records for Mus Musculus.

2.1.1.2 HGVBase

The HGVBase (Human Genome Variation database) resource exclusively describes small-scale

human genetic variation, the vast majority of which (>95%) are SNPs (Fredman et al., 2002).

Although much of the information in HGVBase is complementary to that in dbSNP, the focus

here is to collate data relevant to phenotype, and stringent quality criteria are applied (Fredman

et al., 2002). Unfortunately, however, HGVBase has not been consistently maintained, with only

sporadic updates since 2003 (note that a new resource, HGVBaseG2P (Thorisson et al., 2009), has

recently become available but was not used in this thesis).

2.1.2 OMIM and LSMDBs

The PD data in SAAPdb are derived from multiple sources.

1http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view+
summaryi&build_id=129

2http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view+
summaryi&build_id=126
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Figure 2.1: (O)MIM growth since 1965
The size of the (O)MIM versions are marked with diamonds; image taken from Amberger et al. (2009).

The first and largest of these resources is Online Mendelian Inheritance in Man, or OMIM3

(Amberger et al., 2009). OMIM is a central description of inherited, disease-associated genetic

mutations that is updated on a daily basis and is the online version of the original book re-

source, MIM (McKusick, 1998). As of October 2008, OMIM contains 19 023 mutations of which

6 514 (34.24%) are characterised phenotypically. OMIM is based on peer-reviewed literature:

journal contents are scanned to identify articles of relevance, with particular emphasis on dis-

ease phenotypes, genes with novel biology and genes currently absent in OMIM.

With genomic sequencing becoming cheaper and more reliable, the number of PDs being iden-

tified is increasing exponentially. Figure 2.1 shows the increase in MIM (1965-1998) and OMIM

(2008) content: in the last ten years, the number of disease mutations has increased more than

two-fold from approximately 8 000 in 1998 (McKusick, 1998) to almost 20 000 in 2008 (Amberger

et al., 2009).
3http://www.ncbi.nlm.nih.gov/omim/
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OMIM provides a wealth of disease-associated information on which substantial bioinformatic

analysis can be done. However, data are also available in locus-specific mutation databases or

LSMDBs, which are maintained separately by research groups with an interest in a particular

disease. Such resources potentially hold much more data, both with respect to quantity and

quality (George et al., 2008): such special interest resources may include detailed phenotypic

information such as enzymatic function or prognosis. Bioinformatic analysis using these data

could reveal more subtle effects on protein structure: rather than training classifiers on the

coarse-grained binary classification problem of disease-causing or neutral, methods could learn

to predict disease severity. As such, the PD dataset is augmented by seven other mutation

datasets.

ADAbase ADAbase4 is a mutations registry for inherited adenosine deaminase (ADA) defi-

ciency mutations (OMIM:608958) (Piirilä et al., 2006), which account for approximately

half of severe combined immunodeficiency disorders (SCID).

ZAP70base A second SCID disease is represented in SAAPdb: the ZAP70base5 resource de-

scribes a small number of mutations to the ZAP70 protein (Piirilä et al., 2006) which cause

a ZAP70 deficiency (OMIM:176947).

HAMSTeRS The Haemophilia A Mutation Structure, Test and Resource Site (or HAMSTeRS6

resource) describes mutations to Factor VIII, the protein absent or defective in

haemophilia A (OMIM:306700). These mutations are collated from peer-reviewed

literature and electronic submissions.

G6PD The G6PDdb7 resource was developed in a collaboration with the Martin group (Kwok

et al., 2002) and describes mutations to human glucose 6-phosphate dehydrogenase (or

G6PD, OMIM:305900), which cause G6PD deficiency (Beutler et al., 1968). This X-linked

disease is characterised by abnormal breakdown of red blood cells (haemolysis), in re-

sponse to infection, chemicals or particular foods; most famously, haemolysis is often

induced by fava (broad) beans, explaining why G6PD deficiency is also known as ‘fav-

ism’.

IARC TP53 The IARC TP53 mutation database8 catalogues mutations to the gene TP53 and

its protein product P53 (Olivier et al., 2002; Petitjean et al., 2007). Mutations to P53 occur

4http://bioinf.uta.fi/ADAbase/
5http://bioinf.uta.fi/ZAP70base/index2.html
6http://europium.csc.mrc.ac.uk/WebPages/Main/main.htm
7http://www.bioinf.org.uk/g6pd/
8http://www-p53.iarc.fr/
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in approximately half of all human cancers (Greenblatt et al., 1994; Sidransky and Holl-

stein, 1996; Lane and Fischer, 2004). IARC collate both germline (inherited) and somatic

(acquired) mutations in P53 (OMIM:191170).

OTC OTC deficiency, a rare metabolic disorder, is caused by mutations to OTC (ornithine car-

bamoyltransferase, OMIM:300461). It is a disorder of the urea cycle which causes hyper-

ammonemia, an excess of ammonia in the blood (Gilbert-Dussardier et al., 1996). Tuch-

man et al. (2002) describe the dataset that is used in SAAPdb.

SOD1db Amyotrophic lateral sclerosis (ALS) or motor neuron disease (MND) is a progres-

sive, often fatal, neurological disease characterised by the degeneration of motor neu-

rons (OMIM:147450). ALSOD9 at the Institute of Psychiatry, King’s College London de-

scribes ALS-associated mutations deposited by registered users. In SAAPdb, only ALS-

associated mutations to superoxide dismutase or SOD1 (a dataset that is referred to as

SOD1db) are analysed.

At the time of writing (November 2008), over 700 LSMDBs are recorded on the Human

Genome Variation Society’s website (http://www.hgvs.org/dblist/glsdb.html).

Although SAAPdb only includes a small fraction of these data, the system has been designed

and implemented so that integrating more locus-specific data is straightforward.

2.1.3 UniProtKB and UniProtKB/Swiss-Prot

UniProtKB10 is the world’s most comprehensive resource of protein information

(The UniProt Consortium, 2009). It is comprised of several smaller databases, including

UniProtKB/Swiss-Prot and UniProtKB/trEMBL. These datasets differ in their level of curation

and annotation. UniProtKB/Swiss-Prot is a manually annotated dataset, which aims to

reduce redundancy, improve annotation and provide comprehensive cross-references to

other resources. UniProtKB/trEMBL however is an automatic translation of the genome as

described by EMBL. It therefore contains a great deal of redundancy and little annotation

(where annotation does exist, it is transferred by homology and has not been experimentally

verified).

SAAPdb almost exclusively uses UniProtKB/Swiss-Prot; UniProtKB in its entirety is only
9http://alsod.iop.kcl.ac.uk/Als/index.aspx

10http://www.uniprot.org/
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1: ID TACY_LISMO Reviewed; 529 AA.
2: AC P13128; Q48747; Q57096; Q57206;

...
3: DE Listeriolysin O precursor (Thiol-activated cytolysin) (LLO).

...
4: DR EMBL; X15127; CAA33223.1; -; Genomic_DNA.
5: DR PIR; A43505; A43505.

...
6: FT SIGNAL 1 25
7: FT CHAIN 26 529 Listeriolysin O.
8: FT /FTId=PRO_0000034102.
9: FT SITE 484 484 Binding to cholesterol (By similarity).
10: FT VARIANT 35 35 S -> L (in strain: F4233 / Serotype 1/2b,
11: FT F5782 / Serotype 4b, F6789 / Serotype 1/
12: FT 2b and 12067).
13: FT VARIANT 438 438 V -> I (in strain: F4233 / Serotype 1/2b,
14: FT F5782 / Serotype 4b, F6789 / Serotype 1/
15: FT 2b and 12067).
16: FT VARIANT 523 523 K -> S (in strain: F4233 / Serotype 1/2b,
17: FT F5782 / Serotype 4b, F6789 / Serotype 1/
18: FT 2b and 12067).

...
19: //

Figure 2.2: An example of a UniProtKB/Swiss-Prot record
The above record is for [UniProtKB:TACY LISMO/P13128], in UniProtKB/Swiss-Prot version 13.5/55.5;it has been
edited only to include those data that are relevant for SAAPdb and FOSTA, i.e., ID (the identifier), AC (the accession
number), DE (the description field),DR (database cross-reference line) and FT (annotated features);records are termi-
nated with a \\; line numbers are given on the left for references in the text and ‘...’ are used to indicate skipped
lines.

used to construct mappings between accession codes (ACs, see Section 2.1.3.1 below) and

to map protein records to gene records (see Section 6.2.2). All functional annotation is

provided by UniProtKB/Swiss-Prot by means of the uniprot sprot.dat flatfile, released

with every new version of UniProtKB. The format of this file has recently changed (see

http://www.uniprot.org/docs/xml_news.htm). However the UniProtKB/Swiss-Prot

data used in SAAPdb at present is UniProtKB/Swiss-Prot version 55.5, dating from June 2008.

This section describes UniProtKB/Swiss-Prot version 55.5 (the SAAPdb parsers have recently

been updated to deal with the changed format).

Each UniProtKB/Swiss-Prot protein is described in a separate record using start-of-line, two-

character keys to classify the fields. An example is shown in Figure 2.2. Records are separated

by a line containing only the string ‘\\’ (line #19 in Figure 2.2). The data that are relevant to this

work are described in the remainer of this section (a full description of the UniProtKB/Swiss-

Prot file format can be found at http://www.expasy.ch/sprot/userman.html).
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2.1.3.1 The UniProtKB/Swiss-Prot identifier and accession number

Each UniProtKB record is described with both an identifier ID and an accession number (AC).

The ACs are a string of 6 alphanumeric characters (currently beginning with A, P, Q or O). Once

an AC has been assigned to a protein sequence, either in UniProtKB/Swiss-Prot or UniPro-

tKB/trEMBL, it is guaranteed always to refer to that particular protein (although the sequence

records may be amended). Should records be merged or deleted, the original AC will be re-

tained as a ‘secondary’ AC to the new ‘primary’ AC. In the example, the ID is TACY LISMO

and the primary AC is P13128 (lines #1-2 in Figure 2.2). There are three secondary ACs: Q48747,

Q57096 and Q57206 (the primary AC is simply the first AC provided, see line #2 in Figure 2.2).

The IDs are of the format PROTEIN SPECIES, where PROTEIN is a string indicating what the

protein is or does, and SPECIES is a string describing the species from which the sequence

has been derived. The steadily expanding (and occassionally revised) vocabulary of species

is described and made available at http://www.uniprot.org/taxonomy/. IDs are not

guaranteed to remain the same. For example, in UniProtKB/Swiss-Prot version 4.0/46.0, hu-

man protein C had the identifier PRTC HUMAN; in the successive version, the ID changed to

PROC HUMAN. It has, however, always been identifiable with the AC P00470.

When working with UniProtKB/Swiss-Prot data, it is important to ensure data integrity by

always using primary accession numbers.

2.1.3.2 The description field

The description or DE field contains a description of the protein. Proteins may be described

using any number of synonyms. In the example, there are three:“Listeriolysin O precursor”,

“Thiol-activated cytolysin” and “LLO” (line #3 in Figure 2.2). Also included in this line is an

indication of whether the protein is a “(Fragment)” or not, and any relevant EC number(s).

2.1.3.3 The database cross-references

UniProtKB/Swiss-Prot provides cross-references between databases. These data are used later

to construct datasets with which to benchmark a novel method of identifying functionally
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equivalent proteins (FOSTA) against a similar existing method (Inparanoid) (see Section 3.3.7).

In the example, TACY LISMO is cross referenced to EMBL records X15127 and CAA33223.1,

and PIR records A43505 and A43505 (lines #4-5 in Figure 2.2).

2.1.3.4 Annotated features

UniProtKB/Swiss-Prot provides annotations of sequence, structural and functional features

that are found in the protein (see lines #4-5 in Figure 2.2). These may be transferred by ho-

mology, or there may be experimental evidence for the feature in the specific protein; however

this information is not guaranteed to be included. The use of UniProtKB/Swiss-Prot FT infor-

mation is described fully in Section 5.11.

2.1.4 PDB

The PDB is the largest publicly available repository for 3D data describing biological macro-

molecules (Berman et al., 2000). Structures are primarily solved using X-ray crystallography

(see Section 1.5.5). PDB files are plain text, most importantly describing the 3D coordinates of

each atom. Residues are described simply by annotating each constituent atom with the same

residue ID. In addition to the atomic coordinates, PDB files contain information regarding the

method by which the structure was solved; references to the literature; cross-references to other

resources (e.g., UniProtKB); specification of ligands, and so on.

Unfortunately, the format is not well structured and standards are not enforced consistently.

Consequently, parsing is difficult. In Section 2.2.3 an alternative format, developed by Andrew

Martin while at Inpharmatica, for the PDB that is more amenable to automated parsing is de-

scribed.

2.1.5 PDBSWS

SAAPdb uses the PDB-to-UniProtKB mapping PDBSWS (Martin, 2005) to map sequence

residues to their corresponding structural residues. It relies on accurate mapping between
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UniProtKB IDs and ACs, and accurate mapping between primary and secondary accession

numbers (see Section 2.1.3). These data are parsed from the UniProtKB release (from both

UniProtKB/Swiss-Prot and UniProtKB/trEMBL). As of October 2008, 96.34% of PDB protein

chains are successfully mapped to a UniProtKB sequence.

The PDBSWS database is populated as follows:

1. Extract UniProtKB cross-references from PDB files

2. Extract PDB cross-references from UniProtKB files

3. Brute-force scan the remaining PDB chains against UniProtKB

4. Align PDB sequence with UniProtKB sequence to generate the PDBSWS mapping

In Step 1, UniProtKB accession (AC) and identifier (ID) references are parsed from the DBREF

field from all PDB files. If no UniProtKB cross-reference exists in the DBREF field, the REMARK

999 field is parsed in an attempt to find UniProtKB AC or ID references. Invalid UniProtKB

references (e.g., references to obsolete IDs) are flagged to be analysed later in the brute-force

scan (Step 3). References to UniProtKB IDs are replaced with their corresponding AC and all

AC references are updated to the current primary AC.

Next, PDB references are extracted from UniProtKB (Step 2). The UniProtKB sequence

is aligned with each PDB chain in turn to identify which chain (or chains) are relevant.

UniProtKB now includes chain information, but this protocol was designed at a time when it

did not.

Steps 1 and 2 may yield multiple matches as a protein sequence can map to multiple PDB

structures, and to several chains within a single PDB structure. All identified mappings are

stored in the PDBSWS relational database implemented in PostgreSQL.

The final PDB/AC mapping step is a brute-force scan, which attempts to match all remaining

PDBs to UniProtKB ACs. A PDB sequence is reconstructed from the ATOM records. This

sequence is then searched for in UniProtKB (UniProtKB/Swiss-Prot and UniProtKB/trEMBL)

using fasta33 (Pearson and Lipman, 1988). The best match is identified and the mapping is

recorded if (i) the residue overlap is ≥30 and the identity is at least 90% (ii) the residue overlap

is ≥15 and the identity is at least 93%, or (iii) the entire chain is matched with 100% identity.
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Once all possible PDB-UniProtKB record-to-record mappings are identified, the two

sequences are aligned, using ssearch33 (Pearson and Lipman, 1988), to generate the

PDB-UniProtKB residue-to-residue mappings. These data are freely available via a webserver or

in flatfile format at www.bioinf.org.uk/pdbsws.

2.1.6 EMBL and Genbank

EMBL (Kulikova et al., 2007) and Genbank (Benson et al., 2008) are two publicly available nu-

cleotide sequence databases, EMBL being curated by the EBI and Genbank being curated by

the NCBI. Data are derived from submissions from individual researchers, large-scale genome

sequencing projects and patent records. Each record describes a particular section of DNA and

includes annotations of coding regions, database cross-references, literature citations, biologi-

cally relevant features and so on. EMBL and Genbank exchange data on a regular basis, so the

sequence content should be identical.

2.2 Data handling

It is essential that appropriate and robust data handling is employed in large-scale, automated

systems such as SAAPdb to ensure data integrity. The vast quantities of information involved

require that data are retrieved and processed quickly and reliably. Here, several of the funda-

mental data handling methods are introduced: relational databases (Section 2.2.1), XML and

the associated XML translation specification XSLT (Section 2.2.2) and an alternative representa-

tion of the PDB, XMAS, which is based on a combination of ideas from XML and ASN.1 formats

(Section 2.2.3).

2.2.1 Relational databases

Relational databases are a means of storing information. Data are structured as tables consisting

of columns or ‘fields’ and contain data in unordered rows or ‘tuples’. The ‘relational’ aspect

of these data structures is in the use of ‘foreign keys’ and common attributes, which refer to

equivalent data in different tables. This allows for potentially very large tables, with many
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fields and much data redundancy, to be ‘normalised’ into smaller data structures describing

individual concepts.

To illustrate the key concepts in a relational database, a small example dataset will be used

throughout this section. The example being used is a list of newspaper deliveries, where cus-

tomers can have any number of different papers delivered to an address. The first step in good

database design is to decompose the problem into its constituent ‘entities’, ‘relationships’ and

‘attributes’. Entites describe distinct objects in the dataset. Combining entities using relation-

ships allows more abstract entities to exist. Further, both entities and relationships can have

attributes which describe a corresponding object. Good database design often begins with an

‘entity-relationship’ (ER) diagram that clearly defines what the entities and relationships are in

the data to be stored.

Figure 2.3(a) describes the entities, relationships and attributes in the newspaper delivery ex-

ample. There are two entities: a customer and a newspaper. These entities are joined by the

relationship ‘is delivered a’ which captures the more abstract or ‘associative’ delivery entity.

Both entities and relationships can have attributes: a customer has a name and an address, a

newspaper has a name and frequency (i.e., daily/weekly) and a delivery is defined by the num-

ber of papers that are to be delivered. In addition, each entity is given an ‘ID’ which will allow

each example of an entity (i.e., each customer or newspaper) to be identified uniquely.

Often, it is useful to decompose an attribute into two or more further attributes. These attributes

are ‘multi-valued’ attributes. In the example, a customer’s name has been split into ‘firstname’

and ‘surname’ and the address is split into the ‘address’ text and the ‘postcode’. This allows for

direct access to the sub-attribute.

Relationships between entities should also be defined with respect to cardinality, which de-

scribes how entities are related to each other. The cardinality may be many-to-many, one-to-

many or one-to-one. In the example, the relationship between the customer entity and the

newspaper entity is many-to-many, as a customer may have more than one newspaper deliv-

ered and similarly a newspaper may be delivered to more than one customer; this is shown in

Figure 2.3(a) as grey text attached to the relationship connectors.

With the ER diagram completed, the application of several rules will derive a suitable database

design. In the newspaper example, the relevant rules are that (i) each entity should be repre-
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(a) An example entity relationship (ER) diagram
Entities are in square-edged rectangles while attributes are in round-edged boxes. Lines join entities and relationships
to their attributes. Grey monospace text indicates the cardinality of a relationship.

1
2
3

ID*

4
5
6
7

DELIVERY

number

1

2
1

1

1

1
2

3
2

3

customer^

4
5

4
1

1
2

3

paper^

2
2

1
2

The Guardian

The Local Gazette, The Guardian
The Local Gazette, The Sun

The Guardian
The Sunday Herald

daily, daily
daily, daily
daily

daily
weekly

1,2
1,1
2

1
1

Craigielea by Quarriers PA11 3SX
48 Minerva Way G3 8GA
88 Kent Road G3 4MH

18 Craigholme PA6 7DB
18 Craigholme PA6 7DB

Ewan Tavendale
Chae Strachan
Molly Douglas

Will Guthrie
Chris Guthrie

NumberNewspaperAddressCustomer Frequency

1
2
3
4

ID*

5

address^

4
2
3

CUSTOMER

surname

Tavendale
Strachan
Douglas
Guthrie

Guthrie

firstname

Ewan 
Chae
Molly

Chris

Will

name

The Sunday Herald
The Sun
The Guardian
The Local Gazette

frequency

weekly
daily
daily
daily1

2
3
4

ID*

NEWPAPER

postcode

PA11 3SX
G3 4MH
G3 8GA
PA6 7DB

address

Craigielea by Quarriers
88 Kent Road
48 Minerva Way
18 Craigholme

ADDRESS

1
2
3
4

ID*

1

1

(b) An example relational database
The data to be represented is a list of newspaper deliveries, shown in the top half of Figure 2.3(b).These data can be
decomposed into smaller entities (Customer, Newspaper, Delivery) and stored in separate tables as shown in the
bottom half of Figure 2.3(b). Primary keys are annotated with an asterisk (*), foreign keys are annotated with a caret (ˆ).
Primary keys in the Customer, Address and Newspaper tables are highlighted in blue, red and green respectively. The
same colours are used in the Delivery table to indicate where these primary keys are used as foreign keys.

Figure 2.3: Using a toy dataset of newspaper deliveries to illustrate database design
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sented by a table (ii) each many-to-many relationship should be represented by a table and (iii)

any multiple attribute for which there are dependencies between the sub-attributes (e.g., the

address text and the postcode in the customer’s address) should be factored out into a different

table. The resulting database and its relationship to the original data are shown in Figure 2.3(b).

Two fundamental concepts in relational databases are primary and foreign keys. Primary keys

are IDs that allow each example in a table to be identified uniquely. Most often they are arbi-

trary numbers applied to data as they are entered into the database. Foreign keys are references

to external fields, that is, fields in other tables. In Figure 2.3(b) all primary keys are marked with

an asterisk (*) and all foreign keys are annotated with a caret (ˆ); further, all foreign keys and

the data to which to they refer are highlighted with the same background colour to ease iden-

tification of inter-table referencing. Using foreign keys in a well designed database improves

data integrity and facilitates administration as changes need only be made in one table.

Additional ‘constraints’ may be placed on fields in a table to improve data integrity and per-

formance further. These can define whether a field must be unique, whether a field must be

present and not ‘null’, or what range of values the field may take.

One final mechanism of relational databases that vastly improves performance is indexing.

Indexing generates a secondary table that permits rapid look-up of the original data. Any field,

or combination of fields, that are used frequently in constraining a search (i.e., often used as

elements of a ‘WHERE’ clause, see below) should be indexed. In both FOSTA (Chapter 3) and

SAAPdb (Chapter 6), indexes are used extensively for practicable use of the large datasets.

Once the database has been successfully designed, structured query language (SQL) can be

used to build, populate and query the database. The PostgreSQL database management system

is used throughout this thesis. Foreign keys are used to retrieve related data by ‘joining’ tables

together using a common term or terms. An example query is shown in Figure 2.4, which

requests the total number of each paper that is delivered daily. This query employs the basic

SELECT/FROM/WHERE grammar, but also uses GROUP BY and ORDER BY to aggregate and sort

the data respectively, and SUM(), one of many built-in, standard SQL functions. PostgreSQL

also allows the user to define new functions.
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mcmillan=> SELECT n.name, SUM(d.number)
FROM newspaper n, delivery d
WHERE d.paper = n.id
AND n.frequency = ’daily’
GROUP BY n.name
ORDER BY n.name;

name | sum
-------------------+-----
The Guardian | 5
The Local Gazette | 2
The Sun | 1
(3 rows)

Figure 2.4: An example PostgreSQL query
Two tables (newspaper aliased to n and delivery aliased to d) are joined on d.paper and n.id; the data are
constrained to those newspapers/nwith a daily frequency (n.frequency = ’daily’); the aggregate function SUM
is calculated for each n.name as defined by the GROUP BY n.name clause; results are sorted by n.name as defined by
the ORDER BY n.name clause; all PostgreSQL commands and functions are given in capitals.

2.2.2 XML and XSLT

XML (eXtensible Markup Language) is a standard for document markup. By defining a re-

stricted grammar of elements and attributes, the user can define a specialised framework for

representation and storage of their data. A DTD (document type definition) defines such a

framework.

By representing data in the same XML format, the same parser can be used to extract relevant

data for processing, database population and so on. Figure 2.5 shows an excerpt from an XML

file, which is taken from an RSS (version 2.0) feed of a website. The enclosing element is an ‘rss’,

within which a ‘channel’ is described. Within a channel, there is one instance of the elements

‘title’, ‘link’, ‘description’ and ‘language’, followed by multiple ‘item’s that enclose further sub

elements (‘title’, ‘link’, ‘description’ and ‘guid’), demonstrating the hierarchical nature of the

XML structure. The corresponding DTD that completely specifies RSS 2.0 is shown in Figure

2.6.

Extensible stylesheet language translation (XSLT) is a method for translating XML into another

format. Commonly it is used to translate XML into HTML for display on a website. An example
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<rss>
<channel>

<title>
Craigends of the 20th Century

</title>
<link>

http://example.com/features/
</link>
<description>

Updates on new featues at craigends.net.
</description>
<language>

en-us
</language>

<item>
<title>

Johnstone Advertiser: 15th January 1960
</title>
<link>

http://craigends.net/feature/26/
</link>
<description>

The story of a German POW who painted the murals at Craigends Stables.
</description>
<guid>

http://craigends.net/feature/26/
</guid>

</item>

<item>
<title>

Driving Mrs Cuninghame
</title>
<link>

http://craigends.net/feature/27/
</link>
<description>

The work and duties of a Craigends chauffeur.
</description>
<guid>

http://craigends.net/feature/27/
</guid>

</item>

</channel>
</rss>

Figure 2.5: An example of XML, here taken from an RSS feed from a website
See Figure 2.6 for the corresponding DTD.
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<!ELEMENT rss (channel)>
<!ATTLIST rss version CDATA #FIXED "2.0">

<!ELEMENT channel ((item+)|
(title,link,description,(language|copyright|
managingEditor|webMaster|pubDate|lastBuildDate|
category|generator|docs|cloud|ttl|image|
textInput|skipHours|skipDays)*))>

<!ELEMENT item ((title|description)+,link?,
(author|category|comments|enclosure|guid|pubDate|source)*)>

<!ELEMENT author (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ATTLIST category domain CDATA #IMPLIED>
<!ELEMENT cloud (#PCDATA)>
<!ATTLIST cloud domain CDATA #IMPLIED

port CDATA #IMPLIED
path CDATA #IMPLIED
registerProcedure CDATA #IMPLIED
protocol CDATA #IMPLIED>

<!ELEMENT comments (#PCDATA)>
<!ELEMENT copyright (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT docs (#PCDATA)>
<!ELEMENT enclosure (#PCDATA)>
<!ATTLIST enclosure url CDATA #REQUIRED

length CDATA #REQUIRED
type CDATA #REQUIRED>

<!ELEMENT generator (#PCDATA)>
<!ELEMENT guid (#PCDATA)>
<!ATTLIST guid isPermaLink (true|false) "true">
<!ELEMENT height (#PCDATA)>
<!ELEMENT image (url,title,link,(width|height|description)*)>
<!ELEMENT language (#PCDATA)>
<!ELEMENT lastBuildDate (#PCDATA)>
<!ELEMENT link (#PCDATA)>
<!ELEMENT managingEditor (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT pubDate (#PCDATA)>
<!ELEMENT skipDays (#PCDATA)>
<!ELEMENT skipHours (#PCDATA)>
<!ELEMENT source (#PCDATA)>
<!ATTLIST source url CDATA #REQUIRED>
<!ELEMENT textInput (title,description,name,link)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT ttl (#PCDATA)>
<!ELEMENT url (#PCDATA)>
<!ELEMENT webMaster (#PCDATA)>
<!ELEMENT width (#PCDATA)>

Figure 2.6: An example of DTD for RSS 2.0
This DTD specifies the format of RSS 2.0: which elements with which attributes can exist; what the hierarchical rela-
tionships between the elements are; what data type the attributes are (PCDATA/CDATA) and whether data is required
or may be omitted.
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<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method=’html’ version=’1.0’ encoding=’UTF-8’ indent=’yes’/>

<xsl:template match="/">

<html>

<head>
<style type="text/css">

body { width: 800px; margin: auto; }
table { border-collapse: collapse; border-bottom: 2px solid black;

border-top: 2px solid black; }
td, th { text-align: left; padding: 10px; }
td { vertical-align: top; border-bottom: 1px dotted black; }
th { background: #CFE9FF; border-bottom: 2px solid black; }
td.title { font-weight: bold; }

</style>
</head>

<body>
<h2>Craigends Updates</h2>

<table>
<tr>

<th>Title</th>
<th>Description</th>

</tr>

<xsl:for-each select="channel/item">
<tr>

<td class="title"><xsl:value-of select="title"/></td>
<td><xsl:value-of select="description"/></td>

</tr>
</xsl:for-each>

</table>
</body>

</html>

</xsl:template>
</xsl:stylesheet>

Figure 2.7: An example of XSLT
This XSLT converts the XML shown in Figure 2.5 into HTML, as shown in Figure 2.8; the xsl:for-each loop identifies
each item in the channel tag and displays them in tabular format.

Figure 2.8: The browser’s view of XML (Figure 2.5) translated to HTML using XSLT (Figure
2.7).
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XSLT specification is shown in Figure 2.7. This XSLT converts the XML shown in Figure 2.5 into

HTML (see Figure 2.8). Chapter 6 (specificially Section 6.2.6.4) describes how XSLT is used to

translate XML into SQL statements when populating SAAPdb.

2.2.3 An alternative format for the PDB: XMAS

There are numerous flaws in the PDB data format, not least a lack of adherence to a standard

format (see Section 2.1.4). In addition, there is a wealth of information implicit in the PDB

files (for example, protein ligand bonds and accessibility) that is not explicitly stated and must

be calculated for each individual PDB structure. In the context of large automated structural

analysis systems such as SAAPdb, a standardised format containing all relevant PDB data,

that is easily parsed is essential. Ideally programs for adding information on hydrogen bonds,

accessibility and so on, may be run in any order, extending the data stored with the structure

in a self-describing way.

The XMAS format of PDB structures was developed by Dr Andrew Martin while at Inpharmat-

ica and represents PDB data using a hybrid XML/ASN.1 format (the XMAS name is derived

from the first two letters of XML and ASN.1). XMAS files are used extensively in SAAPdb.

Conversion from PDB to XMAS format is as follows:

1. Convert raw PDB data to XMAS format

2. Calculate and add atom and residue solvent accessibility statistics

3. Calculate and add secondary structure assignments for each residue

4. Identify and add hydrogen bonds in the structure

Solvent accessibility (step 2) is calculated using the method of Lee and Richards (1971) and sec-

ondary structure assignments (step 3) are calculated using the method of Kabsch and Sander

(1983) as modified by Smith and Thornton (unpublished). Protein-protein, protein-ligand and

ligand-ligand hydrogen bonds are identified using the simple Baker and Hubbard (1984) cri-

teria for defining a hydrogen bond (step 4). In addition, non-bonds (non-consecutive residue

atom pairs 2.7-3.35Å apart that are not covalently bonded or hydrogen bonded, for example,



CHAPTER 2. AN INTRODUCTION TO BIOINFORMATICS METHODS 70

electrostatic interactions and Van der Waals contacts) and pseudo-Hbonds (atom pairs satisfy-

ing the constraints described in Baker and Hubbard (1984) for hydrogen bonding, where one

or both atoms do not strictly form hydrogen bonds, for example, metal ions) are identified and

annotated.

Locally, XMAS files are automatically generated for all new or updated structures from the

PDB. XMAS formatted structures are easily generated for mutant structures where necessary

using proprietary software.

All the desirable requirements for file formats would be achieved by using XML, allbeit with

considerably larger files sizes than XMAS files. In fact, PDB data are available in XML format11

(Westbrook et al., 2005). However, no functionality exists for generating the additional data in

XML and methods for handling the XMAS format were already implemented as part of the

SAAPdb system; there are no plans to update these as yet.

2.3 Methods and tools

Several established bioinformatics methods and tools are referred to throughout this thesis.

These are primarily methods of sequence alignment (MUSCLE, Needleman & Wunsch and

amino acid substitution matrices) or sequence similarity searching (BLAST). These are de-

scribed in this section.

2.3.1 BLAST

BLAST (Basic Local Alignment Search Tool) is a method by which similar sequences to a pro-

tein12 of interest, or query sequence, may be retrieved from a database (Altschul et al., 1990).

BLAST identifies similar proteins by identifying smaller regions of high sequence similarity.

The use of an index of these smaller protein ‘words’ makes the search of large protein sequence

databases feasible.

BLAST decomposes the query sequence into its constituent set of words (for proteins, BLAST

11http://pdbml.pdb.org/
12BLAST may also be used for DNA sequences but is only used to identify similar proteins in this thesis
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uses a default word length of three). These words (plus similar, neighbouring words) are

searched for in a similarly decomposed, indexed database. Matches (including non-exact

matches scoring above a threshold) to these words that are found in the decomposed database

are expanded at both ends in an attempt to build ungapped alignments between the query

sequence and the corresponding sequence in the database. Any expanded alignment that

exceeds a pre-defined threshold is returned as a match or ‘hit’. Each hit is scored on how

similar it is to the query sequence.

Using statistical theory, the scores are compared with the distribution of scores generated from

the entire database. BLAST provides an E-value (expectation value) for each hit. The P-value

describes the probability that the score for an alignment is no better than random. The E-value

describes how many equal-or-better scores are expected to be found by chance in this database

when queried with this sequence. For example, should a hit have an E-value of 0.02, there is

a one in fifty chance that an alignment of the same or better quality would occur by chance

alone. This is dependent on the size and content of the database. Thus the E-value is the P-

value multiplied by the database size. However, in practice, the E-value is calculated from

integrating the tail of an extreme value distribution fitted to the data.

2.3.2 MUSCLE

MUSCLE (Edgar, 2004a; Edgar, 2004b) is a method for generating multiple sequence alignments

(MSAs) of proteins. The iterative approach is considered to be more accurate and is signifi-

cantly faster than the current de facto standard multiple sequence alignment program, ClustalW

(Thompson et al., 1994a). The algorithm has three stages: (i) generating a draft alignment with

which to start optimisation; (ii) improving this initial alignment; and finally (iii) refining the

alignment.

Each stage employs the same general mechanism of generating a progressive alignment:

1. Construct a distance matrix (D) of the sequences to be aligned

2. Use D to construct a hypothesized phylogenetic tree, P

3. Build the progressive alignment by performing a pairwise alignment at each node of the

binary tree P
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(a) Describing a set of ten sequences using a
distance/dissimilarity matrix

(b) The phylogenetic tree generated from
the matrix in Figure 2.9(a)
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(c) Using the phylogenetic tree in Figure 2.9(b) to construct the progressive alignment

Figure 2.9: The underlying concept of MUSCLE: the progressive alignment
The similarity of ten sequences is shown as a distance matrix in Figure 2.9(a). These dissimilarity scores can be used
to generate a phylogenetic tree in Figure 2.9(b), which here is constructed using the kitsch method of the PHYLIP
(http://evolution.genetics.washington.edu/phylip.html) package. An alignment is made as each inter-
nal node of the tree is met when traversing from the leaf to the root node. Where two MSAs are required to be aligned,
profile-profile alignment methods are used. A representative progressive alignment for the ten sequence example is
shown in Figure 2.9(c), where progress is made from top-left to bottom-right and profile-profile alignment is indicated
with a blue border while a red border represents pairwise alignment steps.
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It is described as a progressive alignment because the process of merging pairwise or profile-

profile alignments progresses from the leaf nodes to the root node of the tree. The process is

shown in Figure 2.9. Here, an example set of ten sequences is represented by a distance matrix

as shown in Figure 2.9(a) where the dissimilarity of two sequences is scored between 0 and 1.

This matrix can be used to construct a phylogenetic tree. The corresponding rooted tree for the

dissimilarity scores of Figure 2.9(a) is shown in Figure 2.9(b) (this tree was constructed using

the Fitch-Margoliash (1967)-based kitschmethod from the PHYLIP13 package of phylogenetic

software).

A phylogenetic tree represents the hypothesized evolutionary relationship between the partic-

ular elements (sequences or species) being considered: at each branching of the tree, a differen-

tiating evolutionary mechanism is hypothesized to have occured. As such, a phylogenetic tree

can be used to define the MSA: where leaf nodes are individual sequences, a joining internal

node represents their pairwise alignment.

Leaf nodes are aligned first. These pairwise alignments are then aligned using profile-profile

sequence alignment methods, until the entire MSA has been constructed. In Figure 2.9(c) the

alignment construction progresses from top-left to bottom-right. Simple pairwise alignments

are bordered with red, while profile-profile methods are bordered with blue.

The method of constructing a progressive alignment is employed at each stage of the MUSCLE

algorithm. These three stages are described briefly below; for full details, see Edgar (2004a).

The drafting stage To begin optimisation, an initial draft alignment is constructed using k-mer

(specifically 6-mer) counting. k-mer counting generates a similarity score for each pair of

sequences based on the prevalence of subsequences, or words, of length k. A phylogenetic

tree P is constructed using the unweighted pair group method with arithmetic mean

(UPGMA) (Sneath and Sokal, 1973).

The improvement stage The goal of this stage is to define and fix the phylogenetic tree to al-

low for further refinement of the MSA. A Kimura (1983) distance matrix using fractional

identities is calculated from the mutual alignment of each pair of sequences in the context

of the existing multiple alignment. UPGMA is used to generate a new phylogenetic tree,

P ′, which is compared to P . Where the branching order of internal nodes has changed,

new mutual alignments are made, and a new progressive alignment is constructed. This
13http://evolution.genetics.washington.edu/phylip.html
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step can be iterated and completes when the set of changed internal nodes is empty. The

phylogenetic relationship between the sequences is now fixed and the MSA can be re-

fined.

The refinement stage The fixed tree is then subject to bi-partitioning (Hirosawa et al., 1995) to

generate pairs of profiles which are then realigned. Improved MSAs are identified by

comparing the existing MSA to the new, realigned MSA using the sum-of-pairs metric

(the average pairwise alignment score of every pair of sequences in the alignment).

Figure 2.10 shows a MUSCLE alignment of P53 proteins at each stage of iteration (no improve-

ment is made after the fifth iteration). Figure 2.10 demonstrate that the first draft alignment

does successfully align the highly conserved section of sequence internal to the protein, but per-

forms poorly on the more sparsely populated start and end regions; alignment in these regions

appears to improve with each iteration. Most clearly, the optimisation procedure eliminates

many unecessary gaps present in the draft alignment (first iteration, Figure 2.10(a)).

2.3.3 Needleman & Wunsch

The Needleman and Wunsch (1970) algorithm is a method for globally aligning two sequences.

It employs dynamic programming to identify the optimal global alignment between two se-

quences. Dynamic programming is an algorithm by which the optimal procedure of decisions

can be deduced by scoring all possible decisions at each step.

The method for aligning two sequences X and Y proceeds as follows (as described in Taylor

and Orengo (1989)):

1. Initialise matrix by plotting X against Y

2. Populate matrix with alignment scores for each X/Y residue pair

3. Propagate scores through the matrix from bottom-right to top-left

4. Trace back the final alignment

In Step 1, X and Y are plotted against each other to derive an m by n matrix where every possi-

ble residue-pair alignment is represented andm and n are the lengths of the two sequences. The
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(a) Iteration (1) (b) Iteration (2) (c) Iteration (3) (d) Iteration (4) (e) Iteration (5)

Figure 2.10: Aligning P53 proteins using MUSCLE
MUSCLE converges on an alignment after five iterations of the algorithm. The alignment from each iteration is shown
continuing down the page in each column above, from Figure 2.10(a)-2.10(e). Residues are coloured as shown in
Appendix [B.i], gaps are represented with white space. Significant alignment change can be seen towards the more
sparsely populated ends of the alignment. The optimisation procedure eliminates many unecessary gaps in the first
iteration (compare the length of the alignment in Figure 2.10(a) to that of the alignment in Figure 2.10(e)).
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first sequence defines the rows and the second sequence defines the columns. Each cell is ini-

tialised with a score describing how well the two corresponding amino acids match each other.

Various scoring systems exist. Most simply, identical residues score 1 and all non identical

residues score 0; more representative scoring schemes, such as the amino acid scoring matrices

described in Section 2.3.4, can be used to represent the frequency with which pairs of residues

replace each other (from this, it is possible to summize that they have similar physicochemical

properties).

Step 2 propagates scores from the bottom right hand corner of the matrix to generate scores that

will be used in the final step to define the alignment. Matrix population proceeds from bottom-

to-top row-wise and right-to-left column-wise, simultaneously. That is, row n and column n

are completed before row n− 1 and column n− 1.

When considering each possible X/Y residue-pair alignment, three operations are possible:

1. the two residues are aligned

2. a gap is inserted in the first sequence

3. a gap is inserted in the second sequence

To represent this choice in the matrix, the score for the current cell in the matrix can be inherited

from the diagonal (when the residues are aligned, operation 1) or from the off-diagonal (when

gaps are inserted, operations 2-3). Each operation is scored and the highest score for each cell

is entered in the matrix. The score for cell (i,j) can be formalised as follows:

Di,j = s(i, j) + max


Di+m,j+1 −δ

Di+1,j+m −δ

Di+1,j+1

(2.1)

where D is the dynamic programming matrix; Di+1,j+i is the score of a diagonal move from

cell i+ 1, j+ 1; Di+m,j+1 defines a score from the jth1 row and Di+1,j+m defines a score from the

i+ 1th column. Inheriting from the jth1 row or i+ 1th column requires that a gap be inserted in

the appropriate sequence. Gaps are penalised using the penalty term δ, which is calculated as

follows:
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δ = gi + nge (2.2)

where gi is the gap initialisation penalty, ge is the gap extension penalty and n is the length

of the gap being inserted. Appropriate values for gi and ge are critical in obtaining reasonable

alignments. Throughout this thesis, gi = 10 and ge = 2.

Once the scores have been propagated through the matrix, the highest scoring path is traced

back from top-left to bottom right through the matrix to generate the optimal alignment of the

two sequences.

2.3.4 Amino acid substitution matrices

Amino acid (AA) substitution matrices describe how similar a pair of residues are to each other.

Matrices vary in the assumed mutation rate and scoring range. In general however, the ap-

proach is the same. Representative proteins are aligned and mutation rates (i.e., how often

residue X is aligned with residue Y) for each pair of amino acids are recorded. These are the

observed mutation rates between pairs of amino acids. The expected mutation rate is calculated

using the frequency of the amino acids. A final log-odds value (Sij) is calculated as follows:

Sij = log
(
obsij
expij

)
(2.3)

where obsij is the observed mutation rate between residue i and j and expij is the expected

mutation rate between residue i and j.

In this thesis, three matrices are used (i) to score conservation (see Chapter 4) and (ii) to charac-

terise PDs and SNPs (see Chapter 7).
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2.3.4.1 PAM30

PAM matrices (Dayhoff et al., 1978) use the PAM (Percent Accepted Mutation) as a unit of

sequence divergence: if two protein sequences are 1 PAM apart, they share 99% of their amino

acids. Various PAMX matrices are available, where X describes the PAM distance between the

protein sequences that are aligned to derive the observed and expected mutation rates. All PAM

matrices are constructed by successive multiplications of the basic PAM1 matrix with itself; for

example, the PAM30 = PAM130 (the PAM30 matrix is used in Chapter 7 and given in Appendix

[C.i]).

The PAM1 matrix gives an estimate of the probability of residue b replacing residue a over a

period of time t. These conditional probabilites are calculated from the phylogenetic analysis of

evolutionarily related sequences, all with 85% or better sequence identity to each other. Using

these observed probabilities, defining the unit of time as 1PAM and scaling the matrix such that

rows and columns equal to one, the PAM1 matrix is derived (Durbin et al., 1998).

2.3.4.2 BLOSUM62

BLOSUM matrices (Henikoff and Henikoff, 1992) were an attempt to update the older PAM ma-

trices by exploiting the much increased wealth of protein sequence data and facilitate identifica-

tion of very distantly related proteins. BLOSUM matrices use the BLOCKS resource (Henikoff

et al., 1999; Henikoff et al., 2000) (since integrated into InterPro (Mulder et al., 2007)) to generate

multiple alignments and calculate observed and expected scores from which log-odds values

are derived. Where PAM matrices use the basic unit of 1 PAM to construct matrices, BLOSUM

matrices are based on alignments of proteins of varying levels of sequence identity. For exam-

ple, the commonly used BLOSUM62 matrix (see Appendix [C.iii]) is derived from alignments

of sequences that are ≥62% identical.

2.3.4.3 PET91

In 1991, the PAM250 matrix was updated by Jones et al. (1992) to create the PET91 (Pairwise

Exchange Table 1991) matrix. The method used to derive the PET91 matrix is virtually identical

to that of the PAM250 matrix, save for the construction of the raw PAM matrix: Dayhoff et
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al. took the approach of inferring the common ancestral sequences and comparing this with

the observed present-day sequences, whereas Jones et al. use the pairwise distances between

present-day sequences to construct the PAM matrix.

Throughout this thesis, where the PET91 matrix is used, it has been normalised such that all

values on the diagonal (i.e., the residue identity scores) are maximal and equal, as follows:

M(a, b) =
m(a, b)−min(m)
max(m)−min(m)

(2.4)

where m is the PET91 matrix; M is the normalised matrix, and a, b are amino acids. See Ap-

pendix [C.ii] for this normalised matrix.

2.3.5 Performance evaluation

Binary classification performance methods evaluate performance where the task is to assign

each example to one of two classes, for example, present/absent, disease-causing/neutral or ac-

tive/inactive. These three examples can all be generalised to positive/negative and the present

discussion will continue using these generalised class names.

It is possible to assess the predictions made by the method being evaluated by comparing them

with known answers, or with a gold standard dataset, which provides the best approximation

to the correct answers that is available. In such a comparison, a binary classification method

can make two kinds of errors: a type I error occurs when a result known to be negative is

classified as positive and a type II error occurs when a results known to be positive is incorrectly

classified as negative. A type I error is also known as a false positive (FP) and a type II error

is also known as a false negative (FN); similarly, genuinely positive or negative results that are

correctly classified are known as true positives (TPs) and true negatives (TNs) respectively. A

successful prediction algorithm will minimise the number of incorrect results (i.e., FPs/FNs)

and maximise the number of correct results (i.e., TPs/TNs). In this section and throughout this

thesis, the four terms TP, TN, FP and FN will be used to describe the results of classification

evaluation.
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These four counts may be combined in many ways to assess how well the prediction method

has performed. In this thesis, four measurements have been used to evaluate performance:

sensitivity, specificity, positive predictive value (PPV) and Matthew’s Correlation Coefficient

(MCC). Their formulae for these statistics are shown below in Equations 2.5-2.8:

sensitivity =
TP

TP + FN
(2.5)

specificity =
TN

FP + TN
(2.6)

PPV =
TP

TP + FP
(2.7)

MCC =
TP.TN − FP.FN√

(TP + FP ).(TP + FN).(TN + FP ).(TN + FN)
(2.8)

The sensitivity is the fraction of results that are known to be positive that are correctly classi-

fied as positive by the prediction method; i.e., the number of positive examples that the method

classifies correctly (Equation 2.5). A complementary measure is specificity, which describes

the fraction of known negative examples that are correctly classified as negative by the al-

gorithm (Equation 2.6). It is desirable to maximise both specificity and sensitivity such that

sensitivity − specificity = 0. These measurements can be combined in a receiver operating

curve or ROC plot which plots sensitivity (also called the True Positive Rate or TPR) against

1-specificity (also called the False Positive Rate or FPR); see Figure 2.11 for an example. If

sensitivity=1-specificity (i.e., TPR=FPR), results are essentially random (indicated by a dashed

blue line in Figure 2.11). As sensitivity increases and 1-specificity decreases (i.e., specificity in-

creases), the results gravitate to the top-left of the ROC plot and results improve; a perfect result

(indicated by a green circle in Figure 2.11) occurs when FPR = 0 and TPR = 1. It is possible to

evaluate varying thresholds in a predictive model by plotting sensitivity against 1-specificity

(FPR against TPR) and assessing which threshold maximises the sensitivity to 1-specificity ra-

tio; i.e., which threshold is found furthest from the sensitivity=1-specificity line.
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Figure 2.11: An example receiver-operating curve (ROC) plot
The true positive rate (TPR) is plotted against the false positive rate (FPR). Where TPR=FPR, results are no better than
random (indicated with a dashed blue line); an example result is indicated with a grey circle. As the TPR increases and
the FPR decreases, performance improves and results gravitate towards the top left hand corner of the plot, away from
the line of no discrimination. Perfect prediction performance is achieved where TPR = 1 and FPR = 0; this is indicated
with a green circle. Where the results drop below the line of no discrimination, towards the bottom right hand corner
of the plot (as indicated by the red circle), the method more often predicts the incorrect result (i.e., predicts positive
where the correct result is negative, and vice versa). The orange circle indicates a more average performance result.
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An alternative measure is positive predictive value or PPV. This describes the fraction of those

results that are predicted as being positive that are correct (Equation 2.7). This measure is partic-

ularly useful when the aim is to make conservative positive predictions at the expense of more

false negatives.

Finally, the most comprehensive measurement of performance in a binary classification system

is Matthews Correlation Coefficient or MCC (Equation 2.8). Where the previous measure-

ments have considered a single ‘dimension’ of the performance, the MCC score incorporates all

measures (TP, TN, FP and FN) into one value. The MCC can range from -1 to 1, where 1 indi-

cates perfect performance, 0 indicates random performance and -1 indicates that performance

is precisely the opposite of what is expected.

In addition to providing a comprehensive summary of evaluation performance, the MCC score

is robust to class size inequality. This is not the case for the three other performance measures

described above. For example, in computational biology it is often the case that the TN exam-

ples vastly outnumber the TP examples, and as such, high levels of specificity can be achieved

simply by assigning everything to the negative class.

In reality, the appropriate performance statistics (the equations for which are summarised be-

low) will depend on the aims of the method, on aspects of the data being examined and on an

understanding of the gold standard dataset against which the method is being benchmarked.

In Chapters 3 and 4, FOSTA and ImPACT are evaluated variously using sensitivity, specificity,

ROC plots, PPV and MCC. The choice of the performance metrics is justified in each chapter.

2.3.6 Statistics and data representation

Chapter 7 analyses the data in SAAPdb and their hypothesised structural effects (see Chapters

5 and 6). In that chapter, several statistics are used to compare pathogenic deviations (PDs)

and single nucleotide polymorphisms (SNPs) with respect to several sequence and structural

features. In this section, the statistics used are summarised. Log ratios, as a means for graphically

comparing datasets rather than statistically comparing datasets, are also described.
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2.3.6.1 Log ratios

Log ratios compare the observed prevalence of a feature with the expected prevalence of a

feature, as shown in Equation 2.9. Throughout this theses, unless otherwise stated, log ratios

are calculated using log2. A value of 0 indicates that the observed and expected values are the

same. A value of 1 would indicate that the observed value is double (21) what is expected, a

value of 2 would indicate that the observed value is four times (22) what is expected, and so on.

Similarly, a value of -1 would indicate that the observed value is half (2−1) of what is expected.

logratio = log2

(
observed

expected

)
(2.9)

Log ratios are not a statistical test from which a p-value can be derived, but a way of represent-

ing the difference between an observed value and an expected value.

2.3.6.2 Kolmogorov-Smirnov

The Kolmogorov-Smirnov or KS test (Conover, 1971) is a non-parametric method for compar-

ing distributions. In the one-sample test, an observed sample distribution is compared with a

reference distribution (e.g., a normal distribution), while in the two-sample test, two observed

sample distributions are compared (in Chapter 7, only the two-sample test has been used).

The null hypothesis of the KS test is that the distributions being compared are drawn from

the same distribution. Therefore, should p < α (α is variously set at 0.05 or 0.01), the null

hypothesis is rejected and it is concluded that the distributions were not drawn from the same

distribution. The test statistic is the maximal vertical distance (D) between the two cumulative

distribution functions (CDFs), that is:

D = max |F (x)−G(x)| (2.10)

where F and G are the test CDF and reference CDF respectively in the one-sample test, or the

two test CDFs in the two-sample test. The CDF of the distribution function f is calculated as
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follows:

F (x) =
∫ x

−∞
f(t)dt (2.11)

where x is the point at which the total is to be calculated. In this thesis, the CDFs are calculated

from data, rather than from probability distributions; in this case, the empirical cumulative dis-

tribution of data x at point i is calculated as:

Ci(x) =
1
N

j≤i,i≤D∑
j=1

xj (2.12)

where i, j are bins of data; D is the number of bins; xj is the number of data points in x that

belong in bin j; and N is the number of datapoints in x.

Where distributions are being compared in the presence of ties (i.e., there are many repeated

values in the dataset), a bootstrapping method (n=1000) is carried out using the ks.boot() 14

method in R. This more accurately estimates the p-value when comparing discontinuous dis-

tributions (Abadie, 2002).

2.3.6.3 χ2 test

Where data are nominal counts, the χ2 test (Mood et al., 1974) will indicate whether there is

a difference between two datasets. Note that where χ2 results are reported with percentages

in this thesis, raw counts have been used to conduct the χ2 test. The χ2 statistic is calculated

as shown in Equation 2.13. Expected values may not always be available; they can however

be estimated using the observed data (Figure 2.12 shows an example). Where possible, known

expected values have been used throughout this thesis, rather than estimated values; i.e., ex-

pected values are calculated from known data rather than being estimated from the observed

data.
14http://sekhon.berkeley.edu/matching/ks.boot.html

http://sekhon.berkeley.edu/papers/MatchingJSS.pdf
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Figure 2.12: Calculating χ2 expected values
Males and females have been classified as P and Q. Observed counts are in black, expected counts are in grey. Expected
values can be calculated as follows: e = (X ∗Y )/N whereX is the row total, Y is the column total andN is the number
of examples in the dataset.

χ2 =
k∑
i=1

(observed− expected)2

expected
(2.13)

Throughout this thesis, the χ2 test is Yates corrected where a χ2 test is carried out on a 2x2

contingency table. This prevents low p-values being derived where there is only one degree

of freedom by subtracting 0.5 from each observed value in the contingency table, as shown in

Equation 2.14.

χ2
Y ates =

k∑
i=1

(|observed− expected| − 0.5)2

expected
(2.14)

2.3.6.4 Fisher exact test

The χ2 test becomes unreliable where the contingency table is sparsely populated (i.e., where

any cell has a value of ≤ 10) and where counts are distributed unevenly throughout the con-

tingency table. However, the statistical theory upon which the Fisher exact test is based allows

robust comparison of datasets of disparate sizes and is able to consider contingency tables with

empty cells (Fisher, 1935). The probability of obtaining the set of values a, b, c, d as shown in

the contingency table in Figure 2.13 can be calculated using the hypergeometric distribution as

described in Equation 2.15.
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P Q
Male a b a+b
Female c d c+d

a+c b+d n

p =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

n!a!b!c!d!
(2.15)

Figure 2.13: Fisher exact test
Naming the values in the contingency table as a, b, c, d as shown, the probability of that particular combination of val-
ues can be calculated using the hypergeometric distribution as shown in Equation 2.15 where ! is the factorial operator.



Chapter 3

FOSTA: Functional Orthologues

from Swiss-Prot Text Analysis

As introduced in Section 1.9, SAAPdb is a database of mutation data, which aims to identify the

structural effect, if any, of single amino acid polymorphisms (SAAPs). It is an on-going project:

the suite of structural analyses is expected to evolve to include a broader and more sophisti-

cated range of structural analyses (the current structural analyses will be described in detail

in Chapter 5). As such, while the pipeline is being developed, it may not always be possible

to explain a mutation with respect to its structural annotation. However, it may be possible

to infer functional relevance from sequence data. Residues that have been maintained across

evolution, and therefore have been subject to selection pressure, are likely to be important to

the native structure and/or function of the protein. The first step in identifying such residues

is to construct an alignment of functionally equivalent proteins or FEPs. Proteins that have

diverged in function (either by gaining or losing functionality) will show differences at key

functional residues. To incorporate such an analysis in SAAPdb, a reliable, automatic method

for extracting groups of FEPs is required.

This chapter describes a novel method for identifying FEPs by analysing functional annotations

in UniProtKB/Swiss-Prot. This method and its evaluation have been published in McMillan

and Martin (2008).

87



CHAPTER 3. FOSTA 88

3.1 Introduction

To generate an informative multiple sequence alignment (MSA), the ‘same’ protein in different

species should be aligned. In this chapter, the ‘same’ protein is defined as an orthologue that

performs an equivalent function or functions. Proteins that have diverged in function (either by

gaining or losing functionality) will show differences at key functional residues; aligning such

proteins will obscure patterns of functionally-relevant conservation. Two entities are homolo-

gous if they have a common evolutionary origin. An orthologous relationship denotes that this

common origin was a speciation event, whereas paralogues are related by a gene duplication

(Koonin, 2005).

Consider the HOX family of genes: a large family of transcription factor proteins containing

the well characterised homeobox motif. These proteins are well conserved across species and

are believed to be critical in embryogenesis, oncogenesis and differentiation processes such as

haematopoiesis (Yaron et al., 2001; Lill et al., 1995). HOX proteins are representative of large

protein families in that there are several paralogues within a species—thirteen in the case of the

human HOX family (Yaron et al., 2001)—and each paralogue can be involved in several distinct

aspects of the same biological process. A sequence alignment of such evolutionarily related, but

functionally different, proteins (i.e., paralogues) would contain significant noise, and obscure

much of the genuine functional conservation between true FEPs.

Paralogues, having been derived via a mechanism for functional divergence, are likely to per-

form different functions (Fitch, 2000). While orthologues generally perform the same function,

it is possible for the function to diverge, particularly when orthologues are evolutionarily dis-

tant (Koonin, 2005). For example, Shibata et al. (2006) showed that although the general func-

tion of exportin-5 proteins (nuclear export of miRNAs and tRNAs) is conserved across different

species, substrate specificity varies. Further, the AGAMOUS gene in Arabidopsis is involved

in carpel and stamen development, but the two orthologues in maize have specialised: ZAG1

is highly expressed during carpel development and ZMM2 is expressed during stamen devel-

opment (Wagner, 2002). It is clear then that orthology need not imply functional equivalence

and it follows that sets of orthologues, defined by methods such as Inparanoid (O’Brien et al.,

2005), C/KOG (Tatusov et al., 2001; Tatusov et al., 2003) and TOGA (Lee et al., 2002), are not

appropriate as lists of FEPs. Further, these methods are computationally intensive and as such

are often limited to small species sets.
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While homology does not imply functional equivalence, it is also not possible to use func-

tional data alone to identify FEPs. Proteins can converge on similar functions without being

evolutionarily related. For example, subtilisin (EC 3.4.21.62) and trypsin (EC 3.4.21.4) have

evolved separately in bacteria and vertebrates respectively. They differ significantly in protein

sequence, structure and fold, yet the same three amino acids form the catalytic triad in both

proteins (Akindahunsi and Chela-Flores, 2005). Aligning such functionally similar, but evo-

lutionarily unrelated, proteins is meaningless: only proteins which are both homologous and

functionally equivalent will generate an informative alignment.

The identification of true FEPs requires consideration of features such as functional assays,

interaction networks, expression data and so forth. UniProtKB/Swiss-Prot is a carefully anno-

tated databank of protein sequences that includes functional annotations (The UniProt Consor-

tium, 2009). While many of these are transferred through orthology, where there is experimen-

tal evidence for function, it will be included. Thus, short of conclusive experimental studies, the

most reliable way of identifying families of FEPs is first to identify families of homologues in

UniProtKB/Swiss-Prot and then to examine the annotations to find a set of proteins that are an-

notated as performing the same function or functions. It is, of course, possible that annotations

in UniProtKB/Swiss-Prot will be incorrect, but as UniProtKB/Swiss-Prot is updated on a regu-

lar basis, it is expected that these annotations will represent the most up-to-date knowledge of

protein function and errors in annotations will be corrected with future releases.

While it is perfectly possible to perform this analysis on an individual basis by searching

UniProtKB/Swiss-Prot for homologues and comparing the annotations manually, there is

a pressing need for an automatically updated resource that simply lists families of FEPs in

UniProtKB/Swiss-Prot. Several methods exist that exploit database annotations to identify

related proteins (Artamonova et al., 2005; Kretschmann et al., 2001; Yu, 2004; Kunin and

Ouzounis, 2005), however there has been no resource that very simply provides sets of FEPs

annotated as having the same function in UniProtKB/Swiss-Prot in an easily-accessible

format, with extensive coverage of multiple proteomes.

FOSTA (Functional Orthologues from Swiss-Prot Text Analysis) has been developed to

automate the process that one would perform manually to extract a family of FEPs from

UniProtKB/Swiss-Prot. It considers UniProtKB/Swiss-Prot proteins for inclusion in groups

of FEPs (FOSTA families) rooted around human proteins. It refines an initial candidate list

of homologues on the basis of functional annotation similarity to distinguish FEPs from
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functionally diverged homologues (FDHs). To assess functional annotation similarity, FOSTA

employs simple text-mining techniques to compare UniProtKB/Swiss-Prot description fields.

3.2 Method

3.2.1 Obtaining the data

Figure 3.1 describes the flow of data in the FOSTA system. FOSTA exploits data in

two UniProtKB/Swiss-Prot files in forming families of FEPs: the FASTA formatted

version of UniProtKB/Swiss-Prot sequences and the UniProtKB/Swiss-Prot .dat

flatfile, from which the functional annotations are extracted. These files are auto-

matically mirrored from Expasy (ftp.expasy.org/databases/uniprot/ and

ftp.expasy.org/databases/swiss-prot/ specifically). The first step in populating

FOSTA is to clone the most recent relevant UniProtKB/Swiss-Prot data and extract the desired

information from them. All FOSTA analyses (one for each human protein) are then distributed

across a local compute farm (using Sun GridEngine), with each individual process updating

the FOSTA database. All data required by the distributed processes are available in the FOSTA

database.

3.2.2 The FOSTA method

As input, FOSTA takes an entire UniProtKB/Swiss-Prot release; results presented in this chap-

ter are based on UniProtKB/Swiss-Prot v53.0. FOSTA roots families of FEPs (FOSTA families)

around human proteins of length≥100 using the three stage filtering processes shown in Figure

3.2. Candidates rejected at filtering stages (2) and (3) are retained and recorded as functionally

diverged homologues (FDHs).
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(2) Extract sequence data

(3) Extract functional annotations

      of UniProtKB/Swiss−Prot
(1) Clone most recent version

Maintained by pre−existing
mirror script

UniProtKB/Swiss−Prot

uniprot_sprot.fasta

uniprot_sprot.dat

uniprot_sprot.fasta

uniprot_sprot.dat

      each human protein
(4) Form FOSTA family around

FOSTA

FOSTA Swiss−Prot clone

20−core grid

Figure 3.1: The workflow of FOSTA
STEP (1): the uniprot sprot.fasta and uniprot sprot.dat files from the most recent version of
UniProtKB/Swiss-Prot are cloned (this process is highlighted in red); STEP (2): sequence data are extracted from
uniprot sprot.fasta and stored in the FOSTA database; STEP (3): functional annotations are extracted from
uniprot sprot.dat and stored in the FOSTA database; STEP (4): FEPs for each human protein are identified (for
details, see Figure 3.2 and Sections 3.2.2.1-3.2.2.3). Solid black lines indicate the direction of data flow, dashed blue
lines indicate where data are stored in the FOSTA database. A pre-exising mirror script ensures that the external
UniProtKB/Swiss-Prot data (separated from the cloned FOSTA data with a dashed grey line) are kept up to date. The
analysis for each human protein is distributed across the local 20-core grid (each core is represented above with a grey
rectangle). Note that FOSTA is updated by each inidividual process.
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(g) Collapsed match

(e) Containing 75% words

(c) Full containing
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(f) Containing 75% length

(d) Mixed containing

Tectonic 3 precursor & Tectonic−3 precursor

Kinesin light chain I & Kinesin light chain

Tubulin alpha chain & Tubulin alpha−1 chain

Myosin light chain alkali & Alkali myosin light chain I

Exportin−6 & Exportin 6−B

Hemoglobin subunit beta & Hemoglobin subunit beta−3

(a) Direct
Autoprothrombin IIA & Autoprothrombin IIAof description

matches

(e.g., OTC_HUMAN / OTC_MOUSE)  (i) Protein prefix match

 (ii) Complete EC number match

(iii) The hierarchy

Protein of
interest

Figure 3.2: A schematic of the FOSTA method
The protein of interest is BLASTed against UniProtKB/Swiss-Prot (in the current version of FOSTA, this is
UniProtKB/Swiss-Prot v53.0). STEP (1) any BLAST matches (e≤ 10−2) are retained, non matches are unrelated pro-
teins or distant paralogues; STEP (2) the annotations of each BLAST match are compared to those of the root protein
of interest, matches are retained, non-matches are described as paralogues or functionally diverged homologues; STEP
(3) the best match for each species is identified and described as the functionally equivalent protein, the rest are iden-
tified as paralogues or functionally diverged homologues. The inset box on the left hand side describes the functional
annotation match hierarchy. See Section 3.2.2.2 for detailed discussion.
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3.2.2.1 The sequence filter

The first stage identifies sequence homologues using a BLAST (Altschul et al., 1990) e-value

threshold of 10−2. In stage (2) of Figure 3.2, this list of candidate FEPs is refined using the filters

described in Sections 3.2.2.2 and 3.2.2.3.

3.2.2.2 The functional filter

This stage, shown in the functional match ‘pyramid’ in Figure 3.2, aims to ‘read’ the

UniProtKB/Swiss-Prot annotations. The homologues obtained in the previous stage are

filtered on function using information from the UniProtKB/Swiss-Prot ‘Description’ (DE) field

and the UniProtKB/Swiss-Prot ID itself. Each homologue identified by the BLAST search will

survive the functional filter if it matches the root protein in at least one of three levels (I-III);

the DE field text matches compare synonyms at seven further levels of specificity (a-g):

(I) by the protein prefix element of the UniProtKB/Swiss-Prot ID

(II) by an EC number

(III) by matching synonyms at further multiple levels of specificity from the DE field

(a) a ‘direct’ match, where the two proteins share an intact synonym (e.g., Autoprothrom-

bin IIa and Autoprothrombin IIa)

(b) a ‘hyphen’ match, where the proteins share a synonym after hyphen placement is

mirrored across both strings (e.g., Tectonic 3 precursor and Tectonic-3 precursor)

(c) a ‘full containing’ match, where one synonym is completely contained within an-

other (e.g., Kinesin light chain I and Kinesin light chain)

(d) a ‘mixed containing’ match, where one synonym is contained within another syn-

onym, but the words can be in a different order or they may be interrupted by addi-

tional annotation (e.g., Tubulin alpha chain and Tubulin alpha-1 chain)

(e) a ‘containing 75% words’ match, where 75% of the words of the shorter synonym

are also in the longer synonym (e.g., Myosin light chain alkali and Alkali myosin light

chain I)
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(f) a ‘containing 75% length’ match, where 75% of the words in terms of length of the

shorter synonym are also in the longer synonym (e.g., Hemoglobin subunit beta and

Hemoglobic subunit beta-3)

(g) a ‘collapsed’ match, where one synonym is a substring of another, after spaces and

punctuation have been removed (e.g., Exportin-6 and Exportin 6-B)

When any two synonyms are compared, three common, functionally irrelevant words—

‘protein’, ‘fragment’ and ‘precursor’—are removed so as to avoid matches on functionally

irrelevant terms. All text comparisons are case insensitive.

The level (I) protein prefix match is considered the most reliable functional match (given that all

candidates have survived the homology screen and are therefore known to be evolutionarily

related) and the level (III) description match is considered to be the least reliable functional

match. Within the description field match, reliability reduces from (a) the direct match to (g) the

collapsed match. Although the choice of the 75% threshold is somewhat arbitrary, it is unlikely

that false matches will be made, as all candidates have already been screened for homology. In

text comparison (g), the smaller synonym that is contained in the other must be at least four

characters long. The string ‘inhibit’ is treated as a special case: in synonym comparisons (c)-(g),

both or neither of the synonyms can contain the string ‘inhibit’ for a match to be possible; for

example, there is no match if one of the synonyms contains the word ‘inhibitor’ while the other

does not.

3.2.2.3 The FEP filter

If a protein survives both the sequence and functional filtering stages, it is either the FEP for that

species or a homologue that has undergone some (small) degree of functional divergence. To

eliminate the functionally diverged homologues (FDHs), only the best functional match from

each species (as defined by the functional match reliability hierarchy described in Section 3.2.2.2

and in the match hierarchy pyramid shown in Figure 3.2) is assigned to the FOSTA family.

If two or more proteins cannot be discriminated functionally (i.e., they match the root human

protein at the same level of specificity), the protein with the highest sequence identity is chosen.

Note that sequence identity is used only as a last resort as highest sequence identity does not

guarantee functional equivalence even amongst close homologues (Notebaart et al., 2005; Koski

and Golding, 2001).
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3.2.2.4 Unreliable proteins

UniProtKB/Swiss-Prot employs non-experimental qualifiers to describe proteins that have not

been characterised directly using experimental procedures1: ‘probable’ (there is some experi-

mental evidence, perhaps from a close homologue), ‘putative’ (there is some evidence, but not

enough to describe the function as ‘probable’) and ‘hypothetical’ (the sequence is automatically

translated from known genes). In addition, some proteins are not complete (fragments) and

others are described as ‘homologues’ or contain the ‘-like’ string. Further, as described in Sec-

tion 3.2.2.2, the FOSTA methodology uses sequence identity as the last resort match should two

candidate FEPs be indistinguishable with respect to function.

Such proteins and FEP assignments are less ‘reliable’ than others. FOSTA marks these assign-

ments as such, so that the user may choose to remove them from the FOSTA family.

3.3 Results and Discussion

3.3.1 An overview of FOSTA

Before presenting the evaluation of the method, it is helpful to present an overview of the

dataset. In this section, FOSTA is described with respect to proteome coverage and family size.

To appreciate the coverage of FOSTA, the UniProtKB/Swiss-Prot proteome coverage for each

species has been calculated as NF /NSP , where NSP is the number of proteins from that species

that are described in UniProtKB/Swiss-Prot (i.e., the size of the ‘UniProtKB/Swiss-Prot pro-

teome’) and NF is the number of proteins from that species described in FOSTA. Therefore,

a species that has all of its UniProtKB/Swiss-Prot proteins assigned to a FOSTA family will

have a UniProtKB/Swiss-Prot proteome coverage of 100%, while a species with none of its

UniProtKB/Swiss-Prot proteins represented in FOSTA would have a UniProtKB/Swiss-Prot

proteome coverage of 0%.

It is clear from Figure 3.3 that many species have 2% or less of their UniProtKB/Swiss-Prot pro-

1See http://www.uniprot.org/manual/non_experimental_qualifiers and http://www.uniprot.
org/docs/annbioch
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teomes represented and a sizable number of species that have>98% of their UniProtKB/Swiss-

Prot proteome described in FOSTA. The high number of poorly represented species will reduce

over time as annotations are resolved across species.

Figure 3.4(a) shows the distribution of family sizes for all FOSTA families of 660 members or

less (only one human protein is assigned more than 660 FEPs: FOSTA identifies 1787 FEPs

for human Cytochrome b [UniProtKB:P00156/CYB HUMAN]). FOSTA families with a mem-

bership of <100 are shown in more detail in Figure 3.4(b). The most common family size is

two, which usually corresponds to an exclusively human/murine FOSTA family. These are not

only the most well represented species in UniProtKB/Swiss-Prot v53.0, they are also the most

extensively and similarly annotated.

There are increasingly fewer FOSTA families as family size increases beyond two. This is in part

due to annotations being less consistent across species, however it is also owing to genuine

functional divergence: as more species are added to a species set S, it is less likely that the

function F is common to every species in S.

With respect to how FEP relationships are formed, most FOSTA families are formed exclusively

using the protein prefix match, i.e., all members share the same protein prefix. However, 42.10%

(6 266/14 884) of FOSTA families contain at least two different protein prefixes. Furthermore, of

the 22 871 protein prefixes recorded in FOSTA, 5.42% are found to exist in more than one FOSTA

family. This indicates that, although UniProtKB/Swiss-Prot protein prefixes are very often re-

liable, incorporating additional information derived from the description field is beneficial in

identifying FEP relationships.

3.3.2 Difficulties in benchmarking

Evaluating FOSTA is difficult because no gold-standard dataset exists. In addition, it is difficult

to design an evaluation procedure to isolate the performance of the FOSTA method from the

quality of the UniProtKB/Swiss-Prot annotations that FOSTA interprets. To assess the FOSTA

method, it is necessary to assess whether FOSTA is clustering proteins correctly given the func-

tional annotations, rather than assessing whether the functional annotations are of sufficient

detail to infer genuine functional equivalence. However, it is also very important to assess the

latter, as FOSTA is dependent on the UniProtKB/Swiss-Prot annotations.
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FOSTA coverage of UniProtKB/Swiss−Prot proteomes

Proteome coverage
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Figure 3.3: Proteome coverage in FOSTA
The proteome coverage for each species represented in FOSTA, calculated asNX,F /NX,SP , whereNX,SP is the num-
ber of UniProtKB/Swiss-Prot proteins for species X and NX,F is the number of proteins from species X described in
FOSTA. Frequency is logged (base 2). Blue text gives the raw, unlogged frequency.

As such, FOSTA has been evaluated in three phases. The first involves manual interpretation

of the results of several large protein families, some chosen at random and some chosen as

known problematic cases. This phase assesses how well FOSTA can interpret functional an-

notations and infer functional equivalence compared with manual interpretation. The second

phase benchmarks FOSTA against a fully manually annotated dataset and a larger partially an-

notated dataset. This phase not only indicates whether FOSTA performs well, but also assesses

whether the annotations are good enough to infer functional equivalence. The final phase of

evaluation involves comparing FOSTA to Inparanoid, a popular method for identifying ortho-

logues. Note that the aim of FOSTA is not the same as that of the datasets used in the second

and third evaluation phases. Nevertheless, some interesting comparisons can be made.

3.3.3 HOX proteins

The family of homeobox (HOX) proteins was introduced in Section 3.1. In this section, the

performance of FOSTA is assessed when assigning the zebrafish (Danio rerio) FEP to Homo Sapi-
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Figure 3.4: The distribution of FOSTA family size
To characterise the FOSTA dataset, the distribution of family sizes (i.e., the number of FEPs) is shown above. Family
size is logged (base 10). Blue text gives the raw, unlogged count. Family size bins without data (having a raw count of
0) are indicated in grey. The plot in Figure 3.4(a) shows results for those families with 660 or fewer members; only one
FOSTA family (that of CYB HUMAN) has more than 660 members (it has 1787).
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Table 3.1: Zebrafish candidates for the FOSTA family of HXB7 HUMAN
Protein: The UniProtKB/Swiss-Prot ID; ID: The sequence identity of the Protein to HXB7 HUMAN; Description: The
UniProtKB/Swiss-Prot description (DE) field.

Protein ID Description
HXB7 HUMAN 100 Homeobox protein Hox-B7; Hox-2C; HHO.C1
HXB7A DANRE 54 Homeobox protein Hox-B7a; Hox-B7
HXA1A DANRE 63 Homeobox protein Hox-A1a; Hox-A1
HXA3A DANRE 68 Homeobox protein Hox-A3a
HXA4A DANRE 65 Homeobox protein Hox-A4a; Zf-26; Hoxx4
HXA5A DANRE 75 Homeobox protein Hox-A5a
HXA9B DANRE 62 Homeobox protein Hox-A9b
HXB1A DANRE 64 Homeobox protein Hox-B1a; Hox-B1
HXB1B DANRE 64 Homeobox protein Hox-B1b; Hox-A1
HXB2A DANRE 57 Homeobox protein Hox-B2a; Hox-B2
HXB3A DANRE 67 Homeobox protein Hox-B3a; Hox-B3
HXB4A DANRE 62 Homeobox protein Hox-B4a; Hox-B4; Zf-13
HXB5A DANRE 75 Homeobox protein Hox-B5a; Hox-B5; Zf-21
HXB5B DANRE 75 Homeobox protein Hox-B5b; Hox-B5-like; Zf-54
HXB6A DANRE 78 Homeobox protein Hox-B6a; Hox-B6; Zf-22
HXB6B DANRE 75 Homeobox protein Hox-B6b; Hox-A7
HXB8B DANRE 60 Homeobox protein Hox-B8b; Hox-A8
HXC1A DANRE 62 Homeobox protein Hox-C1a
HXC3A DANRE 61 Homeobox protein Hox-C3a; Hox-114; Zf-114
HXC5A DANRE 72 Homeobox protein Hox-C5a; Hox-C5; Hox-3.4; Zf-25
HXC6A DANRE 63 Homeobox protein Hox-C6a; Hox-C6; Zf-61
HXC6B DANRE 77 Homeobox protein Hox-C6b
HXC8A DANRE 73 Homeobox protein Hox-C8a
HXD4A DANRE 62 Homeobox protein Hox-D4a; Hox-D4
HXD9A DANRE 65 Homeobox protein Hox-D9a; Hox-D9
HXDAA DANRE 61 Homeobox protein Hox-D10a; Hox-D10; Hox-C10

ens homeobox protein Hox-B7. There is a body of literature on the problem of elucidating HOX

gene evolution, which is difficult in zebrafish given the extensive polyploidy in its evolutionary

history (Amores et al., 1998; Meyer, 1998; Stellwag, 1999).

The BLAST search identifies 83 zebrafish candidate FEPs and the filtering process assigns

HXB7A DANRE to the FOSTA family of HXB7 HUMAN. There are 24 zebrafish FDHs that

have higher sequence similarity to HXB7 HUMAN than the assigned FEP. These proteins, the

FEP and the root human protein are listed in Table 3.1, along with their UniProtKB/Swiss-Prot

annotations and their sequence identity to HXB7 HUMAN. It is clear that HXB7A DANRE is

the FEP given the similarity of its description and its protein prefix to that of HXB7 HUMAN;

this would be selected in a manual analysis of these candidates, despite its lower sequence

identity.

Several sites of functional relevance have been identified for HXB7 HUMAN (Table 3.2).
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Table 3.2: Functional sites in HXB7 HUMAN
Functional site: a description of the functional site; Location: the residue number in HXB7 HUMAN; Reference: The
source of the annotation.

Functional site Location Reference
DNA binding (homeobox) 137 - 197 UniProtKB/Swiss-Prot/FT DNA BIND
Crosslink (glycyl lysine isopeptide) 191 & 193 UniProtKB/Swiss-Prot/FT CROSSLNK
Motif (Antp-type hexapeptide) 126 - 131 UniProtKB/Swiss-Prot/FT MOTIF
Hypothesized binding to PBX 129 - 130 Yaron et al. (2001)
Putative CKII target 132 - 133 Yaron et al. (2001)
Putative CKII target 203 - 204 Yaron et al. (2001)

These functional sites have been extracted from UniProtKB/Swiss-Prot annotations and a

mutagenesis study by Yaron et al. (2001). Figure 3.5(a) shows the alignment of HXB7 HUMAN

and four confidently assigned FEPs (i.e., those assigned to the FOSTA family on the basis

of protein prefix match) with HXB7A DANRE and the other 24 Danio rerio candidates

in the functionally relevant areas. Despite globally having the lowest sequence identity

to HBX7 HUMAN of all the zebrafish proteins shown in Figure 3.5(a), it is clear that

HXB7A DANRE has the highest conservation at functionally critical sites. Across residues

126 to 133, HXB7A DANRE only differs from HXB7 HUMAN at the position of a putative

PBX binding site, unlike all but one (HXB5A DANRE) of the other Danio rerio proteins which

differ in a known sequence motif (residues 126-131). The homeobox region (which also

includes crosslinking sites) is highly conserved across all of the zebrafish proteins, and again,

conservation is highest in HXB7A DANRE. None of the zebrafish proteins shows conservation

at residues 203 and 204, which describe a putative CKII target site (Yaron et al., 2001). It is

possible that this functional site has been wrongly predicted; however, this is unlikely as it is

absolutely conserved across the five mammalian species. It is more likely that this region is no

longer functional in the Danio rerio lineage or that this is a recently acquired functionality in

the mammalian clade.

Figure 3.5(b) shows an alternative approach to verifying the Danio rerio assignment of

HXB7A DANRE. Here, a phylogenetic tree has been constructed to characterise the

relationships between the same proteins that were aligned in Figure 3.5(a). Again, it is clear

that the protein selected by FOSTA (HXB7A DANRE) is most closely related to the human

protein and the four confidently assigned FEPs than any of the other zebrafish candidates,

despite being of lower sequence identity.
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(a) Verifying the FOSTA assignment by way of annotated functional regions
Residues identical to that of HXB7 HUMAN are in bold capitals and highlighted yellow,
mismatching residues are non-captials and highlighted in light grey. The root human protein
(HXB7 HUMAN) is indicated in the red box and the FOSTA-assigned zebrafish protein is
highlighted in the blue box. The position relative to HXB7 HUMAN is given on the top line. The
asterisks on the bottom line highlight fully conserved columns.

(b) Verifying the FOSTA assignment by way of phylogeny
Tree drawn using PHYLIP (fitch/drawtree), the FEPs identified by FOSTA are highlighted in yellow;
HXB7 HUMAN, HXB7 BOVIN, HXB7 GORGO, HXB7 MOUSE and HXB7 RAT are shortened to H,
B, G, M and R respectively.

Figure 3.5: Verifying the zebrafish assignment to the HXB7 HUMAN FOSTA family
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3.3.4 A solved annotation problem: PROC HUMAN

The UniProtKB/Swiss-Prot ID consists of a protein name followed by an underscore and

the species name. The initial assumption was that the protein name part of the ID was a

unique name used to label FEPs (Hulsen, 2004). However, while analysing human protein

C (PROC HUMAN) using the earlier UniProtKB/Swiss-Prot v50.62, it was evident that this

approach was unreliable. The ‘PROC’ prefix was used in forty different species to describe

three different proteins: Procalin in one species (PROC TRIPT), protein C in 11 species

(e.g., PROC HUMAN), and pyrroline-5-carboxylate reductase in the remaining 28 species

(e.g., PROC ECOLI). FOSTA was successful in correctly assigning only true examples of

protein C to the FEP group when analysing UniProtKB/Swiss-Prot v50.6, and analysis

of human pyrroline-5-carboxylate reductase results highlighted the inconsistencies in

UniProtKB/Swiss-Prot naming conventions.

Several of the FEPs in the FOSTA families of P5CR1 HUMAN (pyrroline-5-carboxylate reduc-

tase 1) and PROC HUMAN (protein C) have had multiple protein prefix changes. However,

after notifying UniProtKB/Swiss-Prot of the discrepancies, all the misnamed proteins were cor-

rected for the release of UniProtKB/Swiss-Prot v51.2: pyrroline-5-carboxylate reductase pro-

teins prefixed with PROC or PROH are now prefixed with P5CR or P5CR1 and PROC TRIPT

(procalin) is now called PRCLN TRIPT.

UniProtKB/Swiss-Prot makes no guarantee that the protein prefix is a unique identifier, instead

describing it as a ‘mnemonic code’, but it is stressed that work is ongoing to standardize pro-

tein nomenclature: “Ambiguities regarding gene/protein names are a major problem in the literature

and it is even worse in the sequence databases which tend to propagate the confusion...UniProt is con-

stantly striving to further standardize the nomenclature for a given protein across related organisms”3.

Although this standardisation is discussed only with respect to protein names, and not the pro-

tein prefix elements of the UniProtKB/Swiss-Prot IDs, it is evident from the timings of prefix

updates for protein C and pyrroline-5-carboxylate reductase proteins since UniProtKB/Swiss-

Prot v50.6 that UniProtKB/Swiss-Prot does aim to standardize protein prefixes. If the protein

prefix ID was used consistently across all proteins in UniProtKB/Swiss-Prot there would be no

need for FOSTA.
2UniProtKB/Swiss-Prot v50.6 was released on 5th September 2006, UniProtKB/Swiss-Prot v53.0 was released on

29th May 2007; note that all results in this chapter are based on UniProtKB/Swiss-Prot v53.0, but older versions (in-
cluding UniProtKB/Swiss-Prot v50.6 and UniProtKB/Swiss-Prot v51.2) are discussed in the evalution

3http://www.expasy.org/cgi-bin/lists?nameprot.txt
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3.3.5 Manual analysis of five protein families

To evaluate FOSTA, a manual analysis of five protein families was carried out. The focus was

the description fields and whether the description matches by FOSTA were appropriate. The

first was trypsin-1, which was chosen because it belongs to the large serine protease family

of proteins. The remaining four—glucose-6-phosphate isomerase, aminopeptidase N, ATP-

dependent RNA helicase DDX51 and protoheme IX farnesyltransferase—were chosen at ran-

dom.

3.3.5.1 Trypsin-1

FOSTA identifies eighteen FEPs for human trypsin-1 [UniProtKB:P07477/TRY1 HUMAN]. Of

these, fifteen are clearly trypsin molecules. Some have additional non-functional qualifications

(cationic, anionic and alkaline) and demonstrate that FOSTA can make correct FEP assignments

despite extraneous information. There are five trypsin FEPs that are not described as trypsin-

1 in the second species: TRYB MANSE, TRYB DROME, TRYDG DROER, TRY5 AEDAE and

TRYA3 LUCCU. TRYB DROME and TRYDG DROER are assigned in favour of several other

trypsin proteins in Drosophila melanogaster and Drosophila erecta respectively. TRYB MANSE is

assigned in favour of TRYA MANSE and TRYC MANSE; in Manduca sexta (MANSE) it may be

that trypsin-B corresponds to human trypsin-1. It is not clear whether the annotations are mis-

leading or whether the FOSTA results are incorrect without specific information about how

and why these proteins were annotated by the respective species annotation communities.

There are only two trypsin proteins of adequate sequence similarity found in Aedes aegypti:

TRY5 AEDAE and TRY3 AEDAE. TRY3 AEDAE is equivalent to TRY3 HUMAN and there is

no human trypsin-5 protein in UniProtKB/Swiss-Prot v53.0, so the assignment here appears

sensible.

In Lucilia cuprina, two trypsin proteins are of sufficient sequence similarity: TRYA3 LUCCU,

which has been identified as the FEP of TRY1 HUMAN, and TRYA4 LUCCU which has been

identified as the FEP of TRY3 HUMAN. This is a difficult assignment to assess, particularly as

TRYA3 LUCCU is a fragmented protein. It is worth noting that these five questionable trypsin

proteins are derived from insect species: LUCCU, DROME and DROER are flies, AEDAE is a

mosquito and MANSE is a moth. It may be that trypsin genes have duplicated and diverged in

insect species.
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In addition to the trypsin molecules, FOSTA identifes GRAG MOUSE, VSP1 BOTJR,

VSP1M TRIST as FEPs because they are described as serine proteases, as is TRY1 HUMAN. All

mouse proteins explicitly described as trypsin belong to other FOSTA families, with protein

prefix matches. A manual text search of UniProtKB/Swiss-Prot v53.0 reveals that there are no

trypsin proteins for Bothrops jararacussu (BOTJR) or Trimeresurus stejnegeri (TRIST) described in

UniProtKB/Swiss-Prot v53.0, but again it is unclear whether the assignment is correct or not.

3.3.5.2 Aminopeptidase N

FOSTA identifies 25 fully sequenced FEPs and two FEP fragments for aminopeptidase N

[UniProtKB:P15144/AMPN HUMAN]. There are seven assignments that do not match with

respect to protein prefix: AAP1 YEAST, AMP11 ENCCU, AMP1 PLAFQ, AMPM HELVI,

AMPN1 LACLA, APE1 SULSO, APE1 SULTO. AMPN1 LACLA is assigned over the one other

Lactococcus lactis subsp. lactis candidate (AMPN2 LACLA) as it is of higher sequence identity to

AMPN HUMAN. AMPN2 LACLA is assigned to the FOSTA family of PSA HUMAN, another

aminopeptidase. AMPN1 LACLA matches AMPN HUMAN with respect to EC number, and

contains the same synonym ‘Aminopeptidase N’. AMPM HELVI is the only protein Heliothis

virescens protein found by the BLAST search and has a good description field match with

AMPN HUMAN; this appears to be the correct FEP for AMPN HUMAN in Heliothis virescens.

APE1 SULSO, APE1 SULTO, AAP1 YEAST, AMP11 ENCCU and AMP1 PLAFQ are the five

least reliable assignments, although they are clearly aminopeptidases. Four of the five are

flagged as unreliable (see Section 3.2.2.4) by FOSTA.

3.3.5.3 ATP-dependent RNA helicase DDX51

The ATP-dependent RNA helicase DDX51 [UniProtKB:Q8N8A6/DDX51 HUMAN] is

assigned four full FEPs and four fragmented FEPs by FOSTA. The identification of FEPs for

DDX51 HUMAN is a formidable task: DDX51 HUMAN belongs to a large family of ‘DEAD

box helicases’, described by UniProtKB/Swiss-Prot family classifications4. All four of the fully

sequenced proteins (DDX51 DANRE, DDX51 MOUSE, RH1 ARATH and RH1 ORYSJ) belong

to the same subfamily as DDX51 HUMAN (the DDX51/DBP6 subfamily). The fragments

IF413 TOBAC, DDX6 CAVPO, DDX1 DROVI and IF4A1 RABIT belong to the eIF4A,

2http://expasy.org/cgi-bin/get-similar?name=DEAD%20box%20helicase%20family
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DDX6/DHH1, DDX1 and eIF4A subfamilies respectively. All proteins assigned to a different

subfamily may be misassigned. The UniProtKB/Swiss-Prot family/domain classifications are

manually confirmed, which suggests that in the case of DDX51 HUMAN, the candidate FEPs

are so similar that FOSTA finds it difficult to discriminate between them. It should be stressed

that a manual analysis of UniProtKB/Swiss-Prot entries for this family is no more effective

than FOSTA, and that where FOSTA is incorrect in the DDX51 HUMAN assignments, the

proteins are fragments and flagged as potentially unreliable.

3.3.5.4 Glucose-6-phosphate isomerase

The results for human glucose-6-phosphate isomerase [UniProtKB:P06744/G6PI HUMAN] ap-

pear very robust: 309 FEPs are identified, of which two are fragments. All of these proteins are

glucose-6-phosphate isomerases. Only eighteen of the 309 assignments are made on the basis

of sequence (where sequence matching is required to differentiate between G6PI1-4 or G6PIA-B

proteins) and 287 (92.88% of these are protein prefix matches). As already discussed, without

explanation of how these proteins were named, it is not clear whether FOSTA is generating the

correct pairs or whether the sequence matching is misleading.

3.3.5.5 Protoheme IX farnesyltransferase

FOSTA identifies 34 FEPs for human protoheme IX farnesyltransferase [UniPro-

tKB:Q12887/COX10 HUMAN], all of which are fully sequenced proteins. These results

appear very reliable, with only one FEP chosen from all candidates on the basis of sequence

identity, where COXX BACSU is chosen over CTAO BACSU. Given that these two proteins

are annotated identically in UniProtKB/Swiss-Prot, it is reasonable to resort to sequence

similarity to discriminate between them. The results are particularly encouraging given that,

unlike most of the G6PI HUMAN FEPs for example, protoheme IX farnesyltransferases have

different UniProtKB/Swiss-Prot protein prefixes in different species.
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3.3.6 Further benchmarking

In this section, FOSTA is benchmarked against two datasets: the large, partially manually an-

notated PIRSF dataset (Wu et al., 2004) and a refinement of Hulsen et al.’s manually curated

dataset of six protein families that has been used previously to evaluate orthologue identifica-

tion methods (Hulsen et al., 2006). Manual inspection of the Hulsen et al. dataset identified the

true one-to-one pairings in the one-to-many pairings.

FOSTA is designed to be conservative in the FEP assignments it makes: it is more important to

minimise the number of false positives than to minimise the number of false negatives. There-

fore, the most appropriate performance statistic with which to evaluate FOSTA is the positive

predictive value (PPV): the proportion of positive predictions that are correct, TP/(TP + FP ).

However, where possible, all performance statistics have been calculated to assess FOSTA (the

performance statistics are described fully in Section 2.3.5). Within the context of FOSTA, sen-

sitivity assesses what proportion of the FEPs that should be identified are identified, while

specificity assesses what proportion of the FEPs that should be rejected are rejected.

3.3.6.1 Defining the negative examples

A true negative (TN) is a result that is correctly identified as negative. In the context of FOSTA,

this is the number of non-FEPs that are correctly identified as non-FEPs. When benchmark-

ing FOSTA against other datasets, there are several ways to count the number of genuinely

negative examples. For example, all proteins identified by BLAST could be used regardless of

the species. However, this would artifically boost the performance of FOSTA as measured by

performance statistics that include true negatives (including specificity and MCC). A more ap-

propriate count of negative examples would only consider the proteins from the same species

identified by the BLAST search. For example, consider the assignment of a mouse FEP to the

FOSTA family of human protein A: if the BLAST search returned two mouse proteins, a rat

protein and a bovine protein, the count of negative examples could be two (the two mouse

proteins) or four (all proteins identified by the BLAST search). Choosing the less conservative

method (where the number of negative examples is 4), performance will be artificially boosted.

In this chapter, the number of negative examples is calculated as the number of FDH proteins

from that species.
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Table 3.3: Benchmarking FOSTA against the PIRSF dataset
Set: the identifier for each curation set [A=‘Full/Desc.’, B=‘Full’, C=‘Preliminary’, D=‘None’, N=aNnotated (A+B+C),
∗=All (N+D)]; Curation string: the string that defines the curation set; Families: the number of discrete protein families
in the curation set; Pairings: the number of discrete pairings across all families to be tested in FOSTA; Basic statistics:
the basic counts of true positives (TP), false positives (FP), true negatives (TN), false negatives (FN); Evaluation statis-
tics: the spec/specificity (TN/(FP +TN)), the sens/sensitivity (TP/(TP +FN)), the PPV (positive predictive value,
TP/(TP + FP )), and the MCC (Matthews Correlation Coefficient), all rounded to 2dp.

Set Fams Pairs Basic statistics Evaluation statistics
TP FP TN FN spec sens PPV MCC

A 122 2127 1744 2 3717 383 99.95 81.99 99.89 0.86
B 1095 18865 12967 23 34656 5898 99.93 68.74 99.82 0.77
C 474 11221 9146 62 11819 2075 99.48 81.51 99.33 0.83
D 339 5287 3674 16 4938 1613 99.68 69.49 99.57 0.72
N 1691 32213 23857 87 50192 8356 99.83 74.06 99.64 0.79
∗ 2020 37500 27531 103 55130 9969 99.81 73.42 99.63 0.79

3.3.6.2 PIRSF evaluation

The Protein Information Resource (PIR) is a widely used, publicly available resource, and is

part of the UniProtKB consortium. With a view to the standardization of accurate propagation

of protein annotations, PIR has developed the PIRSF (PIR super family) classification system

for UniProtKB proteins (Wu et al., 2004). However, unlike FOSTA, it does not identify FEPs as

it contains many-to-many orthologous pairings.

FOSTA was benchmarked against all one-to-one orthologous relationships between

UniProtKB/Swiss-Prot proteins that are listed in PIRSF families as ‘regular’ members

(‘associate’ members can be alternative splice variants, which should not be FEPs), at all four

levels of curation, where PIRSF families with a curation status of ‘Full/Desc’ have the highest

level of manual curation and families with a curation status of ‘None’ have not been manually

curated.

It is evident from Table 3.3 that FOSTA performs extremely well on the PIRSF protein families

according to the PPV and specificity metrics that are particularly important. However, it also

demonstrates reasonably high sensitivity and very high MCC scores.
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Table 3.4: Benchmarking FOSTA against the refined Hulsen et al. dataset
Family: the protein family being examined; TO pairings: the number of TO pairs in the Hulsen dataset (including
many-to-many orthologous pairings and non-UniProtKB/Swiss-Prot proteins); Refined pairings: the number of one-
to-one TO pairings tested after refinement of Hulsen TO dataset; Basic statistics: the basic counts of true positives (TP),
false positives (FP), true negatives (TN), false negatives (FN); Evaluation statistics: the spec/specificity (TN/(FP +

TN)), the sens/sensitivity (TP/(TP + FN)), the PPV (positive predictive value, TP/(TP + FP )), and the MCC
(Matthews Correlation Coefficient), all rounded to 2dp.

Family Refined (TO) Basic statistics Evaluation statistics
TP FP TN FN spec sens PPV MCC

HBB 2 (9) 2 0 17 0 100.00 100.00 100.00 1.00
HOX 30 (41) 30 0 3853 0 100.00 100.00 100.00 1.00
SMm 12 (17) 12 0 22 0 100.00 100.00 100.00 1.00
SMc 6 (6) 6 0 5 0 100.00 100.00 100.00 1.00
NR 4 (29) 1 1 327 3 99.70 25.00 50.00 0.35
All 54 (102) 51 1 4224 3 99.98 94.44 98.08 0.96

3.3.6.3 Refined Hulsen evaluation

Hulsen et al. (2006) recently evaluated the performance of several orthologue identification

methods: BBH (bidirectional best hit), Inparanoid (O’Brien et al., 2005), KOG (Tatusov et al.,

2003), OrthoMCL (Chen et al., 2006), PhyloGeneticTree (van Noort et al., 2003) and Z 1 hundred

(estimating statistical significance of alignment scores). The benchmarking included compari-

son with manually annotated ‘true-orthologue’ (TO) pairs of six protein families. For human-

mouse (Homo sapiens and Mus musculus) pairings, the protein families used were the homeobox

proteins (HOX), haemoglobins (HBB), and Sm and Sm-like proteins (SMm). For human and

worm (Caenorhabditis elegans) TO pairs, the families used were nuclear receptors (NR), toll-like

receptors (TLR), and Sm and Sm-like proteins (SMc).

These methods all aim to identify orthologues and do not consider functional equivalence.

Since they have different goals, it is not possible to compare FOSTA directly with the methods

evaluated by Hulsen et al., but FOSTA can be evaluated using a subset of the TO data.

The TO dataset supports many-to-many orthologous pairings where a human protein can map

to one or more proteins in another species and vice versa. To evaluate FOSTA, these data were

manually refined to include only those TO pairings that can be confidently identified as true

one-to-one orthologous pairings, where both proteins can be mapped to UniProtKB/Swiss-Prot

(compare the ‘Refined’ and ‘TO’ counts in Table 3.4). This refinement process removes the TLR

dataset from the analysis as no definitive one-to-one orthologous pairings could be identified
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through manual inspection.

The results are summarised in Table 3.4. FOSTA demonstrates perfect performance in the HBB,

HOX, SMm and SMc families, identifying all refined true-orthologue pairings.

However, FOSTA identified only one of the four refined human/worm nuclear receptor (NR)

TO pairs (NHR67 CAEEL). On closer inspection, it is evident that these three failures of FOSTA

in the NR dataset are a result of widely varying formats of the UniProtKB/Swiss-Prot descrip-

tion field across the two species. For example, the Homo sapiens proteins often have multiple

synonyms, which vary in format and content, whereas the Caenorhabditis elegans proteins are

more consistently named as ”Nuclear hormone receptor family member nhr-N” proteins (see

Table 3.5). These primary protein names or descriptions are defined by the species-specific an-

notation communities (for example, Human Genome Nomenclature Committee, FlyBase and

Caenorhabditis Genetics Centre/Wormbase for Homo sapiens, Drosophila melanogaster and

Caenorhabditis elegans respectively) with additional synonyms obtained by UniProtKB/Swiss-

Prot from the literature. Therefore, it is not possible to attribute the lack of annotation consis-

tency to problems in UniProtKB/Swiss-Prot, as UniProtKB/Swiss-Prot is merely reflecting the

differing practices of the annotation communities and the content of the literature. Neverthe-

less, the lack of consistent description field formatting within UniProtKB/Swiss-Prot limits the

extent to which text-mining methods such as FOSTA can exploit the data.

It is encouraging to note that FOSTA makes only one false positive assignment in the refined

Hulsen dataset. Furthermore, FOSTA does not eliminate any of the one-to-one TO pairs: where

a FEP relationship is missed, the TO is retained as a FDH, indicating that the BLAST threshold

is not too conservative.

3.3.7 A comparison with Inparanoid

Inparanoid is a well-known method of constructing sets of orthologous proteins (O’Brien et al.,

2005). It uses BBH (best bidirectional hit) pairs in different species as a ‘seed’ around which a

cluster of orthologues can be formed. Other orthologues—or specifically other inparalogues—

can be added to this pairing if they are more similar to one of the seed orthologues than they

are to any other protein in another species.
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Inparanoid does not perform the same task as FOSTA: FOSTA is specifically interested in iden-

tifying functionally equivalent orthologous proteins, whereas Inparanoid is more interested in

identifying the correct phylogenetic relationships between proteins in different species. As

such, where Inparanoid detects one-to-one orthologous pairs, the results will be largely com-

plementary, but need not be identical. Therefore, FOSTA cannot be ‘benchmarked’ against In-

paranoid: it is not the gold standard dataset. However, by identifying one-to-one orthologous

pairings in the Inparanoid dataset that FOSTA rejects, a dataset of more difficult test cases with

which FOSTA can be evaluated can be constructed.

The XML datafiles for Inparanoid v6.1 were obtained by ftp from http:

//inparanoid.sbc.su.se and parsed in Perl using XML::DOM. All human/X

one-to-one orthologues described by Inparanoid were extracted. For convenience, these

extracted human/X one-to-one Inparanoid orthologue pairs will be referred to as the

‘Inparanoid Pairs’ or IPs. There were fifteen species in which no IPs were found (Aedes

aegypti, Anopheles gambiae, Arabidopsis thaliana, Caenorhabditis briggsae, Caenorhabditis elegans,

Caenorhabditis remanei, Candida glabrata, Cryptococcus neoformans, Debaryomyces hansenii,

Entamoeba histolytica, Escherichia coliK12, Kluyveromyces lactis, Schizosaccharomyces pombe,

Takifugu rubripes and Yarrowia lipolytica), leaving nineteen species with at least one IP to

compare with FOSTA.

As FOSTA groups UniProtKB/Swiss-Prot pairings, all extracted IPs must be mapped to

UniProtKB/Swiss-Prot. Inparanoid proteins are described using various database IDs,

including Ensembl5 (Apis mellifera, Bos taurus, Canis familiaris, Ciona intestinalis, Gallus

gallus, Gasterosteus aculeatus, Macaca mulatta, Monodelphis domestica, Pan troglodytes, Rattus

norvegicus, Tetraodon nigroviridis, Xenopus tropicalis), TAIR6 (Arabidopsis thaliana), Zfin7 (Danio

rerio), Dictybase8 (Dictyostelium discoideum), Flybase9 (Drosophila melanogaster and Drosophila

pseudoobscura), MGI10 (Mus musculus), Gramene11 (Oryza sativa) and SGD12 (Saccharomyces

cerevisiae). All relevant cross-references were extracted from UniProtKB/Swiss-Prot v53.0; any

conflicting or multiple cross-references (e.g., X→Y, X→Z) were not used.

Using the UniProtKB/Swiss-Prot cross-references to map from the Inparanoid Ensembl protein

5http://www.ensembl.org
6http://www.arabidopsis.org/
7http://zfin.org
8http://dictybase.org/
9http://flybase.org/

10http://www.informatics.jax.org/
11http://www.gramene.org/
12http://www.yeastgenome.org/
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IDs to UniProtKB/Swiss-Prot sequences does result in a biased dataset: the UniProtKB/Swiss-

Prot sequences with explicit cross-references are likely to be well-annotated. Nevertheless,

it is reassuring that where the Inparanoid dataset does identify one-to-one pairings between

UniProtKB/Swiss-Prot proteins, FOSTA confirms 96.23% of these pairings in a large dataset

(27 069 protein pairs) with significant protein coverage (Apis mellifera, Bos taurus, Conis famil-

iaris, Ciona intestinalis, Danio rerio, Dictyostelium discoideum, Drosophila melanogaster, Drosophila

pseudoobscura, Gallus gallus, Gasterosteus aculeatus, Macaca mulatta, Monodelphis domestica, Mus

musulus, Oryza sativa, Pan troglodytes, Rattus norvegicus, Saccharomyces cerevisiae, Tetraodon ni-

groviridis and Xenopus tropicalis).

Columns 1-3 in Table 3.6 describe how many IPs from each species were successfully mapped

to UniProtKB/Swiss-Prot IDs, and therefore how many IPs from each species can be compared

with FOSTA. As described above, 27 069 IPs are extracted from Inparanoid v6.1, of which 26 073

(96.32%) are verified by FOSTA. Of the 996 IPs that are not found in FOSTA, 125 are rejected in

favour of another UniProtKB/Swiss-Prot protein from the non-human species (these IPs will

be described as ‘contested’ IPs). In the remaining 871 IPs, FOSTA fails to assign any FEP from

the non-human species to the human protein (these IPs will be described as ‘uncontested’ IPs).

These datasets can be further ‘cleaned’ to remove those IPs that either (i) cannot be found by

FOSTA or (ii) are clearly correct in FOSTA. Tables 3.7 and 3.8 describe this further refinement

process. 43 of the contested Inparanoid pairs (IPs) appear to be wrong, since the FEP that

FOSTA assigns matches the human protein confidently using the protein prefix match.

For example, Inparanoid identifies SFH1 YEAST as the Saccharomyces cerevisiae partner to

SNF5 HUMAN, while FOSTA identifies the more plausible FEP SNF5 YEAST. A further

five appear to be wrong, as the non-human protein is assigned as a FEP using a protein

prefix match elsewhere in FOSTA. For example, Inparanoid partners CAN9 HUMAN with

CAN3 BOVIN, while FOSTA identifies the FEP CAN2 BOVIN; although it is not clear

which result is correct, FOSTA identifies the Inparanoid partner CAN3 BOVIN as the FEP of

CAN3 HUMAN. It is therefore unlikely that CAN3 BOVIN is the true equivalent protein of

CAN9 HUMAN. Eliminating these examples, 77 IPs remain as test cases for FOSTA.

36.74% (320) of the 871 uncontested IPs cannot be identified by FOSTA: 26.98% are not found

using a BLAST threshold of 10−2 and 1.15% involve short human proteins that FOSTA does not

analyse (see Section 3.2). This is not strictly a failure of the FOSTA method but an inevitable

result of implementing a conservative method. A further 75 (8.61%) are found to be wrong:
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Table 3.7: Identifying a ‘clean’ dataset of contested IPs to consider in FOSTA
Contested IPs are pairs of human/X Inparanoid protein pairs where FOSTA assigns a different protein from the species
X as the FEP of the human protein. Here, ‘confident’ FEP assignments are defined as those based on a protein prefix
match.

125 100.00% contested IPs
43 34.40% IPs are wrong: FOSTA assigns the non-human protein confidently

5 4.00% IPS are wrong: FOSTA assigns the non-human protein confidently elsewhere
77 contested IPs remain to be tested

Table 3.8: Identifying a ‘clean’ dataset of uncontested IPs to consider in FOSTA
Uncontested IPs are pairs of human/X Inparanoid protein pairs where FOSTA does not assign any protein from the
species X as the FEP of the human protein. Here, ‘confident’ FEP assignments are defined as those based on a protein
prefix match. Some IPs will not be identified as a FEP by FOSTA because (i) the IP protein does not exceed the e-value
BLAST threshold or (ii) the human protein is too short (see Section 3.2).

871 100.00% uncontested IPs
10 1.15% IPs will not be FEPs because the human protein is too short

235 26.98% IPs will not be FEPs because they aren’t found by BLAST
75 8.61% IPs are wrong: FOSTA assigns the non-human protein confidently elsewhere

551 uncontested IPs remain to be tested

FOSTA assigns the non-human protein elsewhere on the basis of a protein prefix match. For

example, Inparanoid identifies xxx yyyyy as the partner to zzz HUMAN, but FOSTA describes

xxx yyyyy as the FEP to xxx HUMAN. This leaves 551 IPs to test as potential errors in FOSTA.

This leaves a ‘clean’ dataset of 77 contested IPs and 551 uncontested IPs with which to test

FOSTA. In a random sample of ten of the contested IPs (see Table 3.9), three FOSTA assignments

and one Inparanoid assignment appear to be correct. There is not enough evidence in the six

remaining contested IPs to ascertain which assignment might be correct; however, four of the

six remaining IPs are flagged as less reliable sequence matches by FOSTA and could therefore

be removed from the dataset.

A random sample of 28 IPs (approximately 5%) were selected from the uncontested dataset

(see Table 3.10). Note that the IPs described in this dataset are not necessarily correct; they can,

however, be used as examples of difficult test cases. Most of the IPs are not assigned a FEP by

FOSTA owing to uninformative or sparsely annotated DE fields. A significant number arise

from large, densely populated protein families in which functional relationships are hard to
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Table 3.9: A random sample of ten contested IPs (Inparanoid pairs)
These are contested by FOSTA (i.e., FOSTA assigns a different FEP from that species).

Human Inparanoid FOSTA
PLCH HUMAN PLCHB DANRE PLCHA DANRE
MOXD1 HUMAN MOX11 DROME PHM DROME
EPN4 HUMAN ENT3 YEAST ENT4 YEAST
WDR59 HUMAN YD128 YEAST YBK4 YEAST
CP2B6 HUMAN CP2BB CANFA CP2CL CANFA
IF4A3 HUMAN FAL1 YEAST IF4A YEAST
O5AP2 HUMAN O1020 MOUSE O1086 MOUSE
DDX6 HUMAN DHH1 YEAST DBP6 YEAST
MCM4 HUMAN CDC54 YEAST CDC47 YEAST
OR5J2 HUMAN O1052 MOUSE O1094 MOUSE

Table 3.10: A random sample of 28 uncontested IPs (Inparanoid pairs)
These are uncontested in FOSTA (i.e., FOSTA does not assign any FEP from that species).

Human Inparanoid
TIM HUMAN TOF1 YEAST
CC45L HUMAN CDC45 YEAST
SURF1 HUMAN SHY1 YEAST
TEX10 HUMAN IPI1 YEAST
FA2H HUMAN SCS7 YEAST
IPO9 HUMAN IMB5 YEAST
ISK5 HUMAN IOV7 CHICK
LETM1 HUMAN A60DA DROME
FRK HUMAN SRC42 DROME
NVL HUMAN RIX7 YEAST
MMS19 HUMAN MET18 YEAST
DYR1A HUMAN MNB DROME
ATBP3 HUMAN NCS6 YEAST
DCR1A HUMAN PSO2 YEAST
PDXK HUMAN BUD16 YEAST
PLAP HUMAN DOA1 YEAST
JAZF1 HUMAN SFP1 YEAST
EXTL3 HUMAN EXT3 DROME
ZUBR1 HUMAN POE DROME
IPO11 HUMAN KA120 YEAST
RBBP6 HUMAN MPE1 YEAST
TRIPC HUMAN UFD4 YEAST
PAP1L HUMAN EPAB XENTR
PINX1 HUMAN YG5W YEAST
CFDP1 HUMAN SWC5 YEAST
FGF17 HUMAN FG17B DANRE
XPOT HUMAN LOS1 YEAST
TM11A HUMAN DESC4 RAT
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Table 3.11: Insensitivities in the FOSTA functional match methodology
By benchmarking FOSTA against the popular (but fundamentally different) method Inparanoid, some insensitivies in
the FOSTA description field matching (described in Section 3.2.2.2) have become apparent. Two of these are shown
below.

Mapping to/from acronyms and long forms
CC45L HUMAN CDC45-related protein; PORC-PI-1; Cdc45
CDC45 YEAST Cell division control protein 45
Allowing for slight variations in names and numbers
FGF17 HUMAN Fibroblast growth factor 17 precursor; FGF-17
FG17B DANRE Fibroblast growth factor 17b precursor; FGF-17b

elucidate.

Only two examples highlight where the FOSTA functional match methodology may lack sen-

sitivity; these are shown in Table 3.11. The first example—CC45L HUMAN/CDC45 YEAST—

suggests that mapping from acronyms to long forms and vice versa may be valuable in a future

version of FOSTA. In the first example shown in Table 3.11, CDC would be extended to ‘Cell

division control’. In the second FGF17 HUMAN/FG17B DANRE example, some flexibility in

names and numbers used by the matching machinery would lead to these two proteins being

identified as FEPs. However, introducing such additional flexibility without careful considera-

tion would increase the likelihood of false positives being introduced into the FOSTA dataset.

The priority in FOSTA has been to minimize the number of false positives in order to have a

reliable dataset.

3.4 Conclusions

FOSTA is a novel method that extracts functionally equivalent proteins (FEPs) from the

UniProtKB/Swiss-Prot database by ‘reading’ the UniProtKB/Swiss-Prot annotations. As such,

it is a grouping of UniProtKB/Swiss-Prot proteins that are annotated similarly. FOSTA takes

advantage of the fact that UniProtKB/Swiss-Prot annotations are the result of many hours of

manual annotation and should encapsulate all knowledge available to the annotator at the

time.

Since FOSTA simply assimilates existing annotations, it is difficult to separate the
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performance of the FOSTA method from the quality and consistency of annotation in

UniProtKB/Swiss-Prot. Manual analysis of eight FOSTA families (those rooted around

PROC HUMAN, P5CR1 HUMAN, AMPN HUMAN, COX10 HUMAN, TRY1 HUMAN,

DDX51 HUMAN, G6PI HUMAN and HXB7 HUMAN) and two benchmarking evaluations

were carried out which indicate that FOSTA performs well and that UniProtKB/Swiss-Prot

annotations are generally of high quality. In a comparison with the popular but conceptually

quite different Inparanoid method, the results were largely complementary. In addition

to providing researchers with genuine FEP families for tasks such as studying sequence

conservation, FOSTA could be used to provide datasets to evaluate function prediction

methods.

Given the methodology, FOSTA has a few limitations. Firstly, FOSTA is clearly dependent on

UniProtKB/Swiss-Prot annotations. Any method based on database annotations is potentially

problematic as it relies on possibly mistaken, incomplete, inconsistent, ambiguous or outdated

information. However, the UniProtKB/Swiss-Prot database is considered to be the gold stan-

dard for protein annotation (the benchmarking results reflect that the annotations are indeed

very reliable), and annotations are constantly revised (for example, 210 454 annotation revisions

were made between release UniProtKB/Swiss-Prot v52.0 and UniProtKB/Swiss-Prot v53.013).

The continuous revision of UniProtKB/Swiss-Prot with the regular update of FOSTA ensures

that FOSTA FEP assignments can only improve in parallel with UniProtKB/Swiss-Prot.

Secondly, only proteins described in UniProtKB/Swiss-Prot can be assigned to FOSTA families.

Given that UniProtKB/Swiss-Prot is growing at an exponential rate14 and that it is the aim to

include all proteins in UniProtKB/Swiss-Prot, this limitation is not considered significant. A re-

lated problem is that for many species, UniProtKB/Swiss-Prot does not describe the entire pro-

teome. In a few cases, a gene duplication may have resulted in two or more similar sequences

of which only one appears in UniProtKB/Swiss-Prot with an annotation which should more

appropriately be applied to one of the other sequences. Thus the true FEP may be a protein not

yet present in UniProtKB/Swiss-Prot. However, it should be noted that FOSTA is simply try-

ing to assimilate the current, curated knowledge of protein function to identify evolutionarily

related proteins that have been described similarly; manual examination of UniProtKB/Swiss-

Prot entries would make the same errors.

If FOSTA cannot discriminate between two candidate FEPs on the basis of function, it will
13http://www.expasy.ch/txt/old-rel/relnotes.53.htm
14http://expasy.org/sprot/relnotes/relstat.html



CHAPTER 3. FOSTA 118

choose the candidate with the higher sequence identity to the root; only 6 047 of FEP assign-

ments (5.00%) are made on this basis. Any sequence matching is undesirable, as high sequence

similarity does not necessarily imply precise functional equivalence (see Section 3.1). It may

be avoided if more sensitive information extraction methods could be implemented to improve

functional discrimination. UniProtKB/Swiss-Prot keywords and GO terms may have some

value, but these tend to be at a higher level of annotation and are unlikely to improve discrimi-

nation of very detailed functional information. More sophisticated natural language processing

methods (Rice et al., 2005) would not be expected to improve performance, as the text being ex-

amined is simply a list of nouns. Alternatively, a more sensitive sequence matching protocol

could be implemented where annotated functional residues, or a consensus profile of FEPs al-

ready assigned with high confidence could be used, rather than the whole sequence (which

may be misleading). Furthermore, a vocabularly mapping acronyms to their long forms and

vice versa, and/or mapping between known synonyms may improve the functional compari-

son step.

FOSTA’s insistence on one-to-one FEP relationships may also be viewed as a limitation, but is

considered to be justified. Consider the protein X in species A that has two homologues Y1

and Y2 in species B. If Y1 and Y2 are both homologous to X , one must have been derived via

a gene duplication event. Gene duplication is a mechanism for functional divergence and one

can therefore argue that either Y1 or Y2, most likely (though not necessarily) the one with the

poorer sequence identity to X , has acquired novel, or lost existing, functionality (or is in the

process of doing so), and should not be selected as a FEP.

Currently, FOSTA roots families around human proteins because the priority is to identify FEPs

to human proteins, with a view to examining human disease. 58.36% (169 523 of 290 484)

of UniProtKB/Swiss-Prot proteins are not assigned to a FOSTA family in UniProtKB/Swiss-

Prot v53.0. Using the median size of a FOSTA family (87), one can estimate that another 1949

families will be formed if FOSTA were to cluster around non-human proteins. It is proposed

that a future version of FOSTA will root FOSTA families around decreasingly well defined (in

terms of proteome coverage and functional annotation in UniProtKB/Swiss-Prot) species, until

all proteins are assigned to a FOSTA family. While it is hoped that this will be addressed in

future versions, it must be noted that human proteins are the most thoroughly annotated, and

it is unclear whether proteins from other organisms will be annotated well enough to identify

functional equivalencies across species.
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Where there are annotation problems and inconsistencies across species, these are often not

strictly attributable to UniProtKB/Swiss-Prot, as the description fields are generated from an-

notations provided by the species-specific annotation communities, who may differ in their

annotation practices. However, as a widely used and trusted resource, UniProtKB/Swiss-Prot

is in a unique position to rectify such problems, and could implement a second layer of de-

scription above that of the separate annotation communities, which would aim to provide a

standardised nomenclature across all species. It is hoped that the FOSTA results may con-

tribute to any such effort. It has already done so with the recent correction of ‘PROC’ prefixes

as described in Section 3.3.4.

More generally, a controlled vocabulary for UniProtKB/Swiss-Prot description fields which

would allow description of all proteins across all species, would facilitate text mining and

result in more reliable hypotheses. This might be implemented as a second, computer-friendly

description field, keeping the existing descriptions for human inspection. In addition, it

would be desirable to move some information from the description field into separate tags in

the UniProtKB/Swiss-Prot flatfile format; for example, flags for fragmented or hypothetical

sequences. Given the size of UniProtKB/Swiss-Prot (UniProtKB/Swiss-Prot v53.0 contains

290 484 proteins), the resource must expect to be interrogated computationally, more so

with every new release. Any effort from UniProtKB/Swiss-Prot to make its contents more

computationally accessible would be valuable. Note that recent UniProtKB/Swiss-Prot

releases have split the description field into an easier-to-parse, structured form, although

this was done in such a way that old parsers are not longer able to extract information from

UniProtKB/Swiss-Prot.

As stated above, a guarantee of unique UniProtKB/Swiss-Prot protein ID prefixes for equiv-

alent proteins in different species would preclude the need for hypotheses to be drawn by

software such as FOSTA. It is clear that the UniProtKB/Swiss-Prot team are making efforts

to standardise such annotations across species15; however it is also clear that some efforts are

not yet propagated fully across all relevant proteins and species. As stated above, the protein

C/pyrroline-5-carboxylate reductase case described in Section 3.3.4 has since been rectified by

the UniProtKB/Swiss-Prot annotators.

It is clear that not only is the automatic extraction of FEPs a surprisingly difficult problem, but

that it is also very difficult to evaluate these methods. The evaluation that was performed

15http://www.expasy.ch/txt/old-rel/relnotes.53.htm
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not only demonstrated that FOSTA performs well, but also that the vast majority of

UniProtKB/Swiss-Prot annotations used by FOSTA are of high quality. This provides further

justification of an annotation-based methods such as FOSTA and indicates that any concern

about FOSTA’s dependence on annotations need not be over-emphasized. In addition, it is

expected that FOSTA will improve with every revision of UniProtKB/Swiss-Prot.



Chapter 4

Generating an Improved Protein

Alignment Conservation Threshold

Chapter 3 described FOSTA, a method for extracting functionally equivalent proteins (FEPs)

from UniProtKB/Swiss-Prot. In this chapter, a conservation scoring method is described, which

analyses alignments of FEPs (or any other MSA) to generate an Improved Protein Alignment

Conservation Threshold, or ImPACT score, for any given protein alignment.

4.1 Introduction

When structural analyses fail to ‘explain’ a disease-causing mutation, it may be possible to

infer functional relevance from sequence conservation: if a residue is conserved across many

different branches of evolution, it is likely that that residue is functionally significant.

The extent of conservation is often described using some system of scoring. Conservation scores

are a function of genuine functional equivalence across species. However, they are also a func-

tion of the species set represented and a function of properties of the proteins they contain. As

the species set represented by a multiple sequence alignment (MSA) widens, it becomes less

likely that residues will be conserved by chance, because the evolutionary distance between

the species represented in the MSA is greater. As such, lower conservation scores will become

121
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more significant as markers of functional relevance.

In addition, some proteins are highly conserved throughout the MSA, due to a high number

of functional residues or a highly conserved network of stabilising interactions, for example.

An alignment of proteins highly conserved for functional or structural reasons might therefore

appear to represent a more closely related set of sequences than they actually do. On the other

hand, other proteins will be generally not well conserved, having diverged between species,

and will appear to represent a set of more distant species. Once again, lower conservation

scores will become significant as markers of functional relevance when considering residue

conservation in the context of a globally poorly conserved protein.

To elucidate genuine trends of conservation, it is necessary to (a) take into account the influence

of the species set represented by the MSA and (b) consider how well the protein is conserved

at the ‘global’ level. In the context of SAAPdb, any method developed must be automatic. As

such, it is necessary to factor out the influence of the species set and global conservation by

taking a statistical approach to defining high conservation.

4.1.1 What is conservation?

Conservation describes whether a residue is seen at the equivalent position, in an equivalent

protein, in different species. Alignment methods identify which residues are equivalent. If a

residue is maintained across species, it has been subject to evolutionary pressure and therefore

is likely to be critical to the protein, in terms of function, stability or fold. Mutations affecting

such residues could therefore disrupt protein function, potentially causing disease. Where a

mutation cannot be explained using structural analyses, the functional information implicit in

alignments of FEPs may offer an explanation.

4.1.2 Scoring conservation

Conservation could simply be calculated as the fraction of sequences in the MSA that have the

residue of interest at an equivalent position. However, protein function can be maintained if a

residue with similar characteristics replaces the original. To take this into account, conservation
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scoring methods use amino acid substitution matrices to calculate conservation (see Section

2.3.4). A typical calculation for residue x is shown below in Equation 4.1:

C(x) = λ

N∑
i

N∑
j>i

M(si(x), sj(x)) (4.1)

where the MSA contains N sequences, sa(x) is the residue at position x in sequence a, M(p, q)

is the amino acid substitution value between residues p and q, and λ scales C(x) between 0 and

1, that is, λ = 1
N . In this chapter, M is always the PET91 matrix (Jones et al., 1992), an update of

the Dayhoff matrix, which has been normalised such that all scores on the diagonal are equal

(see Section 2.3.4.3).

An alternative approach uses the concept of ‘entropy’ and is borrowed from information the-

ory. The most commonly used entropy-based method is Shannon’s entropy (Shannon, 1948),

summarised in Equation 4.2:

H(X) = −
K∑
i=1

pi log2 pi (4.2)

where H(X) is the Shannon’s entropy of a set of residues X; i denotes an amino acid; K is

the number of amino acids (therefore, K = 20), and pi is the fractional frequency of residue i

(that is, ni/|X| where ni is the number of i residues in X and |X| is the length of X). A column

containing one of each of the twenty amino acids (X20) would score H(X20) = 4.32, while

a column containing twenty of the same amino acid (X1) would score H(X1) = 0, reflecting

that there is less information contained in the X1 residue set than in the X20. This can be used

to measure conservation, where low entropy indicates high conservation and high entropy

indicates low conservation. Such methods, however, are unable to account for the similarity

between amino acids and are therefore inappropriate for use here.

In 2002, Valdar published a comprehensive review of conservation scoring methods, which de-

scribes many methods including weighted scores and Shannon’s entropy. One scoring system

that Valdar describes is that of Sander and Schneider (1991). This system is assessed later in

Section 4.2.1.
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4.1.3 Identifying highly conserved residues

Although various methods exist to score conservation, few exist that identify ‘highly conserved’

residues. Two well known methods that are used to calculate conservation from MSAs, and aim

to identify highly conserved residues (and therefore functional residues) are Rate4Site and SIFT.

Rate4Site estimates the maximum likelihood rate at each position in the alignment, based on

a hypothesized phylogeny (Pupko et al., 2002). SIFT (which ‘Sorts Intolerant From Tolerant

mutations’) is a popular sequence-based method for identifying deleterious mutations (Ng and

Henikoff, 2001). It calculates a probability that an amino acid would be tolerated in the align-

ment, based on the observed variability and the estimated variability in a theoretical, complete

alignment. Neither of these methods explicitly considers the alignment with respect to species

coverage or with respect to global patterns of conservation, and further, neither method gener-

ates a threshold with which highly conserved residues can be identified.

4.1.4 Generating an improved protein alignment conservation threshold

As yet, no method exists that accounts for (i) species coverage and (ii) background conserva-

tion levels in the alignment, that is also amenable to automated, distributed processing as re-

quired for SAAPdb. In this chapter, a method is described for generating an Improved Protein

Alignment Conservation Threshold (ImPACT), that explicitly ‘normalises’ the effects of species

coverage and models the distribution of conservation scores to allow a threshold for high con-

servation to be generated.

4.2 Methods

4.2.1 Accommodating the species set bias

Where species are very similar, some proportion of the conservation will be due to the small

evolutionary distance between the species. To ‘normalise’ for the species set, it is necessary to

reduce the influence of pairwise sequence comparisons between similar species. This can be

achieved by adding a weighted component to the conservation score.
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In their paper, Sander and Schneider (1991) (hereafter referred to as SS) present a method that

deals with high levels of sequence similarity in protein alignments. When the conservation

score is calculated, pairwise scores are moderated by the similarity (or, strictly, dissimilarity) of

the two sequences. The calculation for column x of the MSA is shown in Equation 4.3.

CSS(x) = λ

N∑
i=1

N∑
j=i+1

d(si, sj)m(si(x), sj(x)) (4.3)

λ =

 N∑
i=1

N∑
j=i+1

d(si, sj)

−1

(4.4)

d(si, sj) = 100− 1
L

L∑
k=1

δ(Rki, Rkj) (4.5)

where m(si(x), sj(x)) is the score from the Dayhoff substitution matrix (Dayhoff et al., 1978)

for the residues in column x in sequences si and sj ; δ(Rki, Rkj) is the identity {1,0} of Rki and

Rkj (the kth residue in the alignment of sequences i and j respectively); N is the number of

sequences in the MSA; and L is the length of the alignment.

This goes some way to accommodating the species bias inherent in MSAs. However, it uses the

similarity of sequences in the MSA to approximate species similarity. This will be misleading if

sequences are highly conserved for functional reasons. Should two similar sequences between

two very different species be compared as described by Equations 4.3-4.5, their contribution

to the overall alignment will be downweighted rather than correctly upweighted. As such, a

more rational and direct weighting system, which weights pairwise comparisons by the species

similarity, has been developed here.

Thus, species similarity is calculated directly: the FEPs identified by FOSTA (see Chapter 3) are

used to calculate how similar two species are, on average. The system of equations becomes:

Cspecsim(x) = λ′
N∑
i=1

N∑
j=i+1

d′(si, sj)m′(si(x), sj(x)) (4.6)
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λ′ =

 N∑
i=1

N∑
j=i+1

d′(Q(si), Q(sj))

−1

(4.7)

d′(A,B) = 100− 1
F

F∑
i

nw(Ai, Bi) (4.8)

where m′(si(x), sj(x)) is the score from the normalised PET91 matrix (Jones et al., 1992); A and

B are two species for the residues in column x in sequences si and sj ; Q(a) is the species from

which sequence a is derived; F is the number of FEPs that are identified between A and B; Ai

and Bi are the ith FEPs; and nw(X,Y ) is the NW aligment score calculated across the aligned

regions of the protein sequences of X and Y (using a gap initialisation penalty of 11 and a

gap extension penalty of 2, see Section 2.3.3 for a description of NW). d′(A,B) is therefore

a dissimilarity coefficient for A and B, scaled between 0 and 100. Using Equations 4.6-4.8,

conservation scores are normalised with respect to species diversity. Hereafter, the resulting

species similarity matrix will be referred to as specsim (species similarity).

To generate the matrix d′, all observed species pairings from FOSTA (i.e., all species pairs which

share membership of a FOSTA family) are extracted from the database. In the current imple-

mentation of FOSTA (November 2008), there are 6 801 254 protein pairs from 1 147 685 possible

species pairings, requiring that 6 801 254 pairwise alignments are run; this is not feasible on a

single machine. Further, each species pairing can be processed in parallel. As such, the code is

ideal for distribution across processors and has been developed for execution across the local

116-core grid. The pseudocode for each species comparison (i.e., each distributed job) is shown

in Figure 4.1.

4.2.2 Accommodating protein-specific patterns of conservation

Using the specsim scoring method described in Section 4.2.1 (Equations 4.6-4.8), conservation

scores are normalised with respect to the species set represented. The next step is to isolate

conservation patterns that are independent of the properties of the proteins.

To define an alignment-specific ‘high conservation’ threshold, it is necessary to characterise

the distribution of conservation scores appropriately. As the distribution of conservation scores
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(a) specsim inputs

• species1 : the first species

• species2 : the second species

(b) specsim processing

(I) identify all good pairs of FEPs for species1 and species2

(II) for each protein pair:

(a) extract the sequences from the database

(b) align the sequences using NW, calculate and record the identity score

(III) calculate and record the mean of the identity scores

Figure 4.1: Calculating a similarity score for a pair of species
NW: Needleman & Wunsch (1970) using a gap initialisation penalty of 11 and gap extension penalty of 2. species1
and species2 are UniProtKB species suffices. Good FEPs are those that are (a) not fragments (b) not unreliable and (c)
not assigned using the ‘last-resort’ sequence matching (see Section 3.2.2.3).

cannot be expected to conform to a single Gaussian distribution, standard parametric, statistical

approaches are not suitable. Non-parametric ranking methods (e.g., identifying the top 5% of

conservation scores) are also inappropriate as MSAs will vary with respect to the proportion of

columns that are highly conserved.

Mixture models allow distributions to be described using multiple Gaussian components (Aitkin

and Wilson, 1980). For the purposes of the current analysis, the distribution is characterised

as having three components, G0, G1 and G2: G0 will characterise the unconserved residues,

G1 will capture the distribution of moderately conserved residues, and G2 will describe the

distribution of the highly conserved residues. It is expected that these three classes have some

functional relevance: G0 describes freely mutating residues, G1 describes residues with some

minor structural role, while G2 describes residues that are critical to structure and/or function.

Thus, residues defined by G2 are the ones that should be identified as ‘highly conserved’.

Figure 4.2 shows the mixture modelling of some example data. These data were randomly gen-

erated using the rnorm() function in R: 3000 points were drawn evenly from three Gaussian

distributions at µ = {−5, 0, 5}, σ = {2, 5, 4}. Although the Gaussians overlap considerably,

the data are appropriately captured by the three Gaussians: the means of the fitted Gaussians

(shown by the dashed blue lines) correspond closely to the true values {−5, 0, 5}; compare the

raw data, plotted in black, with the cumulative model in red to evaluate how well the model

fits the data.
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Figure 4.2: Using multiple Gaussians to model data
The data modelled above has been generated randomly using rnorm() in R. 3000 numbers were drawn evenly from
three Gaussian distributions: distribution A (µ = −5, σ = 2), distribution B (µ = 0, σ = 5), distribution C (µ =

5, σ = 4). The black line represents the raw data. A 3-component mixture model is fitted to these data and is shown
in blue. Fitted components are numbered from 0 to 2, from left to right; the means of these components are indicated
with dashed blue lines. The cumulative modelled distribution is shown in red. For details on the optimisation method
(BFGS), see Section 4.2.2.
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Figure 4.3: The logit function and logit transformation

To ease discrimination at the extremeties of the distribution, the data are logit transformed (see

Figure 4.3). The formula is given in Equation 4.9 below.

xlogit = log
(

x

1− x

)
(4.9)

The three Gaussian components G0, G1 and G2 are fitted to the logit transformed data and

two constraints are applied to the resulting model to define high conservation in the MSA. The

mixture model is fitted using the optim() command in R, using the BFGS method (Broyden-

Fletcher-Goldfarb-Shanno) (Fletcher, 1970). ImPACT has been implemented to run fifty rounds

of optimisation and to draw priors from the uniform Dirichlet conjugate prior (α = 1). The

Dirichlet distribution is used to represent any prior belief with regards to the values of the

parameters of the mixture model. Using a uniform prior where α = 1 in the context of the

ImPACT mixture model means that no prior belief as to the densities of the three component

Gaussians exists in the modelling system.

4.2.2.1 Constraint one: applying a basic concept of conservation

The method must first ascertain whether the MSA contains any significant conservation at

all. In the context of the modelled distribution described above, this translates to consider-

ing whether µG2 is high enough. If G2 exists at, for example, ' 0.60, it may be high relative to
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the other residues in the protein, but it is not high enough to infer functional significance. To

define a basic concept of conservation, the lower bound of ‘high conservation’ must be defined.

This value will be described as constraint one, or C1.

To establish a suitable value for C1, the conservation scores for combinations of eight residue

duples or triples were considered. That is, sets of two or three residues were combined to

represent alignment columns, with residues being chosen based on an existing expectation of

what would constitute conservation and what would not. By considering the conservation for

each combination and considering which sets of columns should be classified as conserved,

the value for C1 can be defined. For example, the combination of residues CCCCCCWWWW

would not be considered conserved, as cysteine and tryptophan are very different, but the

combination of residues FFFFFFYYYY would be, as phenylalanine and tyrosine are much more

similar physicochemically.

Of the set of eight residue pairs, two residue tuples were included as examples of very differ-

ent residues—{EW} and {CW}—with the remaining six—{ILV}, {ST}, {DE}, {RK}, {FY} and

{NQ}—representative of sets of more similar residues. The intention here is to set the value

for C1 such that appropriate mixtures of the similar residues are included, while excluding

appropriate mixtures of the dissimilar residues.

In this section, the term ‘X:Z ratio’ will be used to describe the composition of the combinations

of residues (X and Z are used so as to avoid confusion with amino acids). A high X:Z ra-

tio indicates that the combination predominantly comprises one residue (e.g., ‘FFFFFFFFFFFY’

has an X:Z ratio of 11:1 where X represents F and Z represents Y), whereas an X:Z ratio close

to 1:1 indicates that there are equal numbers of each/all residues in the combination (e.g.,

‘SSSSSSTTTTTT’ has an X:Z ratio of 1:1 where X represents S and Z represents T). For each

residue combination, all possible combinations of 12 residues were generated. 12 was used be-

cause (a) it allows a 1:1 residue composition in a residue duple and a 1:1:1 residue composition

in a residue triple (b) it allows a reasonable range of X:Z ratios, from 11:1 to 1:1 for duples and

10:1:1 to 1:1:1 for triples, and (c) it provides enough residues from which a reliable conservation

score can be calculated.

Conservation scores were generated as described in Equation 4.1 using amino acid substitution

scores from the normalised PET91 matrix (Jones et al., 1992). The conservation scores for {ILV},

{ST}, {DE}, {RK}, {NQ}, {FY}, {EW} and {CW} are shown in Tables 4.1-4.8.
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Table 4.1: The conservation scores for all combinations of twelve {ILV} residues
Column residues: the combination of residues; Conservation: the conservation score for the column residues. Thresh-
olds of 0.75, 0.80, 0.85, 0.90 and 0.95 are marked on the right hand side. Columns are ordered by decreasing conservation
score. {ILV} are a set of similar residues.

Column residues Conservation Threshold
LLLLLLLLLLLL 1.000000
IIIIIIIIIIII 1.000000
VVVVVVVVVVVV 1.000000 0.95
IVVVVVVVVVVV 0.933333
IIIIIIIIIIIV 0.933333
LLLLLLLLLLLV 0.911111
ILLLLLLLLLLL 0.911111
IIIIIIIIIIIL 0.911111
LVVVVVVVVVVV 0.911111 0.90
IIVVVVVVVVVV 0.878788
IIIIIIIIIIVV 0.878788
IIIIIIIIIILV 0.850505
ILVVVVVVVVVV 0.850505 0.85
IILLLLLLLLLL 0.838384
LLLLLLLLLLVV 0.838384
LLVVVVVVVVVV 0.838384
IIIIIIIIIILL 0.838384
IIIIIIIIIVVV 0.836364
IIIVVVVVVVVV 0.836364
ILLLLLLLLLLV 0.832323
IIIIVVVVVVVV 0.806061
IIIIIIIIVVVV 0.806061
IILVVVVVVVVV 0.802020
IIIIIIIIILVV 0.802020 0.80
IIIIIIIVVVVV 0.787879
IIIIIVVVVVVV 0.787879
IIIIIIIIILLV 0.783838
ILLVVVVVVVVV 0.783838
IIILLLLLLLLL 0.781818
LLLVVVVVVVVV 0.781818
LLLLLLLLLVVV 0.781818
IIIIIIIIILLL 0.781818
IIIIIIVVVVVV 0.781818
IILLLLLLLLLV 0.769697
ILLLLLLLLLVV 0.769697
IIILVVVVVVVV 0.765657
IIIIIIIILVVV 0.765657 0.75
IIIIIIIILLVV 0.741414
IIIIIIILVVVV 0.741414
IIIILLLLLLLL 0.741414
LLLLLLLLVVVV 0.741414
IIIIIIIILLLL 0.741414
IILLVVVVVVVV 0.741414
IIIILVVVVVVV 0.741414
LLLLVVVVVVVV 0.741414

continues next column...

...continues here

ILLLVVVVVVVV 0.733333
IIIIIIIILLLV 0.733333
IIIIILVVVVVV 0.729293
IIIIIILVVVVV 0.729293
ILLLLLLLLVVV 0.723232
IIILLLLLLLLV 0.723232
IIIIIIILLLLL 0.717172
LLLLLLLVVVVV 0.717172
IILLLLLLLLVV 0.717172
IIIIILLLLLLL 0.717172
LLLLLVVVVVVV 0.717172
IIIIIIILLVVV 0.711111
IIILLVVVVVVV 0.711111
LLLLLLVVVVVV 0.709091
IIIIIILLLLLL 0.709091
ILLLLVVVVVVV 0.698990
IIIIIIILLLLV 0.698990
IIIIIIILLLVV 0.696970
IILLLVVVVVVV 0.696970
ILLLLLLLVVVV 0.692929
IIIIIILLVVVV 0.692929
IIIILLLLLLLV 0.692929
IIIILLVVVVVV 0.692929
IIIIILLVVVVV 0.686869
IIIIIILLLLLV 0.680808
IIILLLLLLLVV 0.680808
ILLLLLVVVVVV 0.680808
IILLLLLLLVVV 0.680808
IIIIILLLLLLV 0.678788
ILLLLLLVVVVV 0.678788
IIILLLVVVVVV 0.672727
IIIIIILLLVVV 0.672727
IILLLLVVVVVV 0.668687
IIIIIILLLLVV 0.668687
IILLLLLLVVVV 0.660606
IIIIILLLVVVV 0.660606
IIIILLLVVVVV 0.660606
IIIILLLLLLVV 0.660606
IILLLLLVVVVV 0.656566
IIIIILLLLLVV 0.656566
IIILLLLLLVVV 0.654545
IIIIILLLLVVV 0.650505
IIILLLLVVVVV 0.650505
IIILLLLLVVVV 0.644444
IIIILLLLVVVV 0.644444
IIIILLLLLVVV 0.644444
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Table 4.2: The conservation scores for combinations of twelve {ST} residues
Column residues: the combination of residues; Conservation: the conservation score for the column residues. Thresh-
olds of 0.75, 0.80, 0.85, 0.90 and 0.95 are marked on the right hand side. Columns are ordered by decreasing conservation
score. {ST} are a set of similar residues.

Column residues Conservation Threshold
SSSSSSSSSSSS 1.000000
TTTTTTTTTTTT 1.000000 0.95
STTTTTTTTTTT 0.900000
SSSSSSSSSSST 0.900000 0.85/0.90
SSSSSSSSSSTT 0.818182
SSTTTTTTTTTT 0.818182 0.80
SSSSSSSSSTTT 0.754545
SSSTTTTTTTTT 0.754545 0.75
SSSSSSSSTTTT 0.709091
SSSSTTTTTTTT 0.709091
SSSSSSSTTTTT 0.681818
SSSSSTTTTTTT 0.681818
SSSSSSTTTTTT 0.672727

Table 4.3: The conservation scores for combinations of twelve {DE} residues
Column residues: the combination of residues; Conservation: the conservation score for the column residues. Thresh-
olds of 0.75, 0.80, 0.85, 0.90 and 0.95 are marked on the right hand side. Volumns are ordered by decreasing conservation
score. {DE} are a set of similar residues.

Column residues Conservation Threshold
DDDDDDDDDDDD 1.000000
EEEEEEEEEEEE 1.000000 0.95
DEEEEEEEEEEE 0.933333
DDDDDDDDDDDE 0.933333 0.90
DDEEEEEEEEEE 0.878788
DDDDDDDDDDEE 0.878788 0.85
DDDDDDDDDEEE 0.836364
DDDEEEEEEEEE 0.836364
DDDDEEEEEEEE 0.806061
DDDDDDDDEEEE 0.806061 0.80
DDDDDEEEEEEE 0.787879
DDDDDDDEEEEE 0.787879
DDDDDDEEEEEE 0.781818 0.75



CHAPTER 4. IMPACT 133

Table 4.4: The conservation scores for combinations of twelve {RK} residues
Column residues: the combination of residues; Conservation: the conservation score for the column residues. Thresh-
olds of 0.75, 0.80, 0.85, 0.90 and 0.95 are marked on the right hand side. Columns are ordered by decreasing conservation
score. {RK} are a set of similar residues.

Column residues Conservation Threshold
RRRRRRRRRRRR 1.000000
KKKKKKKKKKKK 1.000000 0.95
KRRRRRRRRRRR 0.933333
KKKKKKKKKKKR 0.933333 0.90
KKRRRRRRRRRR 0.878788
KKKKKKKKKKRR 0.878788 0.85
KKKKKKKKKRRR 0.836364
KKKRRRRRRRRR 0.836364
KKKKKKKKRRRR 0.806061
KKKKRRRRRRRR 0.806061 0.80
KKKKKKKRRRRR 0.787879
KKKKKRRRRRRR 0.787879
KKKKKKRRRRRR 0.781818 0.75

Table 4.5: The conservation scores for combinations of twelve {NQ} residues
Column residues: the combination of residues; Conservation: the conservation score for the column residues. Thresh-
olds of 0.75, 0.80, 0.85, 0.90 and 0.95 are marked on the right hand side. Columns are ordered by decreasing conservation
score. {NQ} are a set of similar residues.

Column residues Conservation Threshold
QQQQQQQQQQQQ 1.000000
NNNNNNNNNNNN 1.000000 0.90/0.95
NNNNNNNNNNNQ 0.888889
NQQQQQQQQQQQ 0.888889 0.80/0.85
NNQQQQQQQQQQ 0.797980
NNNNNNNNNNQQ 0.797980 0.75
NNNQQQQQQQQQ 0.727273
NNNNNNNNNQQQ 0.727273
NNNNQQQQQQQQ 0.676768
NNNNNNNNQQQQ 0.676768
NNNNNNNQQQQQ 0.646465
NNNNNQQQQQQQ 0.646465
NNNNNNQQQQQQ 0.636364
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Table 4.6: The conservation scores for combinations of twelve {FY} residues
Column residues: the combination of residues; Conservation: the conservation score for the column residues. Thresh-
olds of 0.75, 0.80, 0.85, 0.90 and 0.95 are marked on the right hand side. Columns are ordered by decreasing conservation
score. {FY} are a set of similar residues.

Column residues Conservation Threshold
YYYYYYYYYYYY 1.000000
FFFFFFFFFFFF 1.000000 0.95
FFFFFFFFFFFY 0.944444
FYYYYYYYYYYY 0.944444 0.90
FFFFFFFFFFYY 0.898990
FFYYYYYYYYYY 0.898990
FFFYYYYYYYYY 0.863636
FFFFFFFFFYYY 0.863636 0.85
FFFFYYYYYYYY 0.838384
FFFFFFFFYYYY 0.838384
FFFFFYYYYYYY 0.823232
FFFFFFFYYYYY 0.823232
FFFFFFYYYYYY 0.818182 0.75/0.80

Table 4.7: The conservation scores for combinations of twelve {EW} residues
Column residues: the combination of residues; Conservation: the conservation score for the column residues. Thresh-
olds of 0.75, 0.80, 0.85, 0.90 and 0.95 are marked on the right hand side. Columns are ordered by decreasing conservation
score. {EW} are a set of very different residues.

Column residues Conservation Threshold
EEEEEEEEEEEE 1.000000
WWWWWWWWWWWW 1.000000 0.85/0.90/0.95
EEEEEEEEEEEW 0.833333
EWWWWWWWWWWW 0.833333 0.75/0.80
EEWWWWWWWWWW 0.696970
EEEEEEEEEEWW 0.696970
EEEWWWWWWWWW 0.590909
EEEEEEEEEWWW 0.590909
EEEEEEEEWWWW 0.515152
EEEEWWWWWWWW 0.515152
EEEEEEEWWWWW 0.469697
EEEEEWWWWWWW 0.469697
EEEEEEWWWWWW 0.454545
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Table 4.8: The conservation scores for combinations of twelve {CW} residues
Column residues: the combination of residues; Conservation: the conservation score for the column residues. Thresh-
olds of 0.75, 0.80, 0.85, 0.90 and 0.95 are marked on the right hand side. Columns are ordered by decreasing conservation
score. {CW} are a set of very different residues.

Column residues Conservation Threshold
CCCCCCCCCCCC 1.000000
WWWWWWWWWWWW 1.000000 0.95
CCCCCCCCCCCW 0.900000
CWWWWWWWWWWW 0.900000 0.85/0.90
CCCCCCCCCCWW 0.818182
CCWWWWWWWWWW 0.818182 0.80
CCCWWWWWWWWW 0.754545
CCCCCCCCCWWW 0.754545 0.75
CCCCWWWWWWWW 0.709091
CCCCCCCCWWWW 0.709091
CCCCCCCWWWWW 0.681818
CCCCCWWWWWWW 0.681818
CCCCCCWWWWWW 0.672727

A threshold of 0.80 identifies any combination of twelve tyrosine and phenylalanine residues

as being conserved (Table 4.6); increasing the threshold to 0.85 only identifies columns with an

X:Z ratio of 3:1 or higher. Unless the hydroxyl group of tyrosine is critical, tyrosine and phenyl-

alanine can generally replace each other without compromising protein function, suggesting

that a threshold of 0.80 is appropriate for this pair of amino acids. The threshold of 0.80 also

seems appropriate for the {DE} and {RK} combinations: both pairs of residues generate the

same conservation scores, and applying a threshold of 0.80 allows columns with an X:Z ratio of

2:1 or better to be identified as highly conserved.

The remaining sets of similar residues—{ILV} (Table 4.1), {ST} (Table 4.2) and {NQ} (Table

4.5)—may suggest that a lower threshold of 0.75 is more appropriate, allowing for columns such

as ‘IILLLLLLLLLV’, ‘SSSSSSSSSTTT’ and ‘NNNNNNNNNNQQ’ to be identified as highly con-

served. However, dropping the threshold to 0.75 would compromise performance where very

different residues are being compared. For example, a threshold of 0.75 would identify an

alignment column comprising of ‘CCCCCCCCCWWW’ or ‘CCCWWWWWWWWW’ as highly

conserved.

With a view to applying a conservative threshold, an initial criteria that µG2 ≥ logit(0.80) is

defined.
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4.2.2.2 Constraint two: generating the threshold

If C1 is not violated (i.e., the predefined, basic model of conservation exists in the data), the

method then assesses whether the density at the high end of the distribution is sufficiently dis-

crete from that of the middle of the distribution. To do this, it must assess how separate G1

and G2 are (e.g., in Figure 4.2, the distance between the second and third vertical dashed lines

would be used to assess whether the highest distribution (distribution 2) is distant from the

middle distribution (distribution 1)). Using the parameters of G1, which models the distribu-

tion of moderately conserved residues, it is possible to identify those residues that exist at the

upper extreme of what constitutes ‘moderately conserved’: by moving two standard deviations

in the positive direction, the top ∼2.5% of the moderately conserved data is identified. If µG2

(the Gaussian which represents highly conserved residues) exists at this point or higher, the two

Gaussians (G1 and G2) are considered to be separate; that is, if µG2 >= µG1 +C2 ∗σG1 ;C2 = 2,

there is adequate distance between G1 and G2, and µG1 +C2 ∗σG1 ;C2 = 2 becomes the thresh-

old for high conservation. Otherwise, the basic concept of conservation is applied (i.e., C1

becomes the threshold).

Constraint two (C2) defines how far from µG2 (in standard deviations) the threshold should be

set. The ImPACT threshold (IT ) is therefore calculated as follows:

IT =

 µG1 + C2 ∗ σG1 if µG2 >= µG1 + C2 ∗ σG1 ,

C1 otherwise.
(4.10)

By default, C1 = 0.80 and C2 = 2. Note that the threshold for conservation can be < 0.80. C1

assesses whether the mean of G2 (the Gaussian representing the conserved residues) is greater

than 0.80. If this constraint is met, the threshold is calculated from the mean and standard

deviation of G1 (the Gaussian representing the moderately conserved residues). As such, the

threshold generated by the calculation µG1 + 2σG1 could be less than 0.80.
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4.3 Results and Discussion

It is difficult to assess how successful conservation scoring methods are. In his comprehen-

sive summary of protein conservation scoring methods, Valdar (2002) states that “there is no

rigourous mathematical test for judging a conservation measure...rather than accuracy then, a conser-

vation score may be judged on its verisimilitude: its ability to depict realism and its concordance with

biochemical notation”. However, further to scoring conservation, ImPACT generates a threshold,

the application of which aims to classify residues in an MSA as highly conserved or not highly

conserved. As such, should an appropriate dataset of conserved residues exist against which

ImPACT can be benchmarked, it is possible to use standard binary classification performance

statistics (see Section 2.3.5) to evaluate the performance of ImPACT.

To perform a multi-faceted evaluation of ImPACT, it has been assessed using three

datasets. The first is a dataset of four representative human proteins: glucose-6-

phosphate 1-dehydrogenase (G6PD) [UniProtKB:P11413/G6PD HUMAN]; ornithine

carbamoyltransferase (OTC) [UniProtKB:P00480/OTC HUMAN]; cellular tumor antigen

P53 [UniProtKB:P04637/P53 HUMAN] and haemoglobin subunit beta (HBB) [UniPro-

tKB:P68871/HBB HUMAN]. Secondly, the sequence motif database PROSITE (Hulo et al.,

2006) is parsed to extract residues that should be conserved in an alignment of functionally

equivalent proteins. Finally, artificial conservation data, for which the global conservation

patterns can be controlled, are used to evaluate the scoring method.

First, however, the specsim weighted scoring system is evaluated.

4.3.1 Normalising conservation using the specsim matrix

Figure 4.4 shows an unrooted phylogenetic tree (constructed using the fitch method from the

PHYLIP1 package of phylogenetic software) generated from a subset of fifty species’ pairwise

dissimilarity scores calculated from the specsim matrix. It is clear that the dissimilarity scores

are representative of species diversity: the two main branches of the tree represent the eukary-

otes and prokaryotes. There is appropriate subdivision of eukaryotic species into mammal, fly,

yeast, fungi and plant groups, and appropriate prokaryotic subdivisions including cynobateria

1http://evolution.genetics.washington.edu/phylip.html
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(including the Nostocales subfamily), mycobacteria, E-coli subspecies, helicobacteria and so on.

Figure 4.5 compares the unweighted, species-similarity-weighted and sequence-similarity-

weighted conservation scores for the four representative proteins introduced above. HBB and

P53 are the two most heavily adjusted proteins in terms of weighted conservation scores, while

G6PD and OTC are less affected. This indicates that the species similarity, as measured by

specsim , and the sequence similarity are both high within the P53 and HBB alignments. The

results for G6PD and OTC are clustered more closely around the identity line, demonstrating

that the proteins are more different from each other, with respect to species and sequence.

For all four proteins, the sequence and species weighting do correspond closely to each other,

indicating that sequence similarity is a reasonable approximation of the species similarity. In

general, however, it does appear that weighting by species similarity has a greater effect on

the score than sequence similarity, with blue points closer to the x axis than red points. The

exception is OTC, the conservation scores for which appear to be more heavily corrected when

weighting by sequence similarity than when weighting by species similarity.

4.3.2 Using four representative proteins to assess ImPACT

Four representative human proteins have been chosen to evaluate ImPACT (see Table 4.9).

G6PD (515 residues long, 49 proteins in alignment) is representative of a protein that is gener-

ally not highly conserved. It has a low mean conservation score of 0.58 and a relatively large

standard deviation of 0.22. Only 5.05% of the residues are 100% conserved in an alignment

with 515 columns. OTC (354 residues long, with 178 proteins in the alignment) has a very

similar conservation profile to that of G6PD, with a mean conservation score of 0.59, a stan-

dard deviation of 0.20 and 3.39% of the 354 residues 100% conserved. The mean conservation

score of the tumour suppressor protein P53 is 0.68; P53 displays the most amount of variation

around the mean, with a standard deviation of 0.24 and 21.63% of residues 100% conserved.

HBB has the highest mean score (0.74) and with less variation (σ = 0.18) about the mean and

6.12% of residues 100% conserved. P53 and HBB are examples of highly conserved proteins.

HBB has higher mean conservation value (0.74 compared to 0.69), but far fewer residues that

are 100% conserved (6.12% compared to 21.63%). As such, it is possible to describe HBB as the

globally more conserved protein although P53 has more 100% conserved residues. The aim of

ImPACT is to identify high or low global conservation and generate appropriately higher or



CHAPTER 4. IMPACT 139

H
A

E
IN

P
S

E
A

E

Z
Y

M
M

O

R
H

IM
E

TH
E

M
AST

R
PN

LE
UM

E

BACSUMYCTU

MYCBO

SYNP7

SYNY3

NOSPU

ANASP

CHLPN

CHLTR

CHLM
U

TREPA

BO
R

BU

RAT

M
O

U
S

E

H
U

M
A

N

C
R

IG
R

M
A

C
R

O

B
O

S
IN

F
U

G
R

U
D

R
O

M
E

C
E

R
C

A

C
A

E
E

L

S
C

H
P

O

YE
AS

T

PICJA

KLULA

EMENI

ASPNG

SPIOL

TOBAC

SOLTU

MEDSA

ARATH

HELPY

HELPJ

BUCBP

BUCAP

B
U

C
A

I

ECOL6ECOLI

E
C

O
57

D
IC

D
3

A
C

T
A

C

Mammals

Flies

Fungi

Yeast

Plants

Helico
bacteria

Buchnera
Aphidicola

E coli

Mycobacteria

Nostocales

Cynobacteria

Chlamydiae

Spirochaetales

Prokaryotes

Eukaryotes

Figure 4.4: Evaluating the specsim matrix using phylogeny
Dissimilarity scores between 50 species were taken from the specsim matrix (see Section 4.2.1) and used as distance
metrics with which to construct a phylogenetic tree (using fitch from the Phylip package). Species represented using
their UniProtKB/Swiss-Prot species suffix. The first branch of the tree divides the species into eukaryotes (highlighted
in blue) and prokaryotes (highlighted in yellow). Further subdivisions are highlighted in grey.
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Figure 4.5: Comparing specsim , SS and unweighted conservation scoring methods
The four representative proteins (OTC, G6PD, P53 and HBB) are used to evaluate the sequence similarity weighted
(SS, see Equations 4.3-4.5), species similarity weighted (specsim , see Equations 4.6-4.8) and unweighted conservation
scoring methods. The unweighted score is along the x axis and the weighted scores are plotted along the y axis, with
scores weighted by species plotted as blue +s and scores weighted by sequence plotted as red ×s. The identity line
(where the weighted and unweighted scores are equal) is marked by a dashed grey line.
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Table 4.9: Conservation patterns vary across proteins
nres: the number of residues/columns in the alignment; nseq : the number of sequences/rows in the alignment; max:
the maximum conservation score; min: the minimum conservation score; µc: the average conservation score; σc: the
standard deviation of the conservation scores; percx: the percentage of columns that have a conservation score of x.
All numbers rounded to 2dp.

Protein nres nseq max min µc σc perc1.00 perc0.95 perc0.90
OTC 354 178 1.00 0.28 0.59 0.20 3.39 10.17 12.43
G6PD 515 49 1.00 0.27 0.58 0.22 5.05 9.32 13.59
P53 393 31 1.00 0.33 0.69 0.23 21.63 24.68 30.79
HBB 147 239 1.00 0.38 0.74 0.17 6.12 14.29 27.21

Table 4.10: ImPACT results for the four representative proteins
nres: the number of residues/columns in the alignment; nseq : the number of sequences/rows in the alignment; IT :
the threshold generated using ImPACT; percIT

: the percentage of residues identified as highly conserved, according
to IT . IT rounded to 4dp, all other figures rounded to 2dp.

Protein nres nseq IT percIT

OTC 354 178 0.8672 13.27
G6PD 515 49 0.9612 8.54
P53 393 31 0.9636 23.66
HBB 147 239 0.9763 10.20

lower scores. All proteins have at least one residue that is 100% conserved.

The graphs in Figure 4.6 plot the distribution of specsim -weighted (Section 4.2.1) conserva-

tion scores for each protein and its FEPs (as defined by FOSTA, see Chapter 3) as a proportion

of the total number of residues (i.e., the data are normalised for the sequence length, nseq in

Table 4.9). It is clear that the four proteins vary with respect to conservation score distribution

and as such are appropriate datasets with which ImPACT can be assessed.

Figure 4.7 shows the logit transformed distributions as modelled by ImPACT and the results of

the ImPACT analysis. Visual inspection of the fitted mixture models shows that the distribution

of raw, specsim -weighted conservation scores (shown in Figure 4.7 in black) is successfully

captured using the three Gaussians in all four proteins (compare the black and magenta traces).

The corresponding alignment representation on the right of each graph in Figure 4.7 depicts the

global conservation patters for each protein, where conservation increases from green (where
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(c) Conservation of P53 HUMAN + 31 FEPs
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(d) Conservation of HBB HUMAN + 239 FEPs

Figure 4.6: Varying conservation patterns in the four representative proteins
The specsim -weighted conservation scores for the four representative proteins (OTC, G6PD, P53 and HBB). See Table
4.9 for more more details.
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Figure 4.7: Assessing ImPACT using four representative proteins
ImPACT analysis for (from top to bottom) OTC, G6PD, P53, and HBB, the four representative proteins. Distribution of
logit transformed raw data is shown in black, the three fitted Gaussians are shown in blue and the cumulative model
is shown in magenta. The values for the first and second constraints (see Section 4.2.2) are depicted as vertical orange
and red lines respectively. The resulting threshold is given in the grey box in the top-left corner of the graph. In
addition to the fitted Gaussian components, to aid comparison of each protein’s global conservation trends, a depiction
of conservation trends for each protein’s MSA is shown to the right of the graph, where high conservation scores are
shown in red, more moderate scores are shown in blue and low scores are shown in green.
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the conservation score is 0) to red (where the conservation score is 1) via blue and purple.

The width of the colour band indicates how many columns in the alignment are scored in that

range. Therefore, an alignment representation that is predominantly red is more highly con-

served than an alignment representation containing large blue bands. Using these alignment

representations to sort the four proteins according to increasing global conservation—taking

into account both the prevalence of high conservation and the lack of very low conservation—

would order the proteins as follows: OTC, G6PD, P53, HBB. Appropriately, ImPACT assigns

these proteins increasing ImPACT scores: 0.8672, 0.9612, 0.9636 and 0.9763 for OTC, G6PD, P53

and HBB respectively. As discussed at the beginning of this section, although P53 has a higher

proportion of 100% conserved residues, HBB has a higher mean conservation score and as such

is the more globally conserved protein. HBB should therefore have a higher conservation thresh-

old. ImPACT successfully captures these trends and generates a higher threshold for HBB than

for P53.

4.3.3 A large scale analysis of ImPACT: PROSITE

PROSITE is a databank of biologically relevant protein motifs (Hulo et al., 2006). Motifs are

identified using structural alignments of proteins and several levels of profile extraction, re-

finement and scaling methods (for full details, see Gribskov et al. (1990), Lüthy et al. (1994),

Thompson et al. (1994b)). Motifs in PROSITE can be both functional (e.g., an N-linked glycoso-

lation site) and indicative of homologous protein families (e.g., an apple domain).

4.3.3.1 Defining the data

PROSITE (version 20.36, 02/09/08) data were obtained from Expasy2. This version of PROSITE

contains 1315 PROSITE motifs. The motifs are described using a PROSITE-specific format:

where each element is separated by a ‘-’; standard single-letter symbols are used to represent

amino acids; ‘x’ indicates any residue; ‘[]’s indicate an inclusive choice (i.e., any residue in the

‘[]’ brackets); ‘{}’s indicate an exclusive choice (i.e., any residue except those in the ‘{}’ brack-

ets); < and > indicate the start and end of the sequence respectively; and numbers or ranges

in ‘()’s are quantifiers. For example, the AP endonuclease family 1 signature 1 (PROSITE fam-

ily PS00726) describes the sequence motif [APF]-D-[LIVMF](2)-{T}-[LIVM]-Q-E-{G}-K,

2ftp://ftp.expasy.org/databases/prosite/prosite.dat
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which translates as “ala or pro or phe / asp / leu or ile or val or met or phe / leu or ile or val

or met or phe / any residue except thr / leu or ile or val or met / gln / glu / anything but gly

/ lys”.

In this chapter, PROSITE is being used to define ‘conserved’ residues in human proteins; this

requires that ‘conservation’ must be defined within PROSITE patterns. This is a question of

leniency: how many different residues can exist in equivalent positions before the position

becomes unconserved? For the results described in this chapter, the leniency has been set at

two; that is, those elements in the PROSITE sequence motifs that describe a set of at most two

amino acids are considered to be conserved. Although this may be viewed as a rather strict

definition of conservation, ImPACT has been designed to be conservative in its approach and

it is therefore undesirable to extend the leniency any further. These are the data against which

ImPACT has been benchmarked.

Figure 4.8 describes how PROSITE is parsed to identify conserved residues in human proteins.

Each PROSITE pattern (PA) record is extracted and the PROSITE formatted motif is translated

into a Perl regular expression (REGEX). An example is shown in Figure 4.9(a). As described

above, a leniency of two has been set to identify conserved residues, which results in the fourth,

sixth, eighth, ninth and fourteenth elements in the example being described as conserved as

well as the first, second, fifth and seventh single residue elements. To illustrate the use of

leniency, the conserved elements using leniencies {1,2,3} are indicated with an asterisk beneath

the aligned PA and REGEX in Figure 4.9(a).

Then, each TP (true positive) human protein3 named in the PROSITE record is searched using

the Perl regular expression to identify where the motif occurs (the sequence is searched for

exhaustively, returning all occurrences of the motif). Figure 4.9(b) shows the motif described

in Figure 4.9(a) being identified in all the PROSITE-TP human proteins. Again, the conserved

residues, as defined by the sequence motif and the leniency, are marked with an asterisk.

Once the PROSITE records are parsed to identify the conserved residues, the conserved

residues for each human protein are aggregated across PROSITE families into one set of

residues. For example, ACES HUMAN contains conserved residues at positions 221, 222,

223, 232, 234 and 236 according to the Carboxylesterase B1 motif (PROSITE family PS00122)

and contains further conserved residues at positions 126, 127 and 128 according to the

3These are proteins that contain the motif as expected by PROSITE (Hulo et al., 2006), not to be confused with the
later use of ‘TP’ to indicate a true positive in the ImPACT/PROSITE benchmarking
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Figure 4.8: Extracting conserved residues from PROSITE
For each PROSITE record, a Perl regular expression is generated from the PROSITE motif string (see Figure 4.9(a) for an
example). All instances of the motif are identified in each true positive (TP) human protein (see text) using the regular
expression. Using a predefined leniency value (throughout this chapter, a value of 2 is used), the conserved elements
of the motif are identified. The human sequence is annotated with the conserved PROSITE residues and these data are
recorded.
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PROSITE PA S - Q - [STK] - [TA] - I - [SC] - R - [FH] - [ET] - x - [LSQ] - x(0,1) - [LIR] - [ST] .
Perl REGEX / S Q [STK] [TA] I [SC] R [FH] [ET] . [LSQ] .{0,1} [LIR] [ST] /g
Leniency ≤ 1 ∗ ∗ ∗ ∗
Leniency ≤ 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Leniency ≤ 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

(a) The POU-specific (POUs) domain signature 2 (PROSITE family PS00465)
Converting the POU domain signature 2 from the PROSITE PA format into a Perl regular expression
(REGEX). The consequence of applying different conservation leniencies (1, 2 and 3) are shown
beneath the PA/REGEX using ∗s. Throughout this chapter, a leniency of 2 is used to identify
conserved elements of PROSITE motifs (shown in red).

(b) Identifying the POU-2 motif in the human proteins
Each TP human protein in the POU-2 PROSITE family (PS00465) is searched for the occurence
of the motif, using the regular expression given in Figure 4.9(a); The motif is highlighted here
in pale yellow and the conserved elements are marked with an ∗; positions for the preceeding
and following residue are shown in grey.

Figure 4.9: Extracting data from the POU-specific (POUs) domain signature 2 PROSITE family
(PS00465)
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Carboxylesterase B2 motif (PROSITE family PS00941). ACES HUMAN is therefore annotated

as being conserved at positions 126, 127, 128, 221, 222, 223, 232, 234 and 236.

MUSCLE alignments (see Section 2.3.2 for a description of the MUSCLE method) of functionally

equivalent proteins or FEPs (as identified by FOSTA, see Chapter 3), are extracted from the

FOSTA database. Only the most reliable FEPs are used: those non-fragmented proteins that

have matched on protein prefix or share a synonym with the root human protein (see Section

3.2.2.2). In this chapter, these FEPs will be described as ‘strict’. The alignments are further

constrained in that they must contain twenty or more proteins, to ensure that the alignment is

adequately informative and will therefore generate reliable data for the modelling process. This

results in 231 proteins containing PROSITE conserved residues against which ImPACT can be

benchmarked.

Figure 4.10(a) shows a section of the alignment of RS27 HUMAN with the 28 strict FEPs that

are extracted from the FOSTA database. RS27 HUMAN contains the ribosomal S27E motif

(PROSITE family PS01168). This sequence motif is highlighted along the bottom of the align-

ment in yellow or red. Using a leniency of two, seven of these elements are considered ‘con-

served’; these are marked in red in Figure 4.10(a). These will be the positive examples in the

PROSITE benchmarking of ImPACT, all non-annotated residues will be used as negative exam-

ples. Any positive example not identified by ImPACT is a ‘false negative’ (FN) and any nega-

tive example identified as conserved by ImPACT is a ‘false positive’ (FP); correct assignments

of positive and negative examples are true positives (TPs) and true negatives (TNs) respec-

tively (see Section 2.3.5 for an introduction to TPs, TNs, FPs and FNs and binary classification

performance statistics).

There are two characteristics of this dataset that constrain how far the results can be interpreted.

Firstly, the number of negative examples will, in the vast majority of sequences, far outnumber

the number of positive examples. As such, it is inappropriate to use performance statistics such

as accuracy ((TP + TN)/(TP + TN + FP + FN)), as a high accuracy can be achieved simply

by classifying everything as not conserved.

More importantly, there will be residues that are conserved in the alignment, but will not be an-

notated by PROSITE. PROSITE is a database of sequence motifs. Residues involved at catalytic

sites, ligand binding and those important for structural conservation need not be described by

PROSITE. Indeed, a phenylalanine at position 11 in Figure 4.10(a) is 100% conserved but not
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included in the PROSITE motif. In terms of the present dataset, this translates to uncertainty

in the set of TNs; in terms of performance statistics, this suggests that statistics that use the

number of FPs (including the postive predictive value or PPV; the false discovery rate, or FDR;

and the false positive rate or FPR) will be misleading, and will underestimate the performance

of ImPACT.

In the remainder of this chapter, the benchmarking of ImPACT against PROSITE will be de-

scribed. The ImPACT threshold generated will be compared with thresholds varying from

0 to 1, at increments of 0.01; these thresholds will be referred to as the ‘standard’ thresholds.

Residues defined as conserved by PROSITE will be described as PC residues; all other PROSITE

residues will be described as !PC residues and residues that are defined as conserved by Im-

PACT will be described as IC residues.

Bearing in mind the caveats described above, the performance statistics have been limited to

Receiver Operating Characteristic (ROC) plots and Matthews Correlation Coefficient (MCC)

(again, for a description of these terms, see Section 2.3.5). When considering the ROC plots

in the context of the caveats described above, it is more imporant that ImPACT maximises the

TPR, however, small FPRs are also desirable. A good ImPACT result will be maximally distant

from the TPR/FPR identity line (the line that describes performance no better than random).

4.3.3.2 Examples of good results

There are many proteins for which ImPACT is successful in identifying the PROSITE conserved

(PC) residues. Figure 4.11 shows the ROC and MCC results for four such proteins: 40S ri-

bosomal protein S27 [UniProtKB:P42677/RS27 HUMAN], triosephosphate isomerase [UniPro-

tKB:P60174/TPIS HUMAN], transthyretin [UniProtKB:P02766/TTHY HUMAN] and calcium-

dependent phospholipase A2 [UniProtKB:P39877/PA2G5 HUMAN].

ImPACT generates a threshold of 0.9404 for high conservation in the RS27 HUMAN align-

ment, which gives an MCC of 0.93. The alignment for these data is shown in Figure 4.10(a).

It is clear that this is the optimal value with respect to MCC (Figure 4.11(b)). In addition, the

ImPACT ROC result is maximally distant from the TPR/FPR identity line as compared to the

other thresholds (Figure 4.11(a)). The reason that ImPACT doesn’t attain a perfect MCC score

of 1.00 is that one !PC residue is identified as an IC residue: the phenylalanine at position 11



CHAPTER 4. IMPACT 150

is identified by ImPACT. In other words, ImPACT identifies an additional highly conserved

residue which is not included in the PROSITE pattern.

The patterns of conservation in the TPIS HUMAN alignment (containing 318 proteins includ-

ing TPIS HUMAN, see Figure 4.12) result in an ImPACT threshold of 0.9786 which has an MCC

of 0.5047. This is clearly better than any of the standard thresholds (Figure 4.13(b)). Again, the

ImPACT result is maximally distant from the TPR/FPR identity line (Figure 4.13(a)). In addi-

tion to demonstrating that ImPACT performs well, this result shows that very precise thresh-

olds (in the case of ImPACT, precision to the fourth decimal place) can enhance detection of

highly conserved residues compared with thresholds of lower precision (in the case of the stan-

dard thresholds, precision to the second decimal place): the ImPACT result does not fall on the

line drawn by the standard thresholds.

Although the MCC result for the PROSITE benchmarking of TTHY HUMAN and its 20 FEPs

(see Figure 4.10(b)) is not as high as the previous two examples—the ImPACT threshold of

0.9544 has an MCC of 0.3649, see Figure 4.14(b)—it is the best result, surpassing the small

peak of the standard thresholds (concentrated at ≈ 0.95) and achieving maximal distance from

TPR/FPR identity. Again, this demonstrates the increased discriminative power of higher pre-

cision thresholds; without a data modelling process such as that described in Section 4.2.2, it is

difficult to generate such high precision thresholds. The relatively poorer performance in this

dataset is owing to high numbers of FPs: compare the number of IC residues and the number

of PC residues in Figure 4.10(b).

The final example is for the protein PA2G5 HUMAN (see Figures 4.10(c), 4.15(a) and 4.15(b)).

ImPACT generates a high conservation threshold of 0.9623 for the MUSCLE alignment of

PA2G5 HUMAN and its 21 FEPs. Unlike in the previous examples, the best result is achieved

by several of the standard thresholds, clear by the performance ‘plateau’ at an MCC of 0.6850

from the standard threshold 0.97 onwards. The ImPACT threshold of 0.9623 achieves the same

MCC value as the best standard thresholds.

4.3.3.3 Examples of average results

In the previous section, four examples of very successful results were described. Given the

caveats regarding the dataset (see Section 4.3.3.1), it is expected that most results will underes-
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(a) RS27 HUMAN alignment, ImPACT threshold is 0.9408

(b) TTHY HUMAN alignment, ImPACT threshold is 0.9544

(c) PA2G5 HUMAN alignment, ImPACT threshold is 0.9623

Figure 4.10: Example annotated alignments analysed by ImPACT: RS27 HUMAN,
TTHY HUMAN, PA2G5 HUMAN
PROSITE and ImPACT annotations are shown below the MSA: PROSITE motifs are indicated using orange, PC residues
(conserved PROSITE residues, as defined using a leniency of 2) are indicated using red, residues classified as IC (highly
conserved after application of the ImPACT threshold) are indicated using blue. Amino acid colours as shown in Ap-
pendix [B.i].
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(a) RS27 HUMAN+28 FEPs, ROC
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Figure 4.11: Benchmarking ImPACT against PROSITE: RS27 HUMAN
The ‘standard’ thresholds (values from 0 to 1, at increments of 0.01) are shown in blue. The ImPACT threshold is shown
as a red asterisk. To give some idea of the composition of the datasets, the numbers of PROSITE-conserved (PC) and
non PROSITE-conserved (!PC) residues are given in the graph titles, along with the total number of residues considered
(i.e., PC+!PC ).
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Figure 4.12: Example annotated alignments analysed by ImPACT TPIS HUMAN
PROSITE and ImPACT annotations are shown below the MSA: PROSITE motifs are indicated using orange, PC residues
(conserved PROSITE residues, as defined using a leniency of 2) are indicated using red, residues classified as IC (highly
conserved after application of the ImPACT threshold) are indicated using blue. Amino acid colours as shown in Ap-
pendix [B.i].
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(a) TPIS HUMAN+318 FEPs, ROC
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(b) TPIS HUMAN+318 FEPs, MCC

Figure 4.13: Benchmarking ImPACT against PROSITE: TPIS HUMAN
The ‘standard’ thresholds (values from 0 to 1, at increments of 0.01) are shown in blue. The ImPACT threshold is shown
as a red asterisk. To give some idea of the composition of the datasets, the numbers of PROSITE-conserved (PC) and
non PROSITE-conserved (!PC) residues are given in the graph titles, along with the total number of residues considered
(i.e., PC+!PC ).
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(a) TTHY HUMAN+20 FEPs, ROC
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(b) TTHY HUMAN+20 FEPs, MCC

Figure 4.14: Benchmarking ImPACT against PROSITE: TTHY HUMAN
The ‘standard’ thresholds (values from 0 to 1, at increments of 0.01) are shown in blue. The ImPACT threshold is shown
as a red asterisk. To give some idea of the composition of the datasets, the numbers of PROSITE-conserved (PC) and
non PROSITE-conserved (!PC) residues are given in the graph titles, along with the total number of residues considered
(i.e., PC+!PC ).
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Figure 4.15: Benchmarking ImPACT against PROSITE: PA2G5 HUMAN
The ‘standard’ thresholds (values from 0 to 1, at increments of 0.01) are shown in blue. The ImPACT threshold is shown
as a red asterisk. To give some idea of the composition of the datasets, the numbers of PROSITE-conserved (PC) and
non PROSITE-conserved (!PC) residues are given in the graph titles, along with the total number of residues considered
(i.e., PC+!PC ).
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timate the performance of ImPACT; this is indeed the case. In this section, three ‘typical’ results

are described.

Approximately 25% of PROSITE benchmarking results are similar to that of FSHB HUMAN.

That is, all standard thresholds and the ImPACT threshold result in a 100% TPR (Figure 4.17(a))

(i.e., all of the residues that should be identified as conserved are identified as conserved, or

all PC residues are identified as IC residues), and the ImPACT threshold yields a near-optimal

MCC score (Figure 4.17(b)). Given that all thresholds return a 100% TPR, all of the PC residues

must be 100% conserved. Further, the FPR is always 30% or greater regardless of the threshold

chosen. This indicates that for all thresholds, at least 30% of !PCs are 100% conserved and,

according to the PROSITE annotations, wrongly identified by ImPACT as highly conserved.

It is clear from Figure 4.16(a) that there are many residues in FSHB HUMAN that are 100%

conserved and not included as part of a motif in the PROSITE dataset.

The MCC and ROC results for RIR1 HUMAN are conflicting: the ImPACT threshold is near-

optimal with respect to the ROC plot (see Figure 4.18(a)), but the MCC results are rather poor

(Figure 4.18(b)). The ImPACT threshold has been set to 0.7639, which yields a much lower

MCC than many of the standard thresholds (performance peaks at ≈0.94). The alignment for

RIR1 HUMAN and its strict FEPs is shown in Figure 4.16(b). It is clear that many !PC residues

are identified as IC. It is also clear that there are regions of significant insertions, despite all FEPs

sharing the ‘RIR1’ protein prefix. This suggests that there is considerable diversity between the

species and perhaps the lower threshold of 0.7639 generated by ImPACT is appropriate.

The final typical example is of the analysis of THIL HUMAN. Again, it is evident that approx-

imately 10% of !PC residues in this dataset are 100% conserved, given that the FPR does not

fall below 0.10 (Figure 4.19(a)). Unlike the FSHB HUMAN example discussed above, ImPACT

does not achieve 100% TPR, however it is near-optimally distant from the TPR/FPR line, as

compared with the standard thresholds. Again, however, the MCC is less than optimal (Figure

4.19(b)). Figure 4.16(c) shows that there are many highly conserved residues outwith the motif

regions in the alignment of THIL HUMAN and its 19 FEPs.
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Figure 4.17: Benchmarking ImPACT against PROSITE: FSHB HUMAN
The ‘standard’ thresholds (values from 0 to 1, at increments of 0.01) are shown in blue. The ImPACT threshold is shown
as a red asterisk. To give some idea of the composition of the datasets, the numbers of PROSITE-conserved (PC) and
non PROSITE-conserved (!PC) residues are given in the graph titles, along with the total number of residues considered
(i.e., PC+!PC ).
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(a) RIR1 HUMAN+54 FEPs, ROC
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Figure 4.18: Benchmarking ImPACT against PROSITE: RIR1 HUMAN
The ‘standard’ thresholds (values from 0 to 1, at increments of 0.01) are shown in blue. The ImPACT threshold is shown
as a red asterisk. To give some idea of the composition of the datasets, the numbers of PROSITE-conserved (PC) and
non PROSITE-conserved (!PC) residues are given in the graph titles, along with the total number of residues considered
(i.e., PC+!PC ).
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(a) THIL HUMAN+19 FEPs, ROC

MCC for protein THIL_HUMAN (PC=16, !PC=411, total=427)

threshold

M
C

C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

(b) THIL HUMAN+19 FEPs, MCC

Figure 4.19: Benchmarking ImPACT against PROSITE: THIL HUMAN
The ‘standard’ thresholds (values from 0 to 1, at increments of 0.01) are shown in blue. The ImPACT threshold is shown
as a red asterisk. To give some idea of the composition of the datasets, the numbers of PROSITE-conserved (PC) and
non PROSITE-conserved (!PC) residues are given in the graph titles, along with the total number of residues considered
(i.e., PC+!PC ).
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4.3.3.4 Examples where sequence conservation fails to identify PROSITE motif residues

For five proteins (2.16%) in the PROSITE dataset, more than half of the standard thresholds are

found on the ‘wrong-side’ of the TPR/FPR identity line. That is, the FPR is greater than the

TPR. For one protein in the dataset, the general level of conservation is so low that the first

criteria (see Section 4.2.2.1) is not met. In this section, these results are discussed.

Human glycyl-tRNA synthetase [UniProtKB:P41250/SYG HUMAN] is assigned 61 strict FEPs;

the MUSCLE alignment of this protein and its FEPs is shown in Figure 4.20(a). The WHEP-

TRS domain signature motif (PS00762) is identified at positions 74-102 in SYG HUMAN. As

the alignment clearly shows these residues (highlighted in yellow and red) occur in a very

sparse section of the alignment, where only five (including SYG HUMAN) of the proteins are

represented.

Not only do all these proteins share their protein prefix ‘SYG’ with the human protein, but they

all (but one) share the same four synonyms:

• Glycyl-tRNA synthetase

• Glycine–tRNA ligase

• GlyRS

• EC 6.1.1.14

The one exception is SYG YEAST, which is annotated with the synonyms:

• Glycyl-tRNA synthetase 1

• Glycine–tRNA ligase 1

• GlyRS 1

• GlyRS1

• EC 6.1.1.14
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Given these annotations, this set of proteins appears to be functionally coherent; the annota-

tions do not suggest that the alignment is inappropriate. Rather, the motif is only found in a

specific subset of proteins and this subfunctionality is not reflected in the UniProtKB/Swiss-Prot

annotations.

Some species have gained (or lost) the WHEP-TRS domain without affecting the overall func-

tion of the protein, suggesting that the presence (or absence) of the motif has little impact on

functionality. On closer inspection, it appears that the WHEP-TRS domain is a eukaryotic em-

bellishment: only the eukaryotic species—Homo sapiens, Mus musculus, Bombyx mori, Pongo pyg-

maeus and Caenorhabditis elegans—contain the domain, with Saccharomyces cerevisiae being the

only eukaryotic exception. Indeed, the WHEP-TRS domain has been shown to exist in sev-

eral higher eukaryotic aminoacyl-transfer RNA synthetases and that the same functionality in

Prokaryotes is encoded by distinct genes (Cerini et al., 1991), explaining the absence of the do-

main in the non-eukaryotic species.

The fitted mixture model for RNC HUMAN (ribonuclease III) and its 219 strict FEPs violates the

first constraint of the ImPACT analysis, suggesting that the minimal model of conservation as

defined in Section 4.2.2.1 does not exist in the alignment. Figure 4.20(b) shows the entire align-

ment for RNC HUMAN and its 219 strict FEPs. It is immediately apparent that this alignment

is very sparse: a small number of ribonuclease III proteins (including RNC HUMAN) have

acquired extensive insertions. The paucity of amino acid representation in these regions will

result in many very low scoring columns that will dominate the distribution of conservation

scores, forcing the mixture modelling to be biased towards accounting for the low conservation

scores.

Figure 4.22 shows a column-wise subsection of the full RNC HUMAN alignment. Two ribonu-

clease III family signatures (PROSITE family PS00517) are identified in RNC HUMAN, at po-

sitions 966-974 and 1144-1152; of these positions, 969, 971, 972 and 973 in the first occurence of

the motif are PC, and 1147, 1149, 1150 and 1151 in the second occurence of the motif are PC. The

first set of PC residues is very well-conserved across all FEPs, with specsim corrected conser-

vation scores of 1.00, 0.96, 1.00 and 1.00 (to 2dp) respectively. However the second occurence

of the motif is present only in the human protein, and as such the conservation scores for these

values are very low (0.40 to 2dp).

All 219 FEPs share the following synonyms:
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• Ribonuclease 3

• Ribonuclease III

• RNase III

• EC 3.1.26.3

Further, all but one share the “RNC” protein prefix, the only exception being RNT1 YEAST. As

in the SYG HUMAN results, the proteins aligned here are clearly all ribonuclease III proteins.

Ribonuclease III is expressed in most eukaryotic and prokaryotic cells (Wu et al., 2000; Con-

rad and Rauhut, 2002) and therefore, although the function of the protein has been maintained

throughout evolution, it is likely that significant changes have occurred between species. Fig-

ure 4.20(b) shows that this is indeed the case, with large inserts in several proteins between

smaller, reasonably well conserved regions.

Unlike SYG HUMAN however, the vast majority of the proteins in the alignment do contain

the PROSITE motif. Therefore, it is not the case that the UniProtKB/Swiss-Prot annotations fail

to represent some subfunctionality within the ribonuclease III proteins, at least not at the level

of this particular PROSITE motif. More disruptive to the successful performance of ImPACT in

this case are the extensive insertion regions evident in the alignment and, with respect to the

PROSITE benchmarking, the acquisition of a second ribonuclease III family signature only in

the human protein.

The strict FEPs used to create the alignment are all prokaryotic or archaeal, excepting Homo

Sapiens, two worm species (Caenorhabditis briggsae and Caenorhabditis elegans) and two yeast

species (Schizosaccharomyces pombe and Saccharomyces cerevisiae). Figure 4.21 (taken and modi-

fied from Conrad and Rauhut (2002)) shows the domain structure of ribonuclease III proteins

across different species and demonstrates that there have indeed been several extensive embel-

lishments in eukaryotic species. Even within the eukaryotic domain, significant additions have

been aquired (compare the structure of the yeast species, S. pombe and S. cerevisiae in Figure

4.21, with that of the human species, H. sapiens in Figure 4.21). If other eukaryotic species closer

to Homo sapiens were to be included in the alignment, the second occurrence of the PS00517

PROSITE motif might be represented.

In addition, as seen previously for SYG HUMAN, the extensive insertion regions will result in

a distribution of conservation scores saturated with very low values, which will dominate the
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mixture model optimisation, and limit the extent to which ImPACT can accurately model the

distribution.

4.3.3.5 The representative proteins in PROSITE

Three of the four proteins discussed in Section 4.3.2 contain PROSITE motifs: G6PD HUMAN,

P53 HUMAN and OTC HUMAN. Their alignments are shown in Figures 4.23(a), 4.23(b) and

4.23(c) respectively. In contrast to the alignments shown in Figures 4.16 and 4.20, a higher pro-

portion of the motif residues (those highlighted in yellow or red in Figure 4.23) are classified as

PC (those coloured in red in Figure 4.23). That is, the motifs are more strict than seen previously.

The results for G6PD HUMAN (Figures 4.23(a), 4.24(a), 4.24(b)) and P53 HUMAN (Figures

4.23(b), 4.25(a), 4.25(b)) are similar to those of FSHB HUMAN described in Section 4.3.3.3. That

is, 100% TPR rate is achieved by all thresholds, indicating that all PC residues are 100% con-

served, and the FPR is never 0%, indicating that there are !PC residues that are 100% conserved.

The MCC values for G6PD HUMAN and P53 HUMAN approach optimal performance.

The variation in TPR in Figure 4.26(a) demonstrates that there are some PC residues that are not

100% conserved in OTC HUMAN. However, ImPACT still achieves 100% TPR with a compara-

tively low threshold of 0.8672 and is close to optimal performance with respect to the FPR. Like

the previous results for G6PD HUMAN and P53 HUMAN, ImPACT approaches the maximal

MCC. Here however, it is significant that ImPACT does not apply too rigourous a threshold for

the patterns of conservation in the OTC HUMAN alignment. If the ImPACT threshold gener-

ated for the P53 HUMAN alignment (0.9636) were applied to the OTC HUMAN data, the TPR

would drop significantly from 100% to 66.67%.

4.3.4 Using artificial alignments to assess ImPACT

As discussed in Section 4.3, no gold standard dataset exists against which ImPACT can be

benchmarked. Thus far, ImPACT has been evaluated by considering four representative pro-

teins (OTC, G6PD, P53 and haemoglobin (HBB)) and by using PROSITE data. To evaluate

ImPACT further, a battery of artificial alignment data have been generated. Three Gaussian

components—being assumed to underlie the real data—have been used to generate artificial
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Figure 4.21: Domain structures of eukaryotic and prokaryotic ribonuclease IIIs
Asterisks indicate sequence signatures. (1) N-terminal extension in eukaryotic ribonuclease IIIs (except yeasts); (2/3)
duplicated bacterial N-terminus; (4) double strand RNA-binding domain. P, S and SR indicate proline, serine and
serine-arginine rich regions respectively. Figure taken and adapted from Conrad and Rauhut (2002), figure 1.

distributions of conservation scores that might be derived from protein MSAs. By varying the

parameters of the data-generating Gaussians (called D0, D1 and D2 to correspond with the G0,

G1 and G2 components used to model the data, see Section 4.2.2), the distribution of conserva-

tion scores can be finely controlled.

When generating the artificial data, it is possible to vary the mean, standard deviation and rel-

ative densities of the three Gaussian components (the density of a component describes how

much of the data the component accounts for, or models). To ensure that the randomly gen-

erated data are representative of real conservation data, the fitted mixture models for the four

representative proteins described in Section 4.3.2 were considered. The densities for the three

fitted Gaussian components for OTC, G6PD, P53 and HBB are shown in Table 4.11. Using the

average of these values as a starting point, and taking into account the known conservation

patterns of the proteins, the relative densities of G0, G1 and G2 for the artificial alignments

were chosen as 45%, 45% and 10% (as shown in the final line of Table 4.11). Experience of

many MSA-fitted mixture models was used to determine the placement and spread of these

components as {µ = 0.40, σ = 0.10;µ = 0.65, σ = 0.10;µ = 0.95, σ = 0.025} for G0, G1 and G2

respectively.



CHAPTER 4. IMPACT 168

Figure 4.22: A subsection of the RNC HUMAN alignment
PROSITE and ImPACT annotations are shown below the MSA: PROSITE motifs are indicated using orange, PC residues
(conserved PROSITE residues, as defined using a leniency of 2) are indicated using red, residues classified as IC (highly
conserved after application of the ImPACT threshold) are indicated using blue. Amino acid colours as shown in Ap-
pendix [B.i].
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(a) G6PD HUMAN alignment, ImPACT threshold is 0.9612

(b) P53 HUMAN alignment, ImPACT threshold is 0.9636

(c) OTC HUMAN alignment, ImPACT threshold is 0.8672

Figure 4.23: Example annotated alignments analysed by ImPACT, three representative proteins:
G6PD HUMAN, P53 HUMAN and OTC HUMAN
PROSITE and ImPACT annotations are shown below the MSA: PROSITE motifs are indicated using orange, PC residues
(conserved PROSITE residues, as defined using a leniency of 2) are indicated using red, residues classified as IC (highly
conserved after application of the ImPACT threshold) are indicated using blue. Amino acid colours as shown in Ap-
pendix [B.i].
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(a) G6PD HUMAN+48 FEPs, ROC
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Figure 4.24: Benchmarking ImPACT against PROSITE: G6PD HUMAN
The ‘standard’ thresholds (values from 0 to 1, at increments of 0.01) are shown in blue. The ImPACT threshold is shown
as a red asterisk. To give some idea of the composition of the datasets, the numbers of PROSITE-conserved (PC) and
non PROSITE-conserved (!PC) residues are given in the graph titles, along with the total number of residues considered
(i.e., PC+!PC ).



CHAPTER 4. IMPACT 171

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

ROC for protein P53_HUMAN (PC=13, !PC=380, total=393)

FPR

T
P

R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

(a) P53 HUMAN+30 FEPs, ROC

MCC for protein P53_HUMAN (PC=13, !PC=380, total=393)

threshold

M
C

C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

(b) P53 HUMAN+30 FEPs, MCC

Figure 4.25: Benchmarking ImPACT against PROSITE: P53 HUMAN
The ‘standard’ thresholds (values from 0 to 1, at increments of 0.01) are shown in blue. The ImPACT threshold is shown
as a red asterisk. To give some idea of the composition of the datasets, the numbers of PROSITE-conserved (PC) and
non PROSITE-conserved (!PC) residues are given in the graph titles, along with the total number of residues considered
(i.e., PC+!PC ).
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Figure 4.26: Benchmarking ImPACT against PROSITE: OTC HUMAN
The ‘standard’ thresholds (values from 0 to 1, at increments of 0.01) are shown in blue. The ImPACT threshold is shown
as a red asterisk. To give some idea of the composition of the datasets, the numbers of PROSITE-conserved (PC) and
non PROSITE-conserved (!PC) residues are given in the graph titles, along with the total number of residues considered
(i.e., PC+!PC ).
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Table 4.11: The densities of three Gaussian components for OTC, G6PD, P53 and HBB
Protein: the protein to which the mixture model has been fitted (‘Chosen values’ indicates which values were chosen to
generate the artificial alignments);G0,G1,G2: the names of the Gaussian components (see Section 4.2.2). The ‘density’
of a component describes how much of the data the component accounts for, or models.

Protein G0 G1 G2

OTC 27.24 51.33 21.43
G6PD 52.58 45.41 2.10
P53 50.65 30.92 18.43
HBB 44.31 23.46 32.23
Chosen values 45.00 45.00 10.00

Table 4.12: The test sets of artificially generated conservation data
Set: the name of the test set; D0, D1, D2: the names of the Gaussians used to generate the data (the unconserved,
moderately conserved and highly conserved respectively). Values that are varied within an example set are italicised.

Set µD0 µD1 µD2

1.1 0.35 0.65 0.95
1.2 0.40 0.65 0.90
1.3 0.45 0.65 0.85
1.4 0.50 0.65 0.80
2.1 0.40 0.65 0.70
2.2 0.40 0.65 0.80
2.3 0.40 0.65 0.90
2.4 0.40 0.65 0.95
3.1 0.40 0.90 0.95
3.2 0.40 0.85 0.95
3.3 0.40 0.80 0.95
3.4 0.40 0.70 0.95
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4.3.4.1 Fitting increasingly homogeneous Gaussian components

The first set of artificial alignments has been devised simply to demonstrate the mixture mod-

elling process; no ImPACT analysis has been carried out. Here, the three underlying Gaussian

components that generate the data become increasingly homogenous from example (1.1) to ex-

ample (1.4) (see Figure 4.27). However, it is clear throughout the examples that the mixture

model fitting process accurately models the data: the peaks of the fitted Gaussians correspond

closely with the means of the underlying Gaussians (compare with the non-logit transformed

axis across the top of the plots in Figure 4.27).

4.3.4.2 Generating thresholds as D2 increases

This second set of artificial conservation score data keeps the parameters D0 and D1 constant,

while increasing the mean of D2 from 0.7 to 0.95. This will specificially test the second con-

straint as the distance between the D1 and D2 will increase. It is expected that as µD2 − µD1

increases—that is, as the distance between µD2 − µD1 increases—the threshold will increase.

This is appropriate because, as µD2 −µD1 increases, the highly conserved residues will become

distinct from that of the moderately conserved residues and the global patterns of conservation

will rise.

In examples (2.1) and (2.2), where D2 is placed at 0.7 and 0.8 respectively, the first constraint is

violated; i.e., the mean of D2 does does not exceed 0.80. However, as the mean of D2 increases

to 0.9 and 0.95 in examples (2.3) and (2.4), constraint one is met and ImPACT thresholds of

0.7951 and 0.8405 are calculated. It appears that ImPACT is generating appropriate thresholds.

4.3.4.3 Generating thresholds as D1 decreases

This set of artificial data is analogous to that of the second set in that the distance between

D1 and D2 is being varied. Here, however, the placement of D1 is being varied rather than

the placement of D2. Therefore, unlike in the previous set of examples, the first constraint

should always be met; indeed, as Figure 4.29 shows, this is the case. As the distance between

the two underlying Gaussians increases, it is expected that the ImPACT threshold generated
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Figure 4.27: Assessing ImPACT using artificially generated data: fitting a mixture model
Parameters for the three underlying Gaussian components of test tests (1.1)-(1.4) are shown in Table 4.12. Distribution
of logit transformed raw data is shown in black, the three fitted Gaussians are shown in blue and the cumulative
model is shown in magenta. In this set of examples, no threshold has been generated. In addition to the fitted Gaussian
components, to aid comparison of each protein’s global conservation trends, a depiction of conservation trends for each
protein’s MSA is shown to the right of the graph, where high conservation scores are shown in red, more moderate
scores are shown in blue and low scores are shown in green.
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Figure 4.28: Assessing ImPACT using artificially generated data: increasing D2

Parameters for the three underlying Gaussian components of test tests (2.1)-(2.4) are shown in Table 4.12. Distribution
of logit transformed raw data is shown in black, the three fitted Gaussians are shown in blue and the cumulative model
is shown in magenta. The values for the first and second constraints (see Section 4.2.2) are depicted as vertical orange
and red lines respectively. The resulting threshold is given in the grey box in the top-left corner of the graph. In
addition to the fitted Gaussian components, to aid comparison of each protein’s global conservation trends, a depiction
of conservation trends for each protein’s MSA is shown to the right of the graph, where high conservation scores are
shown in red, more moderate scores are shown in blue and low scores are shown in green.
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will decrease to reflect the ease with which D1 and D2 can be distinguished and to reflect the

reduction of global conservation patterns.

As shown in Figure 4.29, as µG1 decreases from 0.9 to 0.7 and µD2 −µD1 increases, the ImPACT

threshold generated decreases appropriately.
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Figure 4.29: Assessing ImPACT using artificially generated data: decreasing D1

Parameters for the three underlying Gaussian components of test tests (3.1)-(3.4) are shown in Table 4.12. Distribution
of logit transformed raw data is shown in black, the three fitted Gaussians are shown in blue and the cumulative model
is shown in magenta. The values for the first and second constraints (see Section 4.2.2) are depicted as vertical orange
and red lines respectively. The resulting threshold is given in the grey box in the top-left corner of the graph. In
addition to the fitted Gaussian components, to aid comparison of each protein’s global conservation trends, a depiction
of conservation trends for each protein’s MSA is shown to the right of the graph, where high conservation scores are
shown in red, more moderate scores are shown in blue and low scores are shown in green.



CHAPTER 4. IMPACT 179

4.4 Conclusions

SAAPdb is primarily concerned with structural analysis of single amino acid polymorphisms,

with a view to explaining deleterious phenotypes. However, where structural information is

not available or not informative, functional relevance can be inferred from sequence conserva-

tion in multiple sequence alignments (MSAs). MSAs are products of the protein characteristics,

the species set represented and genuine functional traces. In this chapter, a method (ImPACT)

for isolating the genuine functional data to define high conservation within an MSA and its

multi-faceted evaluation have been described.

Given difficulties in evaluation of conservation scoring methods, two qualitative evaluations

of ImPACT were carried out. The first considered four ‘representative’ proteins (P53, G6PD,

OTC and haemoglobin) and the second considered artificial conservation data. Both qualita-

tive analyses demonstrated that ImPACT is successful in selecting appropriate thresholds for

high conservation. A third more quantitative evaluation of ImPACT used PROSITE motifs to

define which residues, in an alignment of functionally equivalent proteins (FEPs, see Chapter

3), should be classified as highly conserved by the ImPACT threshold.

A concern over the definition of a negative example (i.e., those residues that should not be con-

sidered as highly conserved) limits the extent to which the PROSITE benchmarking may be

considered a fair evaluation of ImPACT. PROSITE records sequence motifs, but other residues

may also be conserved for structural (e.g., hydrogen-bonding) or functional (e.g., ligand bind-

ing) reasons. The observation that the analysis of many (approximately 25%) PROSITE proteins

generated a positive, non-zero FPR for all thresholds indicates that it is indeed common for a

residue not identified in a PROSITE motif to be 100% conserved.

Given the concerns regarding negative examples, the most accurate measure with which Im-

PACT can be evaluated using these data is the TPR (see Section 2.3.5). A TPR of 100% is

achieved in 99/231 (42.86%) of the proteins in the PROSITE dataset using the ImPACT thresh-

old. As maintained throughout this chapter (and, indeed, throughout this thesis), the aim is

to be conservative in the predictions that are made. For example, the first constraint is set rea-

sonably high (0.80) and a strict leniency of 2 is set for the extraction of conserved residues in

PROSITE motifs, which, as a result of limiting over-prediction (i.e., limiting the number of FPs),

will increase under-predicting (i.e., increasing the number of FNs). This conservative approach
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will, at least in part, explain why a 100% TPR is not found more often in the PROSITE datset.

Despite concerns with regards to the definition of negative examples, good performance with

respect to MCC and ROC plots was observed in many cases, with ImPACT often approaching

optimal performance. Most informative, however, is the close consideration of cases where se-

quence conservation data fails to identify PROSITE motif residues. For example, the alignment

of RNC HUMAN and its corresponding (strict) FEPs have large insertions (Figure 4.20(b)), but

the proteins are clearly functionally equivalent given their UniProtKB/Swiss-Prot annotations.

It is apparent that where genuinely functionally equivalent, but evolutionarily distant proteins,

are aligned, extensive inserts could dominate the distribution of conservation scores, in that

many columns will have very low conservation scores. A valuable addition to ImPACT would

be to consider only the conservation scores of columns that are adequately represented in all

proteins in the alignment (for example, SIFT (Ng and Henikoff, 2001) limits predictions to those

columns with at least 50% MSA coverage).

ImPACT performance may improve if the set of PROSITE motifs were refined. PROSITE se-

quence motifs can be both functional (e.g., an N-linked glycosolation site) and indicative of ho-

mologous protein families (e.g., an apple domain). It may be more appropriate to benchmark

ImPACT against only those family motifs described by PROSITE, as the functional motifs may

only apply to the single protein. However, it is not straightforward to identify which PROSITE

motifs are functional and which describe protein families. A more straightfoward approach

would be to constrain the dataset to those residues within PROSITE motifs, with the negative

examples being those that do not make the leniency threshold, for example, those residues in

Figures 4.9(a)-4.9(b) that are not marked with an asterisk.

In summary, three-component Gaussian mixture modelling is sensitive to small but significant

changes in the distribution of conservation scores and is able to model the changes accord-

ingly. The ImPACT threshold generation method provides appropriate thresholds as patterns

of global conservation vary, as observed in the artificial alignment dataset. Where some belief

is held as to what the threshold for high conservation should be, as in the case of the four rep-

resentative proteins, the ImPACT threshold is consistent with expectations. By analysing the

performance of ImPACT using sequence motif data, while being aware of caveats regarding the

dataset, it is evident that ImPACT often approaches near optimal performance, when compared

with static thresholds.



Chapter 5

SAAPdb: The analysis pipeline

SAAPdb is a database of disease-causing and neutral mutations, which have been analysed

to assess what effect, if any, they may have on protein structure and therefore function. The

hypothesis is that disease mutations will more often affect protein structure, thus introducing a

deleterious phenotype. SAAPdb attempts to identify the structural effect and therefore explain

the mutation1. The development of a conservative, comprehensive structural analysis pipeline

with which to analyse SAAPs is one of the main aims of the SAAPdb project. In this chapter,

the suite of analyses with which SAAPdb assesses each mutation is described.

5.1 Introduction

The SAAPdb structural analysis pipeline aims to identify whether a mutation will affect the

native protein structure. Therefore, motivating the choice of structural analyses to include in

the pipeline are the known fundamentals of protein structure: hydrogen bonding, interactions

with ligands, characteristics of the protein core and so on (see Section 1.5 for an introduction to

protein structure).

Currently, the pipeline consists of fifteen structural analysies, of which eight have been devel-

oped as part of this thesis. A ninth novel sequence-based analysis (ImPACT) was described in

1As stated in Chapter 1, the term ‘explain’ or ‘explanation’ is used to refer to predicted structural effects even for
neutral mutations where there is no phenotypic effect to be explained

181
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(a) Rotating the mutant residue (shown in magenta) about χ1 in 30◦ increments

(b) Rotating the mutant residue (shown in magenta) about χ2 in 30◦ increments

Figure 5.1: Using mutmodel to model a mutant residue into an existing structure: rotation
about the χ angles.

Chapter 4. The pipeline is implemented in python as a series of ‘wrappers’, allowing informa-

tion to be passed to each analysis by the main driver program. The analyses themselves are

implemented in various languages, including C, Perl and SQL queries and functions.

This chapter will first describe the method by which mutant structures are generated where

necessary (Section 5.2) and then describe the seven analyses that were developed previously

for SAAPdb in Andrew Martin’s group (Section 5.3). It will then describe the implementation

and incorporation of the nine new analyses that have been developed (Sections 5.4-5.12).

Some of the work presented in this chapter has been published elsewhere (Martin et al., 2002;

Kwok et al., 2002; Cuff and Martin, 2004; Cuff et al., 2006; Hurst et al., 2009).

5.2 Generating mutant structures

For two of the analyses described in this chapter—the void and clash analyses—it is necessary

to generate a mutant structure. A minimum pertubation protocol (MPP) (Shih et al., 1985; Snow
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and Amzel, 1986) has been used to model the mutant residue into the native structure.

The method is as follows:

(I) Use maximum overlap protocol (MOP) (Snow and Amzel, 1986) to replace the sidechain,

inheriting torsion angles from the native residue where possible

(II) Identify neighbouring residues within 8Å of the residue

(III) Rotate the sidechain around χ1 (Figure 5.1(a)) and χ2 (Figure 5.1(b)) and record whether

a bad contact is made or not (a bad contact is defined as two atom centres within 2.50Å of

each other)

(IV) If the MOP conformation makes≤ 1 bad contacts the conformation is accepted; otherwise

a choice is made from the set of conformations generated in step III

(V) If no rotamer exists that makes ≤ 1 bad contacts, the one with the least number of bad

contacts is chosen

With a view to being conservative in ‘explaining’ mutations, sidechain replacements that clash

with two or fewer other residues are considered acceptable. As described above, a clash is

defined as two atom centres that are within 2.50Å of each other.

5.3 Existing analyses

The analyses described in this section have been previously published in Martin et al. (2002),

Cuff and Martin (2004) and Cuff et al. (2006). They have been used elsewhere to explain disease

mutations in disease-specific example datasets, including P53 (Martin et al., 2002) and G6PD

(Kwok et al., 2002). They will be described briefly in this section, together with information

about how they are integrated into the analysis pipeline.
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5.3.1 Disrupting native hydrogen bonding

Hydrogen bonding is critical to maintaining the native protein fold. Using a grid-based ap-

proach, Cuff et al. (2006) analysed the occurrence and geometry of hydrogen bonds in the PDB

for each hydrogen bonding donor and acceptor residue pair. Hypothetical mutant structures

can then be compared with the observed hydrogen bonding residue profiles to assess whether

a hydrogen bond is possible or not using the program checkhbond, which is available for use

over the web at http://www.bioinf.org.uk/.

Each mutation must be analysed by checkhbond, but the algorithm is designed to be fast and

each mutant structure does not need to be modelled: only the native structure is required by

checkhbond. The ‘pseudo-energy’ score generated by checkhbond is extracted and stored in

the SAAPdb database. The pseudo-energy score uses data on the likelihood that a hydrogen

bond exists between two given residues for a given geometry and approximates the energy

for the interaction, where a score of 0 implies that it is very unlikely that a hydrogen bond is

formed. At present this processing is done sequentially on one machine although it is suitable

for distributed processing.

Mutations that break hydrogen bonds (i.e., those with a pseudo-energy score of 0) are identified

between backbone/sidechain and sidechain/sidechain donor and acceptor atoms.

5.3.2 Mutations at the interface

Residues at the interface between PDB chains, or between chains and ligands, will be critical in

forming the biologically relevant multimer. Mutating such residues may disrupt native struc-

ture and may be deleterious. Interface residues are identified by a > 10% ∆ASA (accessible

surface area) in the monomer state as compared with the multimer state. ASA is calculated us-

ing a local implementation of the Lee and Richards algorithm (Lee and Richards, 1971). These

data are obtained from XMAS files, an existing local resource of XML/ASN.1-like formatted

PDB files (see Section 2.2.3).
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Figure 5.2: Allowed regions for proline and glycine
The pink areas mark the restricted comformation for proline residues, the hatched grey area marks the regions for
non-proline, non-glycine residues, and the pale yellow colour marks the rest of the conformational space, primarily
occupied by glycine residues.

5.3.3 Mutations to binding residues

Many PDB structures describe proteins in complex with ligands and other proteins; mutations

to protein-ligand or protein-protein binding residues will hinder native protein function. Mu-

tations to residues that form hydrogen bonds, as described by Baker and Hubbard (1984), and

‘non-bonds’ are identified by parsing the XMAS formatted PDB files (see Section 2.2.3). Non-

bonds are formed between non-consecutive, inter-residue atoms that do not meet the criteria

of Baker and Hubbard (1984) and whose centres are within 2.7-3.35Å of each other; this will

include Van der Waals contacts and electrostatic interactions. Residues meeting these criteria

will be a subset of the interface residues described in Section 5.3.2.
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5.3.4 Mutations to proline

The cyclic nature of the proline sidechain limits the conformations which the residue can adopt.

It is therefore likely that introducing a proline where the torsion angles are unfavourable will

distort the protein structure or inhibit folding entirely. X→P mutations are identified outwith

the region: −70◦ ≤ φ ≤ −50◦ and (−70◦ ≤ ψ ≤ −50◦ or 110◦ ≤ ψ ≤ 130◦). In Figure 5.2, this

area is marked in pink.

5.3.5 Mutations from glycine

Glycine has no sidechain and so can adopt backbone conformations that other amino acids can-

not. Replacing a glycine with another amino acid, where the torsion angles are unfavourable,

will affect protein structure. G→X mutations that occur outwith the region (−180◦ ≤ φ ≤ −30◦,

60◦ ≤ ψ ≤ −180◦) or (−155◦ ≤ φ ≤ −15◦, −90◦ ≤ ψ ≤ 60◦) or (−180◦ ≤ φ ≤ −45◦,

−180◦ ≤ ψ ≤ −120◦) or (30◦ ≤ φ ≤ 90◦, −20◦ ≤ ψ ≤ 105◦) are identified. In Figure 5.2,

this area is coloured yellow.

5.3.6 Mutations that cause steric clashes

It may not be possible to accommodate a larger mutant residue in the native structure with-

out disrupting the fold, and therefore the function. MutModel calculates the number of steric

clashes caused by introducing a mutant residue in a protein structure (Section 5.2). Mutations

that can be modelled into the native structure without clashing with three or more other atoms

are identified. As discussed in Section 5.2, two residues clash if any atom centres are within

2.50Å of each other.

5.3.7 Introducing a void in the core

Where the previous section considered small to large residue mutations, here, large to small

residue mutations are considered. Replacing a large amino acid with a smaller one could affect

protein stability by introducing an internal void or surface crevice. A void is defined as a cavity
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or crevice with a protein structure that is not accessible to bulk solvent. The software AVP is

used to identify and measure the size of internal voids in protein structures (Cuff and Martin,

2004). AVP allows independent probe sizes for definition of solvent and voids with probe radii

of 1.4Å and 0.5Å respectively being used.

Obtaining these data requires significant preprocessing: all mutant structures must be gener-

ated using MutModel (see Section 5.2) before AVP is run on each individual structure. The

compute time for each structure is dependent on the size of the protein chain being analysed,

and can vary from a few seconds to several minutes.

5.4 Improving the analysis of disruption of quaternary struc-

ture

5.4.1 Background

The assembly of multiple tertiary protein structures into biologically relevant multimers is de-

scribed as the quaternary structure (see Section 1.5). Residues at the quaternary interface will be

critical to the native protein fold. The ‘interface’ and ‘binding’ analyses (Sections 5.3.2 and 5.3.3

respectively) attempt to identify mutations at the quaternary interface. However, this analysis

is based on crystallographic unit cells from PDB files. These can have artificial crystal contacts

or missing biologically relevant contacts (Janin, 1997).

The Protein Quaternary Structure (PQS) database describes hypothetical quaternary structures

for PDB structures (Henrick and Thornton, 1998). All interatomic contacts ≤3.7Å for all space-

group symmetry operations of the unit cell are calculated. Potential quaternary structures are

assembled by the addition of monomeric chains; chains are selected based on the number of

interchain contacts and the number of residues in the chain. Figure 5.3(b) shows the com-

plete hypothetical quaternary structure of the Human poliovirus capsid protein 2plv with the

original PDB structure shown in Figure 5.3(a). Although some of the binding contacts will be

recognised by the binding and interface analyses, many will be lost (compare Figures 5.3(a) and

5.3(b) with respect to the number of interface surfaces).
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(a) The PDB structure of Human poliovirus capsid protein

(b) The hypothetical PQS assembly of Human poliovirus
capsid proteins

Figure 5.3: Quaternary structure information from PQS
Figure 5.3(a) shows the PDB representation (2plv) of the Human poliovirus capsid protein which has four chains. The
biologically relevant structure, as assembled by PQS is shown in Figure 5.3(b) (2plv.mmol).
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Further to identifying residues at the quaternary interface, the PQS database removes non-

biological interactions that arise from the crystallisation process. The structure of the homo-

dimer quinone reductase (PDB record 1qrd) is shown in Figure 5.4(a); the interface between the

two chains is minimal. A more plausible homo-dimer is calculated by PQS and is shown in Fig-

ure 5.4(b) (in fact, PQS provides two similar alternative assemblies: 1qrd 1.mmol (shown below)

and 1qrd 2.mmol). Several factors (∆ASA, interface size, interchain crosslinks and change in

solvation energy) contribute to the discrimination between true macromolecular contacts and

crystal packing artefacts. The analysis of PQS structures has been used elsewhere to identify

biologically relevant contacts (Salama et al., 2001).

Interchain contacts derived from the analysis of PQS structures are more likely to be genuine,

biologically relevant interactions than those derived from an analysis of PDB structures.

5.4.2 Incorporating PQS information into the pipeline

The PQS database is mirrored locally. For each mutation identified in a structure, all corre-

sponding PQS files are identified (for example, for PDB record 1qki, there are two correspond-

ing PQS files: 1qki 1.mmol and 1qki 2.mmol). Each PQS file containing the relevant chain is

retained for analysis.

PQS files are generated from PDB structures and maintain the PDB numbering. It is therefore

straightforward to map PDB residues to PQS residues. To identify interface residues in the PQS

structure, the following method was used:

(I) For each PQS record:

(a) Strip the waters from the structure

(b) Convert the PDB-formatted PQS data into XMAS format (see Section 2.2.3)

(c) Parse the generated XMAS file to identify residues with > 10% increase in relative

accessibility as a monomer as compared with the multimer structure

This process is identical to that of the interface analysis described in Section 5.3.2, but PQS

structures are used rather than PDB structures.
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(a) PDB structure (1qrd)

(b) Suggested PSQ structure: 1qrd 1.mmol

Figure 5.4: Artificial X-ray contacts in PDB unit cells
PDB describes quinone reductase as a homo-dimer in the PDB structure 1qrd (Figure 5.4(a)). A more plausible homo-
dimer is calculated by PQS (1qrd 1.mmol) and is shown above in Figure 5.4(b).



CHAPTER 5. SAAPDB: THE ANALYSIS PIPELINE 191

As each PQS structure can be processed independently, these analyses were distributed across

the local 20-core grid. A Perl script was written to analyse the PQS data and to distribute it

cleanly across the grid using the Sun GridEngine.

388 452 PQS interface residues were identified in 7 487 PDB chains.

5.5 Mutations to binding residues (MMDBBIND)

5.5.1 Background

MMDBBIND (Salama et al., 2001) is an assimilation of the three-dimensional structure informa-

tion described by Entrez’s MMDB database (Wang et al., 2007b) and the mmCIF PDB chemical

component dictionary2 (Feng et al., 2003), and is part of the larger BIND database (Bader et al.,

2003; Bader et al., 2001). MMDB itself is a refined and extended representation of the PDB: the

data are represented in ASN.1 format; multiple conformations for atoms are removed; all non-

standard or modified residues are explicitly annotated, and binding and secondary structure

data are explicitly recorded3.

To identify binding residues in MMDB structures, all inter-molecule residue pairs (a) within a

10Å radius, and (b) with a van der Waals interatomic distance of ≤ 0.5Å are identified. Redun-

dant interaction records are removed and the PQS database (see Section 5.4) is used to remove

nonbiological interaction artefacts that arise from the crystallography process.

This analysis identifies all small-to-medium range interaction types between proteins, DNA

(excluding complementary DNA interactions, i.e., DNA base pairing), RNA and small

molecules in the PDB. Mutations to residues that form intermolecular contacts are likely to

disrupt native protein function and therefore cause disease. In effect, MMDBBIND provides a

refined version of the ‘binding’ analysis described in Section 5.3.3.

2formerly the HET group dictionary
3http://www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml
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>65310|1BOM|383|B|A|809234|809233
xqpqavhTYCGrhLarTLadLCweagvd
gIVdeCClrpcsVdvLLsYC

Figure 5.5: An example of an MMDBBIND record
In the header line, 65310 is the BIND identifier; 1BOM is the PDB ID; 383 is the MMDB ID; B names the first sequence
— given on the second line — as chain B of 1BOM; A names the second sequence — given on the third line — as chain
A of 1BOM; 809234 is the GI (Genbank ID) of molecule A and 809233 is the GI of molecule B. GIs are taken from the
MMDB database. Binding residues are highlighted in the sequences, using capital letters.

5.5.2 Incorporating MMDBBIND data into the pipeline

To include the MMDBBIND data in SAAPdb, the content of the MMDBBIND flat file4 is parsed

for intermolecular contacts involving at least one protein sequence. The annotation in this

file does not define binding partners or describe the nature of the bond, it simply annotates a

residue as binding or non-binding.

Figure 5.5 gives an example of an MMDBBIND record. The record consists of a header line

(preceeded by the> symbol) and two annotated sequences. The header describes which chains

in which PDB structure are being annotated and the sequences provide the annotation, where

binding residues are identified using capital letters. The sequences provided are derived from

the SEQRES records of the PDB files, which do not necessarily correspond directly with the

sequence derived from the amino acids in the structure. To include MMDBBIND annotations

in the pipeline, the numbering must be resolved with respect to the residues described by the

structure.

First, the method ensures that the sequences described in the MMDBBIND record are identical

to the SEQRES records in the named PDB structure. If this is the case, the numbering is resolved

as follows:

(I) For each record containing at least one protein sequence:

(a) Record seqseqres : the sequence as described by the SEQRES record

(b) Record seqstr : the sequence as described by the ATOM records

(c) Record firstseqres : the number describing the first residue in seqseqres
4http://bond.unleashedinformatics.com/downloads/data/BIND/data/MMDBBIND/mmdbbind.txt
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(d) Record lastseqres : the number describing the last residue in seqseqres

(e) Identify flanking regions (flankpre and flankpost) described in seqseqres, but not in

seqstr

(f) Calculate the offset as:

offset = (numfirst − flankpre)− 1

(g) To ensure correct numbering, check whether the numlast is as expected using the

offset value. The value should be:

numfirst + length(seqseqres)− (flankpre + flankpost)− 1

If the value of numlast is not as expected, then the sequence of residues given by the ATOM

records is different to that of the SEQRES records (most commonly, residues in flexible loop

structures are missing). Only those MMDBBIND data that satisfy both criteria are recorded, for

structures to which a SAAP has been mapped in SAAPdb. Any interactions described in the

MMDBBIND record are numbered using the offset value as calculated above.

This method does result in more MMDB data being rejected than is necessary and there is defi-

nite scope for improvement using alignments of the SEQRES and ATOM records. One approach

for improving the verifation of this numbering is included in the discussion (Section 5.13).

A set of Perl methods was developed to handle the MMDBBIND data. First, the MMDBBIND

flatfile4 is parsed, and all relevant, verified data are recorded in a second tab-delimited file. A

second set of methods generate SQL statements for these data and record them in the database.

94 277 interacting residues are identified in 3 731 PDB chains.

5.6 Disrupting disulphide bonding

5.6.1 Background

Disulphide bonds (see Section 1.5.2) are crosslinks that form between cysteine residues in

polypeptides and stabilise protein structure (Figure 5.6). Mutations to disulphide bonding

cysteines may compromise protein stability and therefore compromise native protein function.
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Figure 5.6: A disulphide bond between CYS6 and CYS127 of lysozyme (7lyz), showing SSd,
SSa1 and SSa2

5.6.2 Incorporating disulphide data into the pipeline

A Perl script was written to identify potential disulphide bonding cysteine residues in PDB files.

First, all cysteine residues are identified. Secondly, each pair of cysteine residues is assessed as

to whether it forms a disulphide bond. The residues must satisfy the following criteria (Hazes

and Dijkstra, 1988):

• Sγ1–Sγ2 bond length should be ≤2.50Å

• Cβ1–Sγ1–Sγ2 and Cβ2–Sγ2–Sγ1 bond angles should be 104◦ ± 10%

Standard trigonometry calculations and methods from the Perl Math::Trig module were

used to calculate distances and angles from PDB coordinates.

Each protein structure described in SAAPdb is analysed to identify potential disulphide bond-

ing cysteine residues. Isolated PDB chains are used, as interchain disulphide bonding will be

identified by the PQS analysis. All candidate sulphur atoms from cysteine residues are ex-

tracted from the PDB file. All possible pairs of the cysteine-sulphur atoms are considered and

those that meet the criteria described by Hazes and Djikstra (1988) are recorded as disulphide

bond partners.

The computational pre-processing for this analysis is comparatively light: PDB files are parsed

and simple calculations are carried out to calculate potential bond angles and distances. The

pre-processing therefore need not be distributed across the grid and each structure (PDB file)
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is processed sequentially. The script analyses the PDB structures, extracts potential disulphide

bonding partners and generates the corresponding SQL to record disulphide bonding cysteine

residues in SAAPdb. Multiple occupancy cysteines are processed as any other cysteine; that is,

the atoms for each alternative conformation are grouped together and each alternative confor-

mation is considered as a disulphide bonding cysteine.

15 963 potential disulphide bonds are identified in 9 223 PDB structures.

5.7 Mutations to cisprolines

5.7.1 Background

The peptide bond forms a partial double-bond between the carboxylate C and amide N atoms

of amino acids. Energetically, this favours two conformations where the Cα, O, C, N’, H’, Cα’

atoms form a planar unit (i.e., those atoms exist in the same plane): the trans conformation

where ω ' 180◦ (Figure 5.7(a)) and the cis conformation where ω ' 0◦ (Figure 5.7(b)). The vast

majority of peptide bonds are found in the trans conformation: the proximity of Cα and Cα’

makes the cis conformation less stable.

However, peptide bonds between any residue and proline (Xaa-Pro) more readily adopt the

cis conformation than other peptide bonds (Xaa-nonPro). The cis conformation is more than

1000 times less stable than the trans conformation in Xaa-nonPro peptide bonds, while the cis

conformation is only four times less stable than the alternative trans conformation in Xaa-Pro

peptide bonds (Branden and Tooze, 1999). It has been shown that approximately 5-6.5% of Xaa-

Pro bonds are cis, and 0.03-0.05% of Xaa-nonPro are cis (Jabs et al., 1999; Stewart et al., 1990).

Figure 5.7(c) shows a histogram of cispeptide frequency for each amino acid in a representative

set of CATH v3.0.0 HReps (Pearl et al., 2003). Although the Xaa-nonPro peptide bond can adopt

the cis conformation, it is clear that cis peptide bonds are predominantly between a non-proline

and a proline residue.

Thus, a mutation from a cis-proline to another amino acid, forcing an Xaa-nonPro peptide bond

to adopt a cis conformation, is likely to destabilise the protein structure.
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(a) The cis conformation of the peptide bond (b) The trans conformation of the peptide bond

(c) cis peptide prevalence in CATH v3.0.0 HReps
The raw frequencies of cis-peptide bonds in CATH v3.0.0 HReps was calculated. The Amino acid defines
the second residue in the peptide-bond. Most cis-peptide bonds are between Xaa-Pro residues.

Figure 5.7: The cis-peptide bond
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5.7.2 Incorporating these data into the pipeline

The ω torsion angle measurements are calculated using the torsions program (Martin, un-

published) and are calculated when populating the structural analysis table (see Section

6.2.7). The analysis can therefore be implemented as a simple SQL query which identifies mu-

tations from proline to non-proline where −90 < ω < 90.

4.40% (6 584/14 9642) of Xaa-Pro and 0.15% (4 342/2 946 025) of Xaa-nonPro peptide bonds

described by SAAPdb adopt the cis-conformation. This is in agreement with existing data

(MacArthur and Thornton, 1991; Weiss et al., 1998).

5.8 Introducing a charge shift in the core

subsectionBackground

Charged residues are often functional in protein structures (Torshin and Harrison, 2001). Argi-

nine and lysine, and histidine to a lesser extent, are positively charged and often form salt

bridges with negatively charged groups, while aspartic acid and glutamic acid are negatively

charged and able to form salt bridges with positively charged groups. These amino acids almost

invariably occur as satisfied pairs of oppositely charged residues in the protein core (Torshin

and Harrison, 2001). Removing or introducing a charged residue from or into the protein core

may disrupt the fold and cause a deleterious phenotype. Surface charged residues are solvated

and therefore do not need to occur as charge pairs.

It is of course possible for a charged residue on the surface to interact with other molecules and

therefore be critical to protein function. However, these residues should be identified by the

PQS, binding and/or MMDBBIND analysis which are described elsewhere (Sections 5.4, 5.3.3

and 5.5 respectively). Here, the focus is specifically on the effects of removing charge in the

protein core.
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Table 5.1: Charge shift values for mutations between charged and neutral residues
Mutations between residues that are identically charged do not generate a charge shift, mutations between oppositely
charged residues generate a charge shift of±2, mutations between charged and neutral residues generate a charge shift
of ±1. Negative scores indicate a movement towards a more negative charge, positive scores indicate a movement
towards a more positive charge.

Native charge Mutant charge Charge shift
positive negative -2
positive neutral -1
positive positive 0
neutral neutral 0
negative negative 0
negative neutral 1
negative positive 2

5.8.1 Incorporating these data into the pipeline

This analysis does not require any additional processing as all the required data are parsed from

the XMAS files (see Section 2.2.3). A PostgreSQL function was written to calculate the ‘charge

shift’ of a mutation (see Appendix [E.i] for the definition of this function). Table 5.1 shows

the charge shift values for mutations between all possible pairs of charged and neutral amino

acids. With this PostgreSQL function, it is possible to implement this analysis as a single SQL

query, where mutations with a non-zero charge shift occurring in the core (where the relative,

monomer accessibility statistic ≤ 5%) are easily identified as introducing a buried, unsatisfied

charge.

5.9 Introducing hydrophobic residues on the protein surface

5.9.1 Background

Hydrophobic residues are concentrated in the protein core (Branden and Tooze, 1999). Replac-

ing a hydrophilic residue with a hydrophobic residue on the surface of a protein could result in

protein aggregation or misfolding and therefore a deleterious phenotype (for example, the E6V

mutation that causes sickle-cell anaemia, see Section 1.6).
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5.9.2 Incorporation into the pipeline

Phenylalanine, isoleucine, leucine, methionine, valine and tryptophan are classified as hy-

drophobic and aspartate, glutamate, histidine, lysine, asparagine, glutamine, arginine, serine,

threonine and tyrosine are classified as hydrophilic.

All data required to identify the hydrophobic mutations on the surface—i.e., native/mutant

amino acids and accessibility statistics—are recorded when the XMAS format of each mapped

PDB structure is parsed to populate the structural analysis database table (see Section

6.2.7). The analysis can therefore be performed by a single SQL query. Mutations from a

hydrophilic residue to a hydrophobic residue where the relative surface accessibility in the

monomer state is > 5% are identified.

5.10 Introducing hydrophilic residues in the protein core

5.10.1 Background

Replacing a hydrophobic residue with a hydrophilic residue could destabilise the native protein

fold based on the observation that the vast majority of hydrogen bonding capable sidechains

participate in hydrogen bonding (McDonald and Thornton, 1994). Without potentially stabilis-

ing native hydrogen bonding in the protein core, native protein folding may be compromised.

5.10.2 Incorporation into the pipeline

Again, phenylalanine, isoleucine, leucine, methionine, valine and tryptophan are classified as

hydrophobic and aspartate, glutamate, histidine, lysine, asparagine, glutamine, arginine, ser-

ine, threonine and tyrosine are classified as hydrophilic.

As described in the Section 5.9, the information required to identify the introduction of a hy-

drophilic residue in the protein core already exists in SAAPdb and no additional processing is

required. As such, the analysis can be implemented as a single SQL query identifying muta-
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tions from any hydrophobic residue to any hydrophilic residue where the relative accessibility

of the residue in the monomer is ≤ 5%.

5.11 UniProtKB/Swiss-Prot features

5.11.1 Background

UniProtKB/Swiss-Prot uses a controlled vocabulary and the FT tag to annotate regions of in-

terest in protein sequences5. A small number of these annotations are manual, however many

more are transferred ‘by similarity’ from another annotated protein.

Many of these regions will be critical to protein function (for example, post-translational modifi-

cations and binding sites) and others will be critical to protein stability (for example, disulphide

bonds and other crosslinks). Mutations to such residues could disrupt protein function.

5.11.2 Incorporating these data into the pipeline

The UniProtKB/Swiss-Prot DAT flatfile is parsed and residues annotated with FT tags are iden-

tified. As the aim is to explain the effects of mutations, a subset of features which have the

potential to affect protein stability or function are relevant. These are described in Table 5.2.

In UniProtKB/Swiss-Prot, the FT tag annotations can describe the start and end of contiguous

regions of annotation, or they can describe two non-adjacent residues (see third ‘Numbering

scheme’ column of Table 5.2). If the start and end number are the same, it describes a sin-

gle residue. When parsing the UniProtKB/Swiss-Prot data, the two numbering schemes are

handled appropriately, annotating all residues between the start and end of contiguous feature

regions with the corresponding feature. FT tag numbering that includes the non-digit charac-

ters ?, < or > is unreliable and these data are not extracted. After extracting the annotations

from the UniProtKB/Swiss-Prot flatfile, all feature residues that have been extracted are stored

in the database; 1 488 092 residues are annotated in 135 883 UniProtKB/Swiss-Prot records. The

PDBSWS mapping (Martin, 2005) that is imported to SAAPdb allows these annotations to be
5http://www.expasy.org/sprot/userman.html#FT line



CHAPTER 5. SAAPDB: THE ANALYSIS PIPELINE 201

Table 5.2: UniProtKB/Swiss-Prot FT annotations used to identify functional residues in
SAAPdb
Feature tag: the UniProtKB/Swiss-Prot FT tag; Description: a description of the feature; Numbering scheme: what
the UniProtKB/Swiss-Prot FT numberings describe - a contiguous region or a pair of non-adjacent residues.

Feature tag Description Numbering scheme
ACT SITE Residues involved in enzymatic activity contiguous
BINDING A ligand or substrate binding site contiguous
CA BIND Residues involved in calcium binding contiguous
DNA BIND A DNA binding site contiguous
NP BIND A nucleotide phosphate-binding region contiguous
METAL A metal binding site contiguous
LIPID Residues binding to a lipid substrate contiguous
CARBOHYD A glycosylation site contiguous
MOD RES A site of PTM contiguous
MOTIF A short sequence motif of biological interest contiguous
DISULFID Location of a disulphide bond non-adjacent
CROSSLNK Crosslinks formed after PTMs non-adjacent

mapped to protein structure (see Section 2.1.5 for a description of PDBSWS and Section 6.2.2

for a description of how PDBSWS is imported into SAAPdb).

The mapping process used to populate SAAPdb requires that all mutations are mapped ini-

tially to a residue in a UniProtKB/Swiss-Prot record. With the relevant data extracted from

the UniProtKB/Swiss-Prot DAT flatfile and stored in the database, this analysis can be imple-

mented by a simple PostgreSQL query.

Upon closer inspection, it appears that these data can be unreliable. Figure 5.8 shows the struc-

ture of human P53 (PDB record 1tsr) in complex with DNA (highlighted in red). Residues near

to the DNA (within 10Å) are shown in yellow. The corresponding protein record ([UniPro-

tKB:P04637/P53 HUMAN]) describes residues 102-292 as DNA BINDing. These residues are

shown in blue in Figure 5.8, having been mapped onto the protein structure using PDBSWS

(see Section 2.1.5), and comprise most of the protein chain. It is clear from this example that the

UniProtKB/Swiss-Prot functional annotation is too coarse-grained, with many residues remote

from the DNA (i.e., distant by > 10Å) being annotated as DNA BINDing.

Given this observation, the UniProtKB/Swiss-Prot FT data have not been included in the later

analysis stage (see Chapter 7). However, the data are retained in the hope that annotations will

improve.
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Figure 5.8: An example of coarse-grained UniProtKB/Swiss-Prot FT annotation
The figure shows the structure of human P53, PDB record 1tsr. The DNA to which P53 binds is shown in red with
the protein chains shown as cartoon ribbons. The yellow residues indicate those within 10Å of the DNA, the blue
residues are those annotated as DNA BINDing by UniProtKB/Swiss-Prot, all other residues are coloured grey. Even
using the very generous distance threshold of 10Å, the UniProtKB/Swiss-Prot DNA BINDing annotation appears to be
very coarse-grained.
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5.12 Mutating conserved residues

5.12.1 Background

Where it is not possible to identify the structural effect of a disease mutation, sequence infor-

mation can be used to infer functionality. Comparing the same protein in different species will

highlight which residues are conserved and therefore likely to be critical to protein function

and/or stability.

This led to the development of a novel method for identifying highly conserved residues which

accounts for species diversity and protein-global conservation patterns. This method, called

ImPACT, is described in Chapter 4. Here, the method by which these data are incorporated

into the pipeline is described.

5.12.2 Incorporating ImPACT scores into the pipeline

In SAAPdb, each mutation must be mapped to a UniProtKB accession number to order to ex-

ploit the sequence-to-structure mapping in PDBSWS (see Section 2.1.5). Using these acces-

sion numbers, all functionally equivalent proteins (FEPs) for each protein (should it exist in

UniProtKB/Swiss-Prot) can be identified by querying the FOSTA database. FOSTA is a method

for identifying FEPs in UniProtKB/Swiss-Prot and is described in Chapter 3. The sequence

data used to populate FOSTA are cloned for populating the ImPACT database so that all se-

quences can be retrieved, including records that have been replaced, merged or deleted since

the last FOSTA run. A multiple sequence alignment (MSA) is generated by aligning the FEPs

using MUSCLE (Edgar, 2004a) (see Section 2.3.2 for a description of this method). To identify

a protein-specific threshold for high conservation, the distribution is modelled and analysed as

described in Chapter 4.

As each protein can be processed independently, the ImPACT analyses are distributed across

the local 20-core grid. For each MSA, the ImPACT threshold, target protein and size (i.e., num-

ber of sequences) are recorded, and for each residue in each MSA, the position (with respect to

the target protein), the species similarity conservation score (see Section 4.2.1) and whether or

not this exceeds the ImPACT threshold for the MSA are recorded. With these data recorded,
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the sequence conservation analysis can be implemented as a single SQL query.

5.13 Discussion

The pipeline has been extended significantly as part of this thesis and analysis shows that the

recent augmentation has been valuable with respect to explaining mutations (see Chapter 7).

However, there remains considerable scope for improvement of the current analyses and incor-

poration of new ones.

Currently, the void analysis is rather crude: a static threshold of 275Å3 is used to identify dele-

terious void creating mutations. This threshold was selected based on an analysis of PDB struc-

tures that showed that the largest void in 80% of protein structures is≤275Å3 (Cuff and Martin,

2004). However, it is likely that the threshold for deleterious void creation is dependent on the

protein structure, its size and stability, its environment and its resistance to destabilising voids.

Similar to what has been done for the sequence analysis—where MSA-specific thresholds for

high conservation are calculated—it would be valuable to consider each protein structure indi-

vidually, and, based on its properties, estimate the maximum void size that may be tolerated.

The existing method for resolving residue numbering in MMDBBIND should also be improved

by dealing with structures with missing residues. Currently, the method corrects the numbering

for leading and trailing flanking regions, but rejects any MMDBBIND record which describes a

PDB structure with absent residues in the structure, i.e., where the SEQRES and ATOM records

differ. This method could be improved by using the SEQRES/ATOM alignment provided in the

XMAS files (see Section 2.2.3) to correctly map all MMDBBIND annotations to the PDB.

Further, the current definition of a clash—identifying atoms that are within 2.50Å of each other,

as measured from the centre of the atom—could be improved. Using a static threshold does

not differentiate between two residues that are slightly overlapping and two residues that are

largely occupying the same space. Using a more informative Van der Waals energy calculation

would refine the clash analysis and may improve results.

More generally, the set of structures within which the SAAPs are analysed could be refined.

It may be beneficial to eliminate structures of lower resolution from the dataset, or to identify
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the best structure within which to analyse the mutations. In addition, replacing the binding

analysis with the corresponding PQS analysis would further refine the structural dataset, as

PDB structures can contain apparent interaction artefacts that arise from the crystallography

process as well as missing biologically relevant contacts (see Section 5.4).

With a view to extending the pipeline, it would be possible to incorporate external datasources

such as the Catalytic Site Atlas (Porter et al., 2004), PROCOGNATE (Bashton et al., 2008) or

dbPTM (Lee et al., 2006) to identify functionally relevant sites in protein structures. In addition,

it may be beneficial to consider the protein in a wider context, for example, its role in known

pathways (Kanehisa et al., 2008).



Chapter 6

The SAAPdb machinery and

mechanics

In Chapters 4 and 5, the fifteen structural analyses that comprise the current suite of analyses

in SAAPdb were described. This chapter will describe how SAAPdb is populated and how the

pipeline is implemented.

Much of the work described in this chapter was developed by Jacob Hurst. The work completed

as part of this thesis included porting and updating software to work on a new system with

new versions of PostgreSQL and python; updating the pipeline to include the new analyses

(see Sections 5.4-5.12); cache-ing of data; and retrieving, parsing and using the dbSNP XML

data.

Some of the methods described in this chapter are described in Hurst et al. (2009).

6.1 Introduction

The raw data upon which SAAPdb is based describe two kinds of genomic variation, the first of

which—the single nucleotide polymorphism or SNP—is assumed to have a negligible effect on

protein structure and therefore function, and the second of which—the pathogenic deviation or

206
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Table 6.1: Data overlap in SAAPdb
Numbers describe how many mutations are common to the two corresponding datasets. The emboldened identity
numbers (i.e., where a dataset is compared with itself) show how many mutations are described by that dataset. The
dbSNP and OMIM datasets are separated from the other LSMDB datasets using double ruled lines. Dataset names are
self-explanatory (apart from ‘P53-G’ which represents the Germline IARC p53 Database and ‘P53-S’ which represents
the ‘Somatic IARC p53 Database’). All datasets are further described in Section 2.1.2. Empty cells indicate that there is
no overlap between two datasets.

OMIM 7119

ADABase 19 38

G6PD 44 103

HAMSTeRS 135 526

P53-G 23 94

P53-S 27 89 1396

OTC 12 148

SOD1db 27 96

ZAP70 1 5

dbSNP 3 3 34081
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PD—has been associated with disease and, therefore, are thought to have a deleterious effect(s)

on protein structure and function. Here, the resources from which these data are taken are

reviewed (they were introduced in Chapter 2).

6.1.1 SNP data

Two SNP resources are described in Section 2.1.1: dbSNP (Sherry et al., 1999; Smigielski et al.,

2000) and HGVBase (Brookes et al., 2000). However, as of October 2008, only dbSNP data are

analysed by SAAPdb. The decision to eliminate HGVBase data was taken for two reasons, one

of which is the data themselves and the second of which is the processing of these data.

Firstly, HGVBase has not be consistently maintained, with only sporadic updates since 2003.

Secondly, HGVBase, unlike recent builds of dbSNP, does not provide reliable mappings to pro-

tein sequences. This requires that the genomic data be mapped to protein sequences via cod-

ing sequence assembly from genomic records, translation and ORF identification, and finally

alignment and mapping with the referenced protein sequence or sequences. This is a computa-

tionally expensive process.

However, the analysis described in Chapter 7 was carried out before the HGVBase data were

removed from the system and when the in-house mapping system was used to map all SNPs to

protein sequence. As such, the method for importing these data is described below in Section

6.2.4.

Note that HGVBase has recently become HGVBaseG2P and it is expected that many of these

problems will soon be resolved. However, at the time of writing, no downloadable set of mu-

tations was available.

6.1.2 PD data

OMIM and LSMDBs (Locus Specific Mutation Databases) were discussed in Section 2.1.2. The

resources are obtained in varying formats. The major challenges in processing LSMDB data are

(i) to standardise the format of these data to allow them to be processed identically and (ii) to

verify the sequence numbering that is provided by each LSMDB community.
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6.1.3 SNP/PD overlap

Table 6.1 shows the size of the datasets currently used in SAAPdb and the overlap between

them. The central PD resource OMIM has, as would be expected, at least some overlap with

all of the other PD datasets. It is also by far the largest resource, being five times larger than

the next largest, the somatic P53 dataset. However, larger still is the dataset of neutral non-

synonymous SNPs, which is approximately five times larger than the OMIM resource. Within

the LSMDBs, the only overlap that exists is between the germline and somatic P53 datasets.

Encouragingly, very few mutations are described as disease-associated and neutral. Only six

mutations are described simultaneously as a PD and a SNP: three are common to the dbSNP

and OMIM datasets and three are common to the dbSNP and P53 somatic datasets. When

analysing the data in Chapter 7, these mutations are removed from the SNP dataset but re-

tained in the disease dataset, working on the assumption that the large-scale genomic scanning

technology by which the SNPs are identified happens to have sequenced the genome of an

individual carrying a disease mutation.

It is worth noting that the unique complexity of cancer (where many mutations are acquired

over a short period of time) means that there is less certainty as to the pathogenicity of those

mutations found in both the somatic P53 dataset and the dbSNP dataset. Apparently carcino-

genic mutations may simply be ‘passenger’ mutations that have little or no pathogenic effect,

having ‘hitchhiked’ into the cancer cell by virtue of being coincident with a deleterious mu-

tation (Greenman et al., 2006). However, none of these three SNPs are mapped onto protein

structures and are therefore not analysed in Chapter 7.

6.1.4 Additional resources

Several additional resources are required to processes these data: UniProtKB (Section 2.1.3) is

required to map gene names to proteins and identify annotated functional residues; EMBL and

Genbank (Section 2.1.6) are required to map genomic data to protein sequences where map-

pings are unreliable or absent; and PDBSWS (Section 2.1.5) is used to map protein sequences to

protein structures accurately.
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6.2 Materials and Methods

There are two main stages of data processing: (1) importing the SAAP data (PDs or SNPs) and

(2) pushing it through the structural analysis pipeline. This naturally leads to a three-part data

‘architecture’ division, both with respect to data storage and data processing: (a) SNP data; (b)

PD data and (c) pipeline data. These three sections are described below in Sections 6.2.3-6.2.4,

6.2.6 and 6.2.7 respectively, following a brief description of the database (Section 6.2.1) and

information regarding the import of additional ‘reference’ data (Section 6.2.2).

Several other people have contributed to the design, development and maintainence of

SAAPdb, including Jacob Hurst, James Allen, Craig Porter and Antonio Cavallo. Where

appropriate, the contribution of each individual has been indicated in italics and marked with

a . symbol under the section heading.

6.2.1 The database
. The database was designed and previously maintained by Jacob Hurst, James Allen, Craig Porter and

Antonio Cavallo. It has been extended to include additional analysis data by Lisa McMillan.

Figure 6.1 describes structure of the SAAPdb database. The database is divided into three

sections: (a) handling the SNPs, (b) handling the PDs and (c) pushing the SAAP data through

the pipeline. Within the SNP and PD sections, tables separate the storage of sequence and

structural data (using lsdb and lsdb saap for PD sequence and structural data respectively,

and snp2annotated and saap for SNP sequence and structural data respectively). In the

pipeline section, the storage of purely structural data (i.e., data pertaining to native structures,

prior to mutation analysis) is kept separate (in the structural analysis table) from the

storage of mutation analysis data. The mutanalysis table contains the results of the structural

analyses. In the pipeline section, summary tables are created to allow the fast retrieval of data

via a webserver.
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(a) HANDLING THE SNPs

(b) HANDLING THE PDs

(c) STRUCTURAL ANALYSIS

Additional pipeline data
EMBL/Genbank records Handling UniprotKB PDBSWS

structural_analysis_row_id
mutanalysis_row_id

pdb_id
pdb_index
pdb_chain
aa_wildtype
aa_mutant
explained
struc_explained
binding
interface
hbond
pro
gly
clash
void
accessibility
hbond_escore
clashval
voidval

mutanalysis

surfacephobic
corephilic
cispro
buriedcharge
sprotft
mmdb
pqs
ssgeom
highcons

pdb_id
resnam
chain
resid
resnum
ss
access
access_monomer
interface
donor
acceptor
hbond_escore
functional
phi
omega
psi

structural_analysis_row_id

structural_analysis

structural_analysis_cache

id
supplementary_id
arbitrary_id
db_name
db_url
gene
base_number
base_mutant
codon_number
codon_wildtype
codon_mutant
sprot_lsid
aa_number
aa_label
aa_number_valid
aa_wildtype
aa_mutant
number_of_records
lastupdated

lsdb_row_id

lsdb

lsdb_info_ref_link

lsdb_references
info_row_id

impact_alignment_row_id

impact_alignment

global_threshold
target_protein

family_size

impact_residue

impact_residue_row_id
impact_alignment_row_id
conservation
position
highlyconserved

disulphide_geometry

distance
angle

disulphide_geometry_row_id *
pdb_id
pdb_chain
res1
res2

voids_cache

voids

void_type

voidvals

voids_row_id
pdb_id

mutanalysis_row_id

pdb_chain

swissprot_features_row_id

swissprot_features

features

ac
resnum

pdb_resnam
pdb_resnum
pdb_chain
pdb_id

mmdb

mmdb_row_id

pqs

pqs_row_id

pdb_resnam
pdb_resnum
pdb_chain
pdb_id

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

aa_wildtype
aa_mutant

numBind
numInterface
numHbond
numPro
numGly
numClash
numVoid
numAccess

explained

saap_mutation_summary

snp2annotated_row_id
saap_mutation_row_id

numSurfacephobic
numCorephilic
numCispro
numBuriedcharge
numSprotft
numMmdb
numPqs
numSsgeom
numHighcons

saap_row_id
mutanalysis_row_id
saapdbname

saap2mutanalysis

numSurfacephobic
numCorephilic
numCispro
numBuriedcharge
numSprotft
numMmdb
numPqs
numSsgeom
numHighcons

lsdb_row_id
aa_wildtype
aa_mutant

numBind
numInterface
numHbond
numPro
numGly
numClash
numVoid
numAccess

explained

disease_mutation_row_id

disease_mutation_summary

lsdb_row_id
sprot_lsid
aaposition
aarelocated
pdb_id
pdb_chain
pdb_atom
status
lastupdated

lsdb_saap

prevalence
prevalence_count
prevalence_pc
disease_name

enzyme_activity_num
enzyme_activity_ps
delta_delta_gee
melting_point
disease_severity
disease_severity_num
disease_class
disease_onset
disease_onset_num
disease_onset_age
prognosis
age
sex
race
external_factors
external_factors_desc

enzyme_activity

lsdb_row_id

lsdb_info

lsdb_row_id
citation
year

lsdb_references

snp2annotated

snp_lsid
annotated_lsid
sprot_lsid
db_xref_lsid
status
message
mutation
mutation_type
direction
protein
gene
bp_wildtype
aa_wildtype
codon
snp_codon_position
snp_sequence_position
snp_protein_position
alleles
alleles_mutations
alleles_status
lastupdated
genename

saap

snp_lsid
sprot_lsid
aaposition
aarelocated
pdb_id
pdb_chain
pdb_atom
status
lastupdated

snp

snp_lsid
status
message
upstream
downstream
alleles
ref_lsid
geneid
genesymbol
genename
lastupdated

dbsnp

filename
start_offset
end_offset

genbankoffsets

embloffsets

filename
start_offset
end_offset

swprottrembl

accessionmap

genenamemap

sprot2pdb

accession
id

id
accession

accessionmap_row_id
accessionnuma
accessionnum

sprot2pdb_row_id
pdb_id
pdb_chain
pdb_aa
sprot_id
sprot_index

swprottrembl_row_id
id
accessionnum
seq
source

genenamemap_id
accessionnum
genename

id

message
upstream
downstream
alleles

status

ref_lsid
geneid
genesymbol
genename
freetext
lastupdated

hgvbase

id
status
message
upstream
downstream
alleles
ref_lsid
lastupdate

snp_row_id snp2annotated_row_id

saap_row_id

lsdb_saap_row_idinfo_row_id

ref_row_id

Figure 6.1: The structure of the SAAPdb database
Tables pertaining to data importation are enclosed by a blue box while tables containing pipeline data are enclosed by
a red box. Within the data importation section, the PD and SNP data are separated with a dotted blue line. Additional
data required are shown at the top of each section, delimited from the rest of the data by a solid blue or red line. Tables
containing cached data are shown in grey. Foreign keys are linked with solid black lines. Excepting the additional data
within each processing stage, data flow is largely from left to right; that is, the tables on the left hand side of the figure
are populated first.
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6.2.2 Populating reference tables
. These methods were developed by Jacob Hurst and Craig Porter.

Three tables in SAAPdb are populated by parsing UniProtKB: swprottrembl, genenamemap

and accessionmap. These tables contain sequence data, mappings between gene names and

proteins and a mapping between secondary and primary accession numbers respectively. An

existing local mirroring of UniProtKB is cached locally before processing begins to ensure that

the most recent version of UniProtKB is used in all relevant SAAPdb processes.

SAAPdb uses PDBSWS (Martin, 2005) to map those mutations identified in UniProtKB se-

quences to structures described by the PDB. The mappings are obtained from http://www.

bioinf.org.uk/pdbsws/pdbsws_res.txt. This file is parsed to populate the sprot2pdb

table.

6.2.3 Importing the dbSNP data: new method
. These methods were developed by Lisa McMillan.

This section describes how the SNP data are imported and mapped to protein sequences and

structures, represented in section (a) of Figure 6.1.

The Entrez Programming Utilities1 (or eUtils) are used to obtain the most recent dbSNP data

from the NCBI. XML records of valid, non-synonymous, human SNPs are retrieved. ‘Valid’

SNPs are defined as those annotated with validation strings “by frequency”, “by 2hit 2allele”

or “by hapmap”. All records retrieved are combined into one XML file and parsed to populate

the snp and snp2annotated tables with dbSNP data.

It is expected that the new HGVBaseG2P2 (Thorisson et al., 2009) release will be available in the

near future which is likely to include protein sequence mappings. This will allow HGVBase

to be handled in much the same way as dbSNP currently is in SAAPdb and may render the

in-house mapping process redundant.

1http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
2http://www.hgvbaseg2p.org
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Figure 6.2: SNP data processing in SAAPdb
The layers indicate dependencies in the data, i.e., data in layer (1) must be present before data in layer (2) can be
generated (the arrow indicates data flow). Layer (1): data required to map SNPs to genes/proteins; Layer (2): the
raw dbSNP and HGVBase data (stored separately); Layer (3): the combined dbSNP and HGVBase data; Layer (4): the
mapped SNP data. Grey boxes indicate data required but described elsewhere (Section 6.2.2).

6.2.4 Importing the dbSNP/HGVBase data: old method
. These methods were developed by Jacob Hurst.

As described above (section 6.2.3), the method for obtaining and retrieving dbSNP data has

been changed to improve data integrity and accelerate processing: SAAPdb now uses protein

sequence mappings provided by dbSNP. However, all SNP data (both dbSNP and HGVBase)

that are analysed in Chapter 7 were mapped using the in-house mapping methodology. There-

fore, this section will summarise the in-house system by which the SNPs were mapped to pro-

tein sequence. This method is an extension to that described in Cavallo and Martin (2005) and

was deceloped by Jacob Hurst.

The mapping system consists of four layers of processing, each of which requires the previous

layer to be complete before it itself can be initiated. Processing within a layer may be completed

in any order. These layers of processing and their dependencies are shown in Figure 6.2, where

layer (n) must be complete before processing in layer (n+1) can commence. Each layer of data

processing is described below.
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6.2.4.1 First layer: fundamental genomic and proteomic data

Both dbSNP and HGVBase provide the upstream and downstream flanking regions, and

an EMBL or Genbank record ID describing the SNP. As the intention is to map to protein

structures using PDBSWS, it is necessary to map the SNPs to UniProtKB records. The

EMBL/Genbank entries provide database cross-references to protein sequence databases

including UniProtKB. To map to UniProtKB/Swiss-Prot sequences, it is necessary to identify

the SNP in the EMBL/Genbank record and map forward onto the protein sequence.

The most recent version of EMBL and Genbank are obtained via ftp from the EBI and NCBI

respectively. To allow retrieval of individual records, all EMBL and Genbank files are parsed,

with each record ‘indexed’ in the tables embloffsets and genbankoffsets respectively.

The embl and embloffsets tables store data about EMBL entries and are populated by pars-

ing the EMBL .dat files. The genbankoffsets table stores the same information for Genbank

files and is populated by parsing the Genbank .seq files. These data are required to map the

SNPs to sequence and populate the snp2annotated table.

Also required at this stage are the tables swprottrembl, genenamemap, accessionmap and

sprot2pdb, previously described in Section 6.2.2.

The ss2genbank table links dbSNP SS IDs to their Genbank accession IDs; these data are

extracted from the ‘Sub*’ files included in the dbSNP release. These data are used later to

populate the dbsnp table.

6.2.4.2 The second layer: importing the raw data from dbSNP and HGVBase

Raw dbSNP data in XML format are obtained via FTP from the NCBI. These files are then

parsed to generate the appropriate SQL which is executed in SAAPdb.

The most recent version of HGVBase is mirrored. An HGVBase release takes the form of several

g-zipped files. Each of these is unzipped and parsed to identify the necessary data. These data

are then piped directly into SAAPdb.
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6.2.4.3 The third layer: combining the dbSNP and HGVBase data in the snp table

The snp table comprises the third layer of SNP data in SAAPdb. This layer simply combines the

SNP data from dbSNP and HGVBase into a single table, ensuring that there is no redundancy

within each dataset (note that there may be redundancy between the datasets), so that both sets

of SNPs can be processed identically henceforth. The raw genomic data are now ready to be

mapped to protein sequence.

6.2.4.4 The fourth layer: mapping to UniProtKB sequence records

There are several significant challenges in mapping these genomic data to protein sequence

records. Firstly, the EMBL/Genbank data contain introns and exons; to determine whether the

SNP occurs in a coding region, the coding sequence must be reconstructed from CDS records

in the EMBL/Genbank record. Secondly, it is not known (a) whether the flanking regions and

alleles are derived from the forward or reverse complement sequence, and (b) whether the

EMBL/Genbank record itself is given in the forward or reverse direction. Thirdly, no infor-

mation is provided describing which reading frame should be used to translate the coding

sequence into the gene product. In addition to the challenge of defining the mapping, the size

of the SNP repositories requires that distributed computing be used to process the data within

a reasonable time frame.

The process of batching the SNPs and submitting them to the local grid is described in Figure

6.3. The first step is to extract the relevant data from SAAPdb and save it to a file. Next, the

SNPs are grouped according to the EMBL/Genbank file in which they occur. This is necessary

as these files will be cached locally on the individual processing nodes; by consolidating all

SNPs from one particular EMBL/Genbank file into one file, caching transactions will be min-

imised. Finally, these record-specific files are split into 2000 SNP batches which are processed

individually across the grid. Figure 6.4 describes the processing carried out by each job on the

compute nodes.

EMBL and Genbank are stored centrally on a single compute node (acrm3). To overcome

sporadic NFS file system errors when using these files from nodes on the grid, the relevant

EMBL/Genbank file must be cached locally. Once the relevant file has been cached locally, all

SNPs in the batch are analysed with findsnp5, the software central to this mapping process.
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Figure 6.3: Submitting findsnp5 to the grid
First, all SNPs are extracted and grouped according to the EMBL/Genbank record to which they are mapped. These
EMBL/Genbank record-specific lists of SNPs are then divided into batches of 2000 to be distributed across the grid.

findsnp5 (developed by Jacob Hurst) is depicted in Figure 6.5 and described in pseudocode

in Figure 6.6.

findsnp5 initiates the search by constructing an appropriate search term, consisting of the

concatenation of the downstream sequence, the native allele and the upstream sequence.

findsnp5 determines the direction of the reading frame by searching for this assembled

search term in the genomic sequence as described by the record and in the reverse complement

sequence.

As findsnp5 relies on annotated coding regions, if the EMBL/Genbank record does not con-

tain any annotated coding regions no mappings can be made and findsnp5 reports a failed

mapping. Otherwise, findsnp5 assembles the full coding sequence from the exons described

by the EMBL/Genbank CDS records. The assembly can accommodate external CDS references

and reverse complement CDS records (reverse complement CDS records are explicitly anno-

tated in EMBL/Genbank). The position of the SNP is then identified in the new assembled

coding sequence (ACS) by scanning for the original search term; if this is not found, the SNP

exists in a non-coding region of the genome, no protein mapping is possible and processing is

terminated.

Next, the longest reading frame in the ACS is identified and the ACS is translated. At this stage

the codon; the position of the corresponding amino acid in the ACS; and the position of the SNP
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Figure 6.4: The processing done by a batch of findsnp5 jobs
Each batch of jobs is submitted to a node on the local 20-core grid (shown in blue above). First, the oldest file in the
data directory is recursively deleted to accommodate the new EMBL/Genbank file (if space is not available already)
which is then retrieved from acrm3 (shown in grey). After the EMBL/Genback file has been cached successfully, each
SNP in the batch is analysed with findsnp5.
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Figure 6.5: The findsnp5 mapping process
Process (1): look for the allele plus the flanking regions and determine which direction the ORF will be; Process
(2): reconstruct coding sequence from CDS records (using both internal and external references; Process (3): find the
longest RF and translate to obtain the protein sequence; Process (4): compare the correct translated ORF to the protein
sequence provided and identify the relevant residue. The mapping progress of the original allele is marked in yellow;
other colours are used to match regions of the genome or the proteome between mapping stages. See Figure 6.6 for
pseudocode describing findsnp5.



CHAPTER 6. SAAPDB MACHINERY 219

(a) findsnp5 inputs

• snp id : the ID of the SNP in the source database

• record id : the record containing snp id

• searchterm : upstream + ’X’ + downstream

• fseekinfo : position of record id in file (format is file:start:end)

• alleles : the alleles (separated by ’,’)

(b) findsnp5 process

(I) Determine record type, construct appropriate parser

(II) Determine which direction to use (forward/reverse complement)

(III) if ( record id contains CDS records ):

(a) Assemble CDS into ACS

(b) Find SNP in ACS using searchterm (newsnp pos)

(c) Find longest RF in ACS (bestrf)

(d) Translate ACS using bestrf (bestRF seq)

(e) Identify codon affected (codon seq)

(f) Identify calculated position in bestRF seq (codon pos)

(g) Identify which allele of codon seq is affected (allele pos)

(h) Extract ”translation” field from record id (record seq)

(i) if ( bestRF seq not in record seq ):

i. Mapping failed, exit

(j) Calculate offset value (offset) for bestRF seq in record seq

(k) Calculate offset codon pos as codon pos + offset

(l) Identify wildtype AA (record seq[offset codon pos])

(m) Determine mutation type (nonsense/missense/silent)

(n) Obtain dbxref and genename pairs from record id

(o) Write record for each dbxref

(IV) else:

(V) Mapping failed, exit

Figure 6.6: The findsnp5 mapping process in pseudocode
ACS = assembled coding sequence; RF = reading frame. Process at line (#1) identifies whether record id is an EMBL
or Genbank record (all record id names are preceeded by ’embl:’ or ’genbank:’ to indicate which record type they
are). Process at line (#2) searches for the searchterm in the ”SQ” feature of the EMBL record. Process at line (#3a)
allows for reverse complement CDS records. Process at line (#3i) will check for the first 5 residues if the entire sequence
fails to map. Process at line (#3m) compares the native allele with the mutant allele, as constructed by replacing the
allele at allele pos with the mutant base.
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in the codon are determined, and the protein sequence as provided by the EMBL/Genbank

record is extracted.

The protein sequence as derived from the ACS and the protein sequence as provided by the

EMBL/Genbank record can then be compared in order to map the SNP onto the protein se-

quence correctly. If findsnp5 cannot find the entire translated ACS in the protein sequence

record, it tries to find the first five residues of the translated ACS in the protein sequence record.

If this also fails, no mappings can be made and findsnp5 reports a failed mapping. Otherwise,

findsnp5 can proceed in identifying the relevant residue in the protein sequence record and

determine whether the base change(s) described by the SNP will result in a silent, nonsense

or missense mutation by comparing the translated mutant codon with the translated native

codon. After further information is extracted from the EMBL/Genbank record (namely the

‘db xref’ and ‘gene’ name records), the successful mapping is reported.

The snp2annotated table is populated with the mappings as identified by findsnp5.

6.2.5 Mapping the SNPs to protein structure
. These methods were developed by Jacob Hurst.

The sprot2pdb table is used to map all UniProtKB records in the snp2annotated table to

protein structures. The resulting mappings are described in the saap table.

6.2.6 Importing the PDs
. These methods were developed by James Allen.

6.2.6.1 The PD data

In many ways, the task of mapping and processing the PD data is more straightforward: there

is less data, allowing processing to be sequential, and protein sequence mappings are usually

provided, avoiding computationally expensive mapping procedures. Instead, the challenges

are in accommodating the different file formats of the source databases. In this section, the

method by which the PD data (described in Section 2.1.2) are imported is described.
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6.2.6.2 The dataset-specific wrapper

As the PD data are coalesced from different sources, the primary data vary in format. To sepa-

rate the parsing, verification and import phases, and to permit easy integration of all the data

into SAAPdb, it is necessary to represent all the data in the same format. An XML format has

been developed within the Martin group to represent mutation data and therefore process each

dataset identically. An extract from an example record is shown in Figure 6.7.

This approach requires that each dataset be accommodated by a dataset-specific ‘wrapper’

which converts the original data into the XML format. Along with the retrieval of the raw

datafiles themselves, these are the only manual steps required to import the PD data.

6.2.6.3 Verifying the protein sequence numbering

OMIM is a centrally maintained, curated resource for disease mutation data. However, given

that the described mutations are derived from multiple sources and from the literature, it is not

surprising that there are inconsistencies in the numbering of amino acids. It is important to

verify that the numbering provided by the primary datasets is correct.

A version of OMIM with corrected numbering is currently automatically maintained within the

Martin group. Figure 6.8 shows how the verified OMIM mapping is derived for each disease

dataset. First, a partial sequence is constructed from the native residues described in OMIM

(Figure 6.8(a)). This partial sequence is then compared with the protein sequence named by

OMIM, by sliding it along in increments of one residue and storing the number of residue

matches for each comparison (Figure 6.8(b)). The alignment that is the best match to the named

protein sequence is used to calculate an offset value describing how the OMIM numbering

should be corrected; in the example, the offset is -3 (Figure 6.8(c)). The offset is then applied

to these ‘matching’ residues to correct their numbering. If any mutations remain unmatched

that would match the sequence with an offset of 0 (e.g., the A20L mutation in the example,

highlighted in blue in Figure 6.8(c)), it is assumed that these were submitted to OMIM in a

separate batch where correct UniProtKB numbering was used and these data are added to the
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<lsdb name=’DatabaseABC’ url=’http://DatabaseABC.com’>

<mutation id=’001’ supplementary id=’456’ arbitrary id=’1’ number of records=’6’>

<dna data>
<gene>ABC</gene>
<dna base wildtype=’T’ mutant=’G’>1</dna base>
<codon wildtype=’ATT’ mutant=’AGT’>1</codon>
</dna data>

<protein data ac=’P00123’>
<amino acid aa label=’1’ wildtype=’I’ mutant=’S’ valid=’t’>1</amino acid>
</protein data>

<occurrence>
<prevalence text>High</prevalence text>
<prevalence count>1000</prevalence count>
<prevalence percentage>10</prevalence percentage>
</occurrence>

<patient data>
<age>12</age>
<sex>M</sex>
<race>UK</race>
<phenotype mendelian=’dominant’>
<disease name>ABC Deficiency</disease name>
<disease class>4</disease class>
<disease severity numeric=’2’>Moderate</disease severity>
<disease onset numeric=’2’ age=’10’>Childhood</disease onset>
<enzyme activity numeric=’3’ percentage=’6’>Severely-decreased </enzyme activity>
<delta delta gee>-0.95</delta delta gee>
<melting point>40</melting point>
<prognosis>10 years</prognosis>
</phenotype>
<external factors details=’1’>Radiation exposure</external factors>
</patient data>

<references>
<citation year=’2006’>Author, A. N. (2006)</citation>
</references>

</mutation>

...

</lsdb>

Figure 6.7: An example of the XML format
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 −−−−− −−−−− −−− −−−−−−− S     A         P       K            A            

(c)     5   10   15   20   25   30
    |    |    |    |    |    |
ADNASHPNTAASASVNYMYAPIRIEFLHKMAP

matches = 4/5

offset = −3

 −−−−− −−−−− −−− −−−−−−− S     A     A   P       K
 −−−−− −−−−− −−− −−−−−−− S     A         P       K            A            

S     A     A   P       K −−−−− −−−−− −−− −−−−−−− 

S     A         P       K −−−−− −−−−− −−− −−−−−−−             A            
      A                   S           A   P       K −−−−− −−−−− −−− −−−−−−− 

(b) ADNASHPNTAASASVNYMYAPIRIEFLHKMAP

matches = 1/5

matches = 0/5

matches = 0/5

matches = 1/5

matches = 1/5

(a)

    S−−−−−A−−−−−A−−−P−−−−−−−K

S 8 −> T
A14 −> R
P24 −> L
K32 −> S
A20 −> L

S 5 −> T
A11 −> R
P21 −> L
K29 −> S
A20 −> L

(d)

Figure 6.8: Verifying the OMIM mapping
(a): a partial sequence is reconstructed from the mutations described in the OMIM record; (b): this partial sequence is
slid along the UniProtKB/Swiss-Prot sequence to which it is mapped in OMIM and the number of matches for each
position is recorded (matches are shown in green, mismatches are shown in red); (c): the best matching position is
used to calculate the offset (note that the A20 record (shown in blue) could be correct with an offset of 0 (i.e., the OMIM
annotation is correct) as an alanine does exist at position 20); (d): the offset is applied to the ‘matched’ original mutations
(i.e., the residues found to match in (c)) to generate a corrected numbering and all ‘probably correct’ mutations (those
matched using an offset of 0) are also included in the dataset (again, the ‘probably correct’ A20 example is highlighted
in blue).
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corrected dataset, flagged as ‘probably correct’. Some mutations may remain unmapped after

these stages. The completed corrected dataset is shown in Figure 6.8(d).

To provide some idea of the extent to which the OMIM data are corrected, 2318 of OMIM

mutations (31.0% of all OMIM mutations) from 182 OMIM entries (14.6% of all crosslinked-to

from UniProtKB/Swiss-Prot OMIM entries) available in August 2008 required an offset to be

applied to correct the sequence numbering. These corrected OMIM data are publicly available

at http://www.bioinf.org.uk/omim.

An identical scheme is applied to each of the LSMDB datasets in an attempt to maximise the

amount of correct data extracted from the LSMDBs (see Section 6.2.6.4).

6.2.6.4 Pushing the data into the database

Figure 6.9 shows the complete workflow by which the PD data are entered into SAAPdb, in-

cluding the manual ‘Write wrapper function’ step (highlighted in red). Clearly, this is only

written once for each dataset, though it is not uncommon for updates to break the wrappers.

The first stage of processing is to convert the raw data into XML. Before a new dataset can be

accommodated by SAAPdb, an appropriate wrapper function must be written which defines

which data are where in the raw datafile. The pseudocode for the wrapper scripts is shown in

Figure 6.10.

The system will attempt to identify the correct AC should the mutations not be mapped to

a UniProtKB/Swiss-Prot sequence. It does this by constructing a partial native sequence by

combining the wildtype residues from the data and representing all other residues with an ‘X’.

This partial sequence is then searched for in the most recent version of UniProtKB/Swiss-Prot

using ssearch34 (Pearson and Lipman, 1988). The raw data are updated accordingly so that

the time consuming sequence search need not be repeated. This step is highlighted in green in

Figure 6.9.

The corresponding wrapper function is run on each raw data file to generate XML representa-

tions of the PD data. Each XML file is then converted to SQL statements via an XSLT specifi-
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Figure 6.9: Importing an LSMDB dataset
A wrapper script converts the raw data into valid XML and this XML is translated to appropriate SQL using XSLT; the
single manual intervention step, where the data wrapper is written, is highlighted in red. Should no AC be provided
for the dataset, the AC number is determined using ssearch (highlighted in green, for details see text). This diagram
describes the PD data flow for a single LSMDB dataset, from original data format to XML (via wrapper), to SQL (via
XSL). In reality, all datasets are processed simultaneously; that is, all raw data-XML processing is done, then all XML-
SQL processing. XML and SQL processing stages are separated by a dotted blue line.
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(a) wrapper inputs
• data folder : the folder containing the raw data

• xml folder : the foler containing the xml
If these are not provided, the default values of ‘../data’ and ‘../xml’ respectively are used.

(b) wrapper process

(I) parse the lsdb info.txt file to find the dbname, dburl, sprotac, rawdatafile

(II) open rawdatafile using cvs.reader() and the appropriate delimiter

(III) check whether a corresponding XML file already exists (if so, exit cleanly without doing any-
thing)

(IV) identify the sprotac using lsdb utils.get ac number() unless sprotac has been ex-
tracted from lsdb info.txt

(V) for each entry in rawdatafile:

(a) if no mutation id exists:

i. increment an arbitrary mutation ID counter

(b) define an appropriate UI

(c) extract all the relevant information

(d) increment the count for this particular mutation using the UI

(e) record the basic mutation data using the UI

(f) record the numbering (res num, aa wildtype) using the UI

(VI) verify the numbering using lsdb utils.validate numbering():

(a) retrieve the sequence of sprotac from the UniProtKB website

(b) identify all possible offsets for each unverified res num/aa wildtype pair

(c) identify the most commonly found offset (most common offset)

(d) if all res num/aa wildtype pairs are offset by most common offset:

i. correct all values of res num by most common offset

ii. mark all res num/aa wildtype pairs as fully validated (‘t’)

(e) else:

i. if ≥ 50% of the res num/aa wildtype pairs have an offset of 0:
A. Mark these res num/aa wildtype pairs as fully validated (‘t’)

ii. else if ≥ 2 of the res num/aa wildtype pairs have an offset of 0:
A. Mark these res num/aa wildtype pairs as probable (‘?’)

(f) if there are more res num/aa wildtype pairs to validate:

i. repeatedly calculate offsets as described above until everything is probable or
fully validated, or there are only a small number left

(VII) write the XML file using the validated data

Figure 6.10: The PD data wrapper: pseudocode
UI = unique identifier; the thresholds that define what is fully, probably or not validated (in processes #(6(e)i)-#(6(f)i))
can be changed; process at line #6a retrieves the sequence from http://us.expasy.org/uniprot/.
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cation (see Section 2.2.2) and all SQL is executed in the database. This populates the database

tables lsdb, lsdb references, lsdb info and lsdb info ref link (see Figure 6.1) with

the appropriate data.

The final step is to map the imported and verified PDs to protein structures and populate the

appropriate database table (lsdb saap) with the mappings (this step requires that the data

described in Section 6.2.2 be present in the database). First, the UniProtKB/Swiss-Prot acces-

sion numbers to which the disease mutations are mapped are updated to their corresponding

primary accession number which will be present in PDBSWS. Then, the lsdb saap table is

populated with the appropriate sequence and structural data. These steps are implemented as

SQL statements.

Figure 6.9 describes the complete data flow for a single dataset. In reality, processing progresses

through the data representations, rather than through each dataset. That is, all raw data to XML

processing is executed, all SQL is generated by applying the XSLT schema to each XML file in

turn and finally all SQL is executed. Once the sequence data are in the database, the SQL

statements updating the AC numbers and the structural mappings are executed.

6.2.7 The pipeline
. These methods were originally developed by Jacob Hurst and have been extended by Craig Porter and

Lisa McMillan.

Once the SNP and PD data are mapped to protein structures (i.e., once the saap and

lsdb saap tables have been populated), the SAAP data can be processed by the pipeline.

Eight of the analyses require additional data to be present in the database: the hydrogen

bonding (Section 5.3.1), clash (Section 5.3.6), void (Section 5.3.7), MMDB (Section 5.5),

UniProtKB/Swiss-Prot features (Section 5.11), sequence conservation (Section 5.12), PQS

(Section 5.4) and disulphide geometry (Section 5.6) analyses. Detailed information regarding

these analyses, what data are required and how they are derived is available in the Sections

given above in parentheses.

Figure 6.11 shows how the pipeline is run and how the data are coordinated. There are four

phases of processing, which are delineated in Figure 6.11 using dashed lines. In phase (A), the
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[3] Check linking

[12] Glycine analysis

[13] Proline analysis

[14] Interface analysis

[15] Functional analysis

[16] Hbond analysis

[17] Void analysis

[18] Surface/phobic analysis

[19] Core/philic analysis

[20] Cisproline analysis

[21] Buried charge analysis

[22] Uniprot/FT analysis

[23] MMDBBIND analysis

[24] PQS analysis

[25] SSGEOM analysis

[26] ImPACT analysis

Table containing the
results of the structural
analysis of the SAAPs

[1] Import SAAPs

Update each SAAP:
is it explained?

Create summaries
for each SAAP

Fill summary tables
with 0 values for
unexplained SAAPs

[27]

[28]

[29]

PDB files

MMDBBIND

PDB

PQS

UniprotKB

FOSTA

[4] Hbond preprocessing

[11] SSGEOM preprocessing

[10] Uniprot/FT preprocessing

[9] MMDBBIND preprocessing

[2]

[5] Clash preprocessing

(includes clash analysis)

[7] PQS preprocessing

[8] ImPACT preprocessing

[6] Void preprocessing **

Table containing
structural data about
the residues in the
PDB structures

Table summarising the results
for the SNP SAAPs

Table summarising the results
for the disease−causing SAAPs

Specialised tables:

(ii) MMDBBIND
(iii) PQS
(iv) Uniprot/FT
(v) ImPACT scores
(vi) SSGEOM

(i) voids

Table linking the
SAAPs to the results
of their structural
analysis

Extract structural
information **

Figure 6.11: Pushing the SAAPs through the structural analysis pipeline
Square boxes indicate data processing, boxes with rounded corners represent database tables and arrows indicate
information flow. In processing stage (A), steps [1-3] populate the database with all disease-associated SAAPs and
structural information about all PDB structures. In processing stage (B), steps [4-11] generate mutant structures and
carry out essential pre-processing for the hydrogen bonding, clash, void, MMDBBIND, Swiss-Prot/FT, PQS, ImPACT
and SSGEOM analyses. In processing stage (C), steps [12-26] carry out the structural analyses. In the final processing
stage (D), steps [27-29] generate summary information for each SAAP. Cached data are highlighted with ∗∗ and all
distributed grid processing is highlighted with a grey background.
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data from the saap and lsdb saap tables are imported into the mutanalysis table (step [1])

and the structural analysis table is populated with data extracted and calculated from

the relevant PDB files (including torsion angle data; accessibility statistics; secondary structure,

and interface and functional flags; step [2]). In step [3], the link between the mutanalysis and

structural analysis tables is created.

In phase (B), all the necessary preprocessing is carried out for the hydrogen bonding (step

[4]), clash (step [5]), void (step [6]), PQS (step [7]), sequence conservation/ImPACT (step [8]),

MMDB (step [9]), UniProtKB features (step [10]) and disulphide geometry analyses (step [11]).

Four of the analyses—clash, void, PQS and ImPACT (steps [5-8])—require considerable pre-

processing and as such are distributed across the local 20-core grid. Results are written to the

specialist tables (impact alignment/impact residue, disulphide geometry, voids,

pqs, mmdb and swissprot features, see Figure 6.1); the clash preprocessing also updates

the mutanalysis table with the clash result and therefore carries out the clash analysis. In

Figure 6.11, all distributed processing is highlighted in grey.

The two most time consuming processing steps are step [2] in phase (A)—extracting informa-

tion from the PDB structures—and step [6] in phase (B)—calculating the void data. To avoid

unnecessary and time-consuming repeated processing, these data are cached (in a ‘cloned’ ta-

ble) before each run of SAAPdb. In the current implementation of SAAPdb, this creates the

tables voids cache and structural analysis cache (these are shown in grey in Figure

6.1). The original table is then dropped and recreated and the original data from the cached

table are imported if requested. Processing can then proceed as normal.

With all of the additional data imported into SAAPdb, the remaining analyses can be imple-

mented as SQL queries. These are carried out in phase (C) (steps [12-26]) and update the ap-

propriate columns in the mutanalysis table.

The results are summarised in phase (D). First, each mutation described in the mutanalysis

table is annotated as predicted to have a structural effect or not, based on the results of steps

[5,12-26]. In step [28], the disease mutation summary and saap mutation summary ta-

bles are populated. These tables summarise the structural analysis results for each sequence mu-

tation, as described in either saap or lsdb saap, by summing over all mapped structures. Fi-

nally, any blank entries in the disease mutation summary and saap mutation summary

tables are replaced by zeros (step [29]).
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Figure 6.12: The SAAPdb Makefile
All targets are shown in square-edged boxes, with the five top-level targets (init, init nohgv, pipeline, publish
and backup) at the top of the diagram, highlighted in thick-lined boxes. The thick green line follows processing, from
START to FINISH (indicated by round-edged green boxes); alternative processing steps are shown by a split in the
green line. init: processes all SAAPs (dbSNP, HGVBase and LSMDBs); init nohgv: processes only dbSNP and
LSMDB SAAPs; pipeline: runs the pipeline on the SAAP data in SAAPdb; backup: creates a backup of SAAPdb,
and publish: creates a web-live version of SAAPdb and creates an SQL download of the most recent backup of
SAAPdb. Boxes highlighted in gold are ‘executing’ targets (i.e., they execute the scripts) whereas white boxes are
‘abstract’ targets, pointing to other targets. The blue lines trace the targets of the top-level init and the red lines trace
the targets of init nohgv. Dashed black lines link two uses of the same target.

6.2.8 Putting it all together: the Makefile
. The Makefile was originally written by Craig Porter, with small additions (including the ability to

backup and make the data web-live) by Lisa McMillan.

The SAAPdb system is controlled via a Makefile. The targets for the Makefile are described in

this section and illustrated in Figure 6.12.

The init target imports and processes dbSNP and HGVBase SNPs, and all LSMDB PDs. The

SNP importing requires several layers of data processing as described in Section 6.2.3. The

init nohgv targets initiates processing of the dbSNP and LSMDB PD data only (i.e., HGVBase

is not imported or processed). The pipeline target runs the pipeline on all SAAPdb data.

The backup target runs a ‘VACUUM FULL ANALYSE;’ on SAAPdb and creates a gzipped-tar

backup of the data. publish can be used to make a web-live version of the database and to

construct an SQL download of the relevant tables for remote reconstruction of SAAPdb.



Chapter 7

SAAPdb : data overview

In Chapters 4 and 5 the current suite of structural analyses in SAAPdb was described. In Chap-

ter 6 the mechanics and machinery of SAAPdb were described, including the import of PD and

SNP data; the mapping of SAAPs to protein structures; the integration of data necessary for

the structural analyses and the implementation of the structural analyses themselves. In this

chapter, the resulting data are analysed. The aim of this analysis is to characterise pathogenic

deviations (PDs) and single nucleotide polymorphisms (SNPs), with a view to building models

that predict whether a novel SAAP (single amino acid polymorphism) will cause disease.

Note that this analysis includes SNP data from HGVBase and that all SNPs have been mapped

to sequence using the mapping procedure described in Section 6.2.4. Some of the work in this

chapter has been published in Hurst et al. (2009).

7.1 Introduction

It is the intention that the data compiled in SAAPdb will eventually be used to train machine

learning methods to predict whether a novel SAAP will disrupt the native protein structure,

thus inducing a disease phenotype. In this context, it is important to characterise both datasets

as fully as possible for several reasons.

231
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Firstly, the analysis will suggest whether it is possible to train a prediction algorithm at all: the

data analysis may conclude that there is no discriminatory power in the data and therefore no

potential for successful prediction. Such a result would motivate the collection of more data,

and, in particular, more varied data in the form of additional structural analyses.

Secondly, characterising the datasets would inform the choice of data representation and ma-

chine learning method. By drawing on existing literature and the results described in this chap-

ter, it will be possible to maximise the discriminative power inherent in the feature vector with

which the training data are represented. Further, should the analysis reveal characterstics of

the dataset as a whole (e.g., whether the data are particularly sparse), this will inform the most

appropriate choice of algorithm.

Finally, a maturing body of literature exists in this field (see Section 1.9). To date, SAAPdb is the

most extensive collation of SAAPs, both deleterious and neutral, and their structural effects. A

systematic analysis of the contents of SAAPdb will contribute significantly to the understand-

ing of disease polymorphisms, and ultimately the treatment of the deleterious phenotype.

To recap the SAAPdb system, Figure 7.1 shows a simplified workflow for the population of

SAAPdb. PD processing is highlighted in yellow and SNP processing is highlighted in grey.

This colour scheme will be used throughout this chapter to denote each dataset. As described

in detail in Chapter 6, SNPs are mapped to protein structure by assembling the genomic cod-

ing sequence from EMBL and Genbank records, and aligning the translated sequence with

UniProtKB/Swiss-Prot sequences (step (1) in Figure 7.1, see Section 6.2.4). PDs, being derived

from multiple sources (OMIM and several LSMDBs, see Section 2.1.2), are imported by first

representing the data in the same XML format and then processing and verifying these data

(step (2) in Figure 7.1, see Section 6.2.6 for details). At this point, both PDs and SNPs—together

described as SAAPs—are mapped to protein sequences. The SAAPs are then mapped to pro-

tein structures using PDBSWS (step (4), see Section 6.2.2 for details) and the native structures

are analysed to extract basic information, such as binding sites, relative accessibilities and sec-

ondary structure classifications (step (4)). Finally, each SAAP is processed by the structural

analysis pipeline (step (5), see Chapter 5 for details) to ascertain whether it is expected to have

a structural effect.

Table 7.1 summarizes the content of SAAPdb. After importing the raw data from the SNP repos-

itories and the various LSMDBs (i.e., after step (2) in Figure 7.1), there are approximately ten
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Genbank dbSNP HGVBaseEMBL LSMDBsUniProtKB OMIM

(3) Map SAAP to protein structurePDBSWS

(4) Analyse native structure

(5) Identify possible structural effects

PDB

 SAAPdb

PQS

FOSTA

(1) Identify coding SNPs (2) Identify missense PDs and
verify their mapping to
protein sequence records

and map them to protein
sequence records

MMDBBIND

Figure 7.1: The SAAPdb workflow
STEP (1) SNPs are mapped to protein sequence by translating the genomic coding sequence into a protein sequence and
aligning this with named UniProtKB/Swiss-Prot sequences (see Section 6.2.4); STEP (2) PDs are imported from OMIM
and various LSMDBs and the protein sequence mappings provided are verified (see Section 6.2.6); STEP (3) From
now on, both PDs and SNPs (together, described as SAAPs) are processed identically, in step (3), they are mapped to
protein structures using PDBSWS (see Section 2.1.5); STEP (4) The native structure is analysed to extract basic data
like accessibility and binding sites; STEP (5) Each SAAP is analysed by the structural analysis pipeline (see Chapters
5-6) which requires some additional data, external to SAAPdb, including FOSTA (Chapter 3), PQS (Section 5.4) and
MMDBBIND (Section 5.5. Resources and processes specific to the PD dataset are highlighted in yellow, resources and
processes specific to the SNP dataset are highlighted in grey, resources and processes common to both datasets are not
coloured. SAAPdb is highlighted in blue. Solid black arrows indicate the direction of data flow; dashed blue lines
indicate where data are stored in SAAPdb.
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Table 7.1: A summary of the data in SAAPdb

PDs SNPs
Raw number described in database 9997 16227751
Raw number of SAAPs mapped to sequence 9617 24492
Unique sequence polymorphisms 8972 14015
Raw number mapped to at least one structure 4319 2022

thousand pathogenic deviations (PDs) and over 16 million neutral mutations described. 9 617

PDs (8 972 of which are unique) and 24 492 SNPs (of which 14 015 are unique) are successfully

mapped to amino acid changes in a UniprotKB sequence. Using PDBSWS (Martin, 2005), the

SAAPs are then mapped onto PDB structures (step (3) in Figure 7.1). Of the 9 617 mapped and

coding PDs, 44.91% are mapped to at least one PDB structure, but only 8.26% of the neutral

mutations are identified in a protein structure.

Despite having over one thousand times more ‘raw’ mutations in the SNP dataset as compared

with the PD dataset, the two mapping stages (gene to protein sequence and protein sequence

to protein structure) eliminate much of the SNP data to leave a more balanced dataset (many

SNPs will have been lost when mapping to protein sequence as they will occur in non-coding

areas of the genome).

It is possible that the SNP repositories (in particular dbSNP) describe polymorphisms as neu-

tral that should be described as disease-causing. In SAAPdb, only six (see Section 6.1) poly-

morphisms are described in both datasets. For the analyses presented in this chapter, these

polymorphisms are removed from the SNP dataset, but remain in the PD dataset. This is based

on the assumption that the large-scale genomic scanning technology by which the SNPs are

identified happens to have sequenced the genome of an individual carrying a disease muta-

tion.

This chapter will report an analysis of the data obtained by the processes described in Figure 7.1.
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7.2 Methods

7.2.1 Averaging across multiple structures

PDBSWS (Martin, 2005) is used to map mutations in UniProtKB/Swiss-Prot sequences to PDB

structures (see Section 2.1.5). The redundancy in the PDB allows multiple SAAP/structure

mappings to be identified by PDBSWS.

There is disparity in the number of structures to which SAAPs are mapped in the datasets: some

are mapped to a single structure (e.g., mutations to the UniProtKB/Swiss-Prot record P02766,

human transthyretin), while others are mapped to over three hundred (e.g., mutations to the

UniProtKB/Swiss-Prot record P68871, human haemoglobin subunit β). This is primarily due

to research bias: some proteins are more heavily researched than others. To illustrate this, the

distributions of the number of structures to which PDs and SNPs map are shown in Figures

7.2(a) and 7.2(b) respectively. These graphs confirm the expectation that proteins implicated

in disease are more heavily researched and more often structurally characterised than proteins

not implicated in disease. Furthermore, there may be some structures that are of poorer quality

and may give spurious ASA (accessible surface area), torsion angle measurements or hydrogen-

bonding assignments.

To accommodate multiple mappings fairly and to limit the effect of poor quality PDB structures,

it is necessary to average over all structures to which a SAAP has been mapped when analysing

the data. The median of measurements over all mapped structures is used to average numeric

data. Where the measurement is nominal (for example, secondary structure DSSP code (Kabsch

and Sander, 1983)), the mode of the data is used.

7.2.2 Statistics

The statistics used in this chapter were introduced in Section 2.3.6. In this section, any addi-

tional information specific to the analyses used in this chapter is given.
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(a) The number of structures to which PDs are mapped
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(b) The number of structures to which SNPs are mapped

Figure 7.2: Profiling SAAPs by the number of structures to which they are mapped
SAAPs are mapped to structures using PDBSWS (Martin, 2005). PDs are more often mapped to multiple structures due
to research bias. PDs are shown in yellow; SNPs are shown in grey.
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7.2.2.1 χ2 tests

χ2 tests are used to assess whether there is a significant difference between the PD and the SNP

datasets with respect to the occurrence of a particular feature. All χ2 tests with one degree of

freedom (i.e., a 2x2 contingency table) are carried out using the Yates correction (which prevents

underestimating the p-value, see Section 2.3.6.3). Note that, where results are reported with

percentages, raw counts have been used in the χ2 test.

Where possible, χ2 statistics have been calculated using separately calculated expected values.

In the case of individual native and mutant residues, standard amino acid frequencies (Robin-

son and Robinson, 1991) were used to estimate the numbers to be expected in the dataset. To

analyse each polymorphism (i.e., each native/mutant residue pair), the PAM30 (Dayhoff et al.,

1978) matrix was normalised (i) to include only positive values, and (ii) to sum to 100. To reflect

the SAAP data more accurately, only native/mutant residue pairs (a, b) that can be generated

by a single base change were considered when normalising the matrix. The formula for this

transformation is shown below:

P ′sbc(a, b) = 100 ∗ Psbc(a, b)−min(Psbc)∑
Psbc

(7.1)

where n is the number of different amino acids (therefore n = 20); Psbc is the submatrix of

the PAM30 matrix which describes only those mutations that can be derived from a single base

change; P ′sbc is the normalised PAM30 single base change submatrix; Psbc(a, b) is the amino acid

substitution matrix Psbc score for replacing residue a with residue b; min(Psbc) is the minimum

value in the matrix Psbc, and
∑
Psbc is the sum of all the scores in the matrix Psbc.

These normalised cell values were then used to approximate relative frequencies of mutations

and therefore estimate the expected frequencies in the given dataset. The PAM30 substitu-

tion matrix was used because it is the most widely used amino acid substitution matrix that is

derived from closely related sequences. This is appropriate because, in this dataset, human pro-

teins are effectively being compared with themselves. Finally, expected values for secondary

structure element occurrence were derived from a dataset of high resolution (≤2.0Å) PDB struc-

tures.
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Figure 7.3: Interpreting a cumulative distribution function (CDF) plot
The two sets randomly generated data are shown above: the dataset A (shown in blue) has a mean of -1 and a standard
deviation of 1, the dataset B (shown in red) has a mean of 1 and a standard deviation of 1. It becomes immediately
apparent which dataset contains higher values in the CDF plot (far right): the CDF for dataset A is consistently higher
than that of B, indicating that a higher proportion of datapoints in A are found at lower values.

χ2 tests are unreliable if the data suffer low counts, specifically where the contingency table con-

tains one or more cell values≤ 5. Fisher-exact tests have been carried out on low-count datasets

to verify χ2 results. Low-count datasets are defined as datasets with at least one contingency

table cell with a value ≤ 10.

7.2.2.2 Kolmogorov-Smirnov tests

The Kolomogorov-Smirnov (KS) test has been used to compare the distribution of numerical

data in the SAAP datasets. All KS tests have been run in R using the ks.boot method (see

Section 2.3.6.2).

Cumulative distribution function (CDF) plots are used extensively in this chapter. Often, when

comparing large datasets, histograms are difficult to interpret; differences become more appar-

ent by comparing CDFs. In Figure 7.3, two datasets are compared using their CDF functions.

Although it is clear from the histograms that these datasets are different, the CDF plot makes it

immediately apparent that the values in dataset A are lower than the values in dataset B.
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7.2.2.3 Log ratios

Log ratios demonstrate clearly where features in the dataset are seen more or less often than

expected when compared to some reference values. Where such reference values are available

or can be reliably estimated, the corresponding log ratios have been calculated. As described in

Section 7.2.2.1, expected values for the individual mutant and native residues were taken from

Robinson and Robinson (1991), and expected values for each native/mutant residue pair were

estimated by transforming the PAM30 matrix to (i) eliminate negative values and (ii) to sum to

100.

All log ratios are log2.

7.2.3 Discriminative features

With a view to distinguishing between PDs and SNPs, and potentially training machine learn-

ing methods to predict whether a novel SAAP is deleterious or not, it is most important to

identify those features that are ‘discriminative’. In the context of the current dataset, a dis-

criminative feature must meet two criteria. Firstly, it must be found at significantly different

frequencies in the PD dataset and the SNP dataset, by χ2 tests or otherwise. Secondly, where

reliable expected frequencies are available, the feature must be over-represented in one dataset,

while being under-represented in the other.

7.3 Results and Discussion

7.3.1 Illustrative examples

Before describing the analysis of the SAAPdb data, this section illustrates some of the results of

the analysis pipeline.

Figure 7.4 shows the structure of human super-oxide dismutase [UniPro-

tKB:P00441/SODC HUMAN], as described by the PDB structure 2c9s. Mutations to
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Figure 7.4: PDs identified at the interface
PDB structure 2c9s, chains A (in blue and light blue, on the left) and F (in red and pink, on the right). Ligands are
shown in spacefill using the CPK colour scheme. Mutated residues identified by the interface (see Section 5.3.2) and
PQS (see Section 5.4) analyses are shown in darker blue and red, with Van der Waals volumes indicated. Note that
these analyses also identify residues near ligand binding sites, as well as residues at the chain interface.

super-oxide dismutase have been associated with amyotrophic lateral sclerosis or motor

neurone disease (Aguirre et al., 1999). Chain A is shown in blue, chain F is shown in

red. Residues identified by the interface or PQS analyses are shown in darker blue and

red respectively, with their Van der Waals suface indicated with dots. This illustrates that

PQS/interface residues occur both at the inter-chain interface and at ligand binding sites.

Figure 7.5 shows three orientations of the human transthyretin protein [UniPro-

tKB:P02766/TTHY HUMAN] as described by the PQS record 1soq 1.mmol. Mutations to

transthyretin are associated with several amyloid diseases, including cardiomyopathy (Ranløv

et al., 1992) and polyneuropathology (Ferlini et al., 2000). 48 transthyretin disease mutations

(derived from OMIM, MIM:176300) are mapped to structure in SAAPdb.

The transthyretin PDs identified at the interchain protein interface are shown in orange or red

in Figure 7.5 (the residues highlighted in red introduce a hydrophobic residue on the surface

of the protein chain in addition to occurring at the interface). To demonstrate the value of

using the ‘corrected’ PQS structures (see Section 5.4) rather than the basic PDB structures (see
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(a) Native 1soq:B,D (b) Native 1soq:A,B,C,D (c) Native 1soq:A,C

Figure 7.5: PDs identified at the PQS interface
PQS structure 1soq 1.mmol, chains A, B, C and D. Residues identified by the PQS analysis (see Section 5.4) but not
the interface analysis (see Section 5.3.2) are highlighted in orange and red above (red residues are also identified by
the surface-phobic analysis, see Section 5.9). Figure 7.5(b) shows all four chains (ABCD) together; Figure 7.5(a) shows
chains B and D rotated +90◦on the horizontal axis; Figure 7.5(c) shows chains A and C rotated -90◦on the horizontal
axis.

Section 5.3.2-5.3.3), only those PDs explained by the PQS analysis but not explained by the PDB

interface analysis are highlighted. The BD and AC dimers are separated and rotated to display

the interface in Figures 7.5(a) and 7.5(c) respectively. It is clear that the mutations cluster at the

interface of the AC and BD dimers (no ligands are described by the 1soq structure).

The tumour suppressor protein P53 [UniProtKB:P04637/P53 HUMAN] is mutated in roughly

half of human cancers (Greenblatt et al., 1994; Sidransky and Hollstein, 1996; Lane and Fischer,

2004). Chain B of the solved P53 structure 1tsr is shown in complex with DNA in Figure 7.6;

residues identified as ‘functional’ by the binding, PQS and UniProtKB/Swiss-Prot FT analyses

(i.e., residues identified by all of these analyses) are highlighted in blue (these residues are also

identified as highly conserved by ImPACT). These functional residues are clustered around the

DNA-binding site.

Another P53 mutant is shown in Figure 7.7. Here, the native glycine residue at position 279 is

mutated to tryptophan, the largest amino acid. When modelling the mutant residue into the

native structure (using MutModel, see Section 5.2), the best orientation of the mutant sidechain

clashes with 27 other native atoms. Figure 7.7(a) shows that the native glycine fits neatly in-

side the structure, while the tryptophan residue in Figure 7.7(b) protrudes out of the structure,

clashing with other atoms, inhibiting formation of the native fold and inducing the disease
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Figure 7.6: Binding PDs in P53
PDB structure 1tsr, chain B (in grey and blue) in complex with DNA. PDs that disrupt binding, as defined by the
binding (see Section 5.3.3), PQS (see Section 5.4), ImPACT (high conservation, see Chapter 4) and UniProtKB/Swiss-
Prot FT analyses (see Section 5.11) are highlighted in blue.

phenotype.

The native tyrosine residue at position 236 of human P53 forms a hydrogen bond with the

threonine residue at position 253; these residues are highlighted in blue in Figure 7.8(a). This

hydrogen bond is broken in the Y236D mutant structure in Figure 7.8(b), as the introduced

aspartic acid sidechain is too distant to accept the hydrogen donor atom from T253. Note also

that this hydrogen bond is buried, and therefore could be critical to the scaffold of interactions

that stabilise the protein structure. In addition to breaking the hydrogen bond, this mutation

will introduce an unpaired buried charge and is found to cause a de-stabilising internal void.

Many mutations to the structure of human haemoglobin have been reported: SAAPdb
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(a) Native 2ata:A (b) Mutant G279W 2ata:A

Figure 7.7: PDs found to clash with other existing residues
PDB structure 2ata, chain A (shown in grey). The mutation G279W is described in the P53 somatic mutation dataset.
The native and mutant structures are shown above, on the left and right respectively. The modelled tryptophan mutant
residue clashes with 27 other atoms, and cannot be accommodated in the native structure.

(a) Native 2j1w:B (b) Mutant Y236D 2j1w:B

Figure 7.8: PDs that break hydrogen bonds
PDB structure 2j1w, chain B. The hydrogen bond that exists between the Y236 and T253 is not maintained in the mutant
Y236D structure shown on the right (see Section 5.3.1). Residues 236 and 253 are highlighted in blue in both structures.
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contains over six hundred. The mutation F42S in human haemoglobin [UniPro-

tKB:P68871/HBB HUMAN] is reported to be associated with cyanosis, moderate

reticulocytosis and mild anaemia (Stabler et al., 1994). SAAPdb ‘explains’ this mutation as

introducing a void on the surface of the protein (compare the native structure in Figure 7.9(a)

with the mutant form in Figure 7.9(b)). Note also that this void is close to the binding site of

the haem ligand and therefore may affect the function of haemoglobin directly in addition to

destabilising the structure. SAAPdb explains mutations at residue 42 with the interface, PQS

and binding analyses.

Figure 7.10 shows the 1r1y crystal structure of human haemoglobin. Here, the mutation

V54D introduces a buried, unsatisfied charge by replacing a neutral valine residue with the

negatively charged aspartic acid (see Section 5.8). In addition, this mutation introduces an

unfavourable hydrophilic residue in the protein core. An example of the complementary

analysis—introducing a hydrophobic residue on the surface of the protein—is shown in Figure

7.11. The mutation seen here is the E6V mutation described in Chapter 1 that causes sickle cell

anaemia, where the ‘sticky’ hydrophobic patch owing to the mutant valine residue causes

aggregation and subsequent deformation of erythrocytes.

The example in Figure 7.12 shows a broken disulphide bond in super-oxide dismutase, iden-

tified both by the UniProtKB/Swiss-Prot FT analysis and the geometric disulphide analysis of

the PDB files.

Figures 7.13 and 7.14 show the Ramachandran plots (Ramachandran et al., 1963) obtained from

a RAMPAGE (Lovell et al., 2003) analysis of two mutant protein structures. RAMPAGE is a

webserver that identifies unfavourable torsion angles for non-pro, non-gly, pro, gly and pre-

pro residues in protein structures. Favoured conformations are plotted in black, less favoured

conformations are plotted in orange and disallowed conformations are shown in red. Figure

7.13(a) shows the RAMPAGE analysis of human haemoglobin (PDB record 1ch4, chain A) and

Figure 7.13(b) shows the same analysis for a multiple to-pro mutant (prolines are introduced

at positions 2, 32, 38, 48, 76, 86, 88, 96, 97, 117, 138, 142, 143 and 146) of the same structure.

Comparison of the two figures demonstrates that the torsion angle conformations in the mutant

structure are generally less favoured, with some conformations disallowed.

Figures 7.14(a) and 7.14(b) show the same comparison for the native and a multiple from-gly

(specifically G→D mutations at positions 105, 154, 226, 245 and 262) mutant of chain A of the
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(a) Native 1qsh:D (b) Mutant F42S 1qsh:D

Figure 7.9: PDs that create a void or crevice
PDB structure 1qsh, chain D. Replacing the native phenylalanine residue at position 42 with a serine residue (as shown
on the right) creates a void or surface crevice which may destabilise the protein. Residue 42 is highlighted in magenta
and the haem ligand is highlighted in blue. This mutation is also explained by affecting the PQS interface (i.e., affecting
binding to the haem ligand).
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(a) Native 1r1y:D (b) Mutant V54D 1r1y:D

Figure 7.10: PDs that introduce a buried, unsatisfied charge
PDB structure 1r1y, chain D. The buried charge analysis (see Section 5.8) identifies the V54D mutation in 1r1y as replac-
ing a neutral valine residue (Figure 7.10(a)) with a negatively charged aspartic acid (Figure 7.10(b)), thus introducing
a buried unsatisfied charge. Residue 54 is highlighted in magenta and the haem ligand is highlighted in blue. The
mutation also introduces a hydrophilic residue in the core (see Section 5.10).
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(a) Native 1hbb:D (b) Mutant E6V 1hbb:D

Figure 7.11: PDs that introduce hydrophobic residues on the surface
PDB structure 1hbb, chain D. A mutation from glutamic acid to valine at residue 6 introduces a ‘sticky’ hydrophobic
residue on the surface of 1hbb (see Section 5.9). Residue 6 is highlighted in magenta and the haem ligand is highlighted
in red. This is the mutation that causes sickle cell anaemia.

(a) Native 1hl5:I (b) Mutant C146R 1hl5:I

Figure 7.12: PDs that disrupt disulphide bonding
PDB structure 1hl5, chain I. A disulphide bond exists between C57 and C146 in chain I of 1hl5 (see native structure
on the left). A mutation replacing C146 with an arginine (see mutant structure on the right, with the mutant arginine
highlighted in red) is ‘explained’ both by the SSGEOM and UniProtKB/Swiss-Prot FT analyses (see Sections 5.6 and
5.11) as breaking a disulphide bond. The same mutation is also identified by ImPACT (see Chapter 4) and the clash
analysis (see Section 5.3.6).
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PDB structure 2bin (human P53). Again, there are a larger number of less well favoured and

disallowed torsion angle conformations in the mutant structure.

Figure 7.15 shows the structure of glucosylceramidase [UniProtKB:P04062/GLCM HUMAN]

as described by the PDB record 2nt0. Many genomic aberrations have been identified in the

corresponding GBA gene which are associated with Gaucher’s disease, a disorder of lysoso-

mal storage that results in a spectrum of neuropathologies (Jmoudiak and Futerman, 2005).

39 disease-associated glucosylceramidase mutations have been mapped to 2nt0, chain A and

subsequently analysed by SAAPdb. In addition, a smaller number (10) of glucosylceramidase

mutations described by dbSNP have been mapped to 2nt0, chain A and subsequently analysed

by SAAPdb.

The 39 PDs (shown in yellow in Figures 7.15(a) and 7.15(b)) and 10 SNPs (shown in grey in

Figures 7.15(c) and 7.15(d)) are mapped to chain A of 2nt0. In the left hand column (Figures

7.15(a) and 7.15(c)) all mutations mapped to the structure are shown, while only the explained

mutations are shown in the figures in the right hand column (Figures 7.15(b) and 7.15(d)). Other

protein chains in the structure are shown in grey with their Van der Waals volume suggested

by a dotted surface.

It appears that the SNPs are more likely to be found near the surface of the protein chain,

while the PDs are clustered more internally. Furthermore, SNPs appear to be more distant from

ligands than PDs, although two SNPs are found very close to the interface with other protein

chains.

Figure 7.15 suggests that there are some differences between PDs and SNPs with respect to

structure, at least in this example. The remainder of this chapter will discuss the large scale

sequence, structural and structural effect analysis of disease-associated and neutral polymor-

phisms collated in SAAPdb, from which it is hoped statistically significant differences will be

found.

7.3.2 PD residues are more often ‘unique’

It is expected that neutral SNPs will more often be between ‘replaceable’ residues; that is,

residues that can more easily replace each other without affecting protein structure and/or
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(a) Native 1ch4:A

(b) Multiple mutant 1ch4:A

Figure 7.13: PDs that introduce proline where φ/ψ are not favourable
Fourteen conformationally unacceptable mutations to proline (at positions 2, 32, 38, 48, 76, 86, 88, 96, 97, 117, 138, 142,
143 and 146) are identified in PDB structure 1ch4, chain A [UniProtKB:P68871/HBB HUMAN]. The RAMPAGE (Lovell
et al., 2003) analysis for the native and mutant structures are shown above in Figures 7.13(a) and 7.13(b) respectively.
Each Figure shows the results for all residues (blue shading, top left), glycine residues (orange shading, top right),
proline residues (green shading, bottom right) and pre-proline residues (blue shading, bottom left). Disallowed con-
formations are shown in red and less favourable conformations are plotted in orange. Note that there are many more
unfavourable φ/ψ conformations in Figure 7.13(b).
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(a) Native 2bin:A

(b) Multiple mutant 2bin:A

Figure 7.14: PDs that replace glycine where φ/ψ are not favourable
Five conformationally unacceptable mutations from glycine to aspartic acid (at residues 105, 154, 226, 245 and 262)
are identified in PDB structure 2bin, chain A [UniProtKB:P04637/P53 HUMAN]. The RAMPAGE (Lovell et al., 2003)
analysis for the native and mutant structures are shown above in Figures 7.14(a) and 7.14(b) respectively. Each Figure
shows the results for all residues (blue shading, top left), glycine residues (orange shading, top right), proline residues
(green shading, bottom right) and pre-proline residues (blue shading, bottom left). Disallowed conformations are
shown in red and less favourable conformations are shown in orange. Note that there are many more unfavourable
φ/ψ conformations in Figure 7.14(b).
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(a) PDs mapped to 2nt0, chain A (b) Explained PDs in 2nt0:A

(c) SNPs mapped to 2nt0, chain A (d) Explained SNPs in 2nt0:A

Figure 7.15: The distribution of PDs and SNPs in glucosylceramidase
PDB structure 2nt0, chain A. Here, both the disease (shown in yellow in Figure 7.15(a)) and the neutral mutations
(shown in grey in Figure 7.15(c)) are shown in spacefill in the diagrams in the left hand column. The explained PDs
and SNPs are shown in yellow and grey spacefill in the diagrams in the right hand column (Figures 7.15(b) and 7.15(d)
respectively). Residues from other chains are shown in grey, with their Van der Waals radii indicated by a dotted
surface. Ligands are coloured using the CPK colour scheme.
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Table 7.2: Characterising the twenty amino acids with respect to their ‘replaceability’
Residue: the amino acid; δ: the average dissimilarity score (see text); Residues are sorted in ascending δ (i.e., from most
‘unusual’ residues to more ‘replacable’ residues). All data are rounded to 2dp.

Residue δ
Tryptophan -3.32
Cysteine -3.21
Glycine -3.16
Proline -3.05
Aspartic acid -2.68
Phenylalanine -2.58
Isoleucine -2.58
Leucine -2.32
Valine -2.16
Arginine -2.05
Asparagine -1.95
Tyrosine -1.95
Histidine -1.89
Glutamic acid -1.79
Lysine -1.68
Methionine -1.53
Alanine -1.42
Threonine -1.37
Glutamine -1.32
Serine -1.16

function. To quantify how ‘replaceable’ or, conversely, how ‘unusual’ a residue is, an average

dissimilarity value for each residue has been calculated by averaging the BLOSUM62 matrix

values (see Section 2.3.4.2) of all mutations to/from the residue. The average dissimilarity

value for a residue has been denoted with δ. The calculation is shown in Equation 7.2 below:

δX =
1

n− 1

n∑
A 6=X

s(A,X) (7.2)

where n is the number of amino acids (therefore, n = 20); X is the residue of interest; A denotes

all other residues, and s(A,X) denotes the BLOSUM62 amino acid substitution matrix score.

The δ values for all twenty amino acids are shown in the second column of Table 7.2.

χ2 tests show that there are significant differences between PDs and SNPs in terms of the native

and mutant amino acids (Table 7.3). These results are discussed in detail in Sections 7.3.2.1-

7.3.2.3.
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Table 7.3: Mutant and native residues in the SAAP datasets
χ2: the χ2 statistic from a 2x2 Yates-corrected χ2 test, testing for a difference in occurrence of the residue in the two
datasets; p: the p-value (?? denotes p ≤ 0.01, ? denotes p ≤ 0.05); set: the SAAP set which has a higher occurrence of
the corresponding amino acid. All numbers are rounded to 2dp.

Native residue χ2 p set
Cysteine ?? 27.70 1.42× 10−7 PD
Glycine ?? 44.58 2.44× 10−11 PD
Arginine ?? 56.01 7.21× 10−14 PD
Tryptophan ? 4.28 3.86× 10−2 PD
Tyrosine ? 4.24 3.95× 10−2 PD
Alanine ?? 8.05 4.56× 10−3 SNP
Glutamic acid ? 4.07 4.37× 10−2 SNP
Isoleucine ?? 32.62 1.12× 10−8 SNP
Lysine ?? 36.39 1.61× 10−9 SNP
Glutamine ?? 8.38 3.80× 10−3 SNP
Threonine ?? 15.32 9.06× 10−5 SNP
Valine ?? 19.20 1.18× 10−5 SNP

Mutant residue χ2 p set
Cysteine ?? 29.66 5.16× 10−8 PD
Aspartic acid ? 4.15 4.16× 10−2 PD
Proline ?? 46.38 9.74× 10−12 PD
Arginine ?? 22.62 1.98× 10−6 PD
Tryptophan ?? 8.76 3.07× 10−3 PD
Tyrosine ?? 8.58 3.39× 10−3 PD
Alanine ?? 9.74 1.80× 10−3 SNP
Phenylalanine ?? 19.43 1.04× 10−5 SNP
Isoleucine ?? 68.60 1.11× 10−16 SNP
Leucine ?? 9.23 2.38× 10−3 SNP
Asparagine ?? 7.11 7.66× 10−3 SNP
Valine ?? 17.59 2.74× 10−5 SNP
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7.3.2.1 Native residues

Cysteine, arginine, glycine, tryptophan and tyrosine are more often native residues in the dis-

ease dataset; alanine, glutamic acid, isoleucine, lysine, glutamine, threonine and valine are mu-

tated more often in the neutral dataset. The native residues associated with the SNP dataset are

more ‘replacable’ than those associated with the PD dataset; that is, there is at least one other

residue that behaves similarly and can often replace it without affecting function (for example,

glutamic acid/aspartic acid, isoleucine/valine and lysine/arginine). The PD-associated native

residues, which are more unusual in character, are less likely to be replaced without affecting

function.

7.3.2.2 Replacement residues

In terms of the residues introduced, there are significantly more deleterious cysteine, aspartic

acid, proline, arginine, tryptophan and tyrosine mutant residues, and significantly more ala-

nine, phenylalanine, isoleucine, leucine, asparagine and valine mutant residues in the neutral

dataset. Once again, those residues common in the SNP dataset are more often replaceable,

while the PD-associated residues are more unusual in character.

7.3.2.3 Discriminating residues

Figure 7.16(a) expresses each native amino acid as the log ratio of observed percentages over

the expected percentages and Figure 7.16(b) shows the same data for the mutant residues (see

Section 7.2.2.3 for a description of the log ratio calculation). The results described as significant

in Table 7.3 are denoted with stars in Figure 7.16 (two where p ≤ 0.01 and one where p ≤ 0.05).

Positive values in Figure 7.16 indicate that the amino acid is over-represented compared with

the standard amino acid frequencies and negative values indicate under-representation.

With a view to discriminating between the two types of SAAP, the most interesting results are

those that are significantly different from what is expected and over-represented in one dataset

and under-represented in the other (see Section 7.2.3).

For native residues, cysteine and tryptophan were identified as ‘discriminating’ residues that
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(a) Profiling SAAPs by native residue, normalising by standard amino acid frequencies
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(b) Profiling SAAPs by mutant residue, normalising by standard amino acid frequencies

Figure 7.16: Profiling SAAPs by native and mutant residues
Data are normalised using standard amino acid frequencies (see Section 7.2.2.1). Statistically significant χ2 results are
denoted with red stars (two stars denote p ≤ 0.01, one star denotes p ≤ 0.05). Residues are ordered as suggested by
Vitkup et al. (2003).PDs are shown in yellow; SNPs are shown in grey.
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are enriched in the PD dataset, and glutamic acid, lysine, isoleucine and valine as ‘discrimi-

nating’ native residues that are enriched in the SNP dataset. For mutant residues, asparagine,

isoleucine, phenylalanine and valine are favoured as mutant residues in the SNP dataset, while

proline is the only mutant residue favoured in the PD dataset.

The discriminating residues associated with the PD dataset have unique roles in protein struc-

ture, while those associated with the SNP dataset have characteristics that are shared with other

amino acids and so may more readily be replaced, without resulting in a disease phenotype.

These results are supported by earlier work in which glycine, cysteine and tryptophan have

been characterised as targets of deleterious polymorphisms (Vitkup et al., 2003; Dobson et al.,

2006).

In Table 7.4, the δ dissimilarity score for the twenty amino acids is given; again, these data

are ordered from the least to the most replaceable residue, as measured by δ. Those residues

that have been described as discriminatory above (either as a native or mutant residue) are

annotated with ‡ symbols; statistically significant results that were not found to be discrimi-

natory are denoted with a †. The PD+ve column is used for residues associated with or over-

represented in the PD dataset, while the SNP+ve column is used for residues associated with or

over-represented in the neutral SNP dataset.

The top five residues, and therefore the five most unusual residues (as measured by δ) are more

frequently found in the deleterious dataset. Of these five, three are discriminatory; that is, they

are over-represented in the PD dataset while being under-represented in the SNP dataset. The

SNP-associated residues have lower δ values, suggesting that they are more ‘replaceable’.

7.3.3 PDs are more often between residues with different characteristics

In Section 7.3.2, the native or mutant residues were considered independent of their mutation

partner. In this section, the native/mutant residue pairs are analysed.

Table 7.5 lists the discriminating mutations that (i) occur at significantly different rates com-

pared with what is expected, and (ii) are found to be over-represented in one dataset and

under-represented in the other (see Section 7.2.3). Ten of the eleven discriminating SAAPs

that are associated with the deleterious dataset include at least one of glycine, cysteine or pro-



CHAPTER 7. SAAPDB : DATA OVERVIEW 257

Table 7.4: Characterising the native/mutant amino acids observed in SAAPdb with respect to
their ‘replaceability’
Residue: the amino acid; δ: the average dissimilarity score (see text); PD+ve: residues more often seen as mutant or
native residues in the PD dataset are annotated with a † in the PD+ve column, discriminating residues (see text) are
annotated with a ‡. SNP+ve: residues more often seen as mutant or native residues in the SNP dataset are annotated
with a † in the SNP+ve column, discriminating residues (see text) are annotated with a ‡. Residues are sorted in
ascending δ (i.e., from most ‘unusual’ residues to more ‘replacable’ residues). All data are rounded to 2dp.

Residue δ PD +ve SNP +ve

Tryptophan -3.32 ‡
Cysteine -3.21 ‡
Glycine -3.16 †
Proline -3.05 ‡
Aspartic acid -2.68 †
Phenylalanine -2.58 ‡
Isoleucine -2.58 ‡
Leucine -2.32 †
Valine -2.16 ‡
Arginine -2.05 †
Asparagine -1.95 ‡
Tyrosine -1.95 †
Histidine -1.89
Glutamic acid -1.79 ‡
Lysine -1.68 ‡
Methionine -1.53
Alanine -1.42 †
Threonine -1.37 †
Glutamine -1.32 †
Serine -1.16
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Table 7.5: Mutations found to be significantly over-represented in one dataset and under-
represented in the other
χ2: the χ2 statistic from a 2x2 Yates-corrected χ2 test; p: the p-value (?? denotes where p < 0.01, ? denotes where
p < 0.05); LR: the log2 ratio; Blo62: the BLOSUM62 score for this mutation. Results are ordered by the absolute
difference between the two L2R scores. All numbers are rounded to 2dp.

PD mutations χ2 p PD LR SNP LR Blo62
Cys→Tyr ?? 14.72 1.25× 10−4 0.68 -3.53 -2
Tyr→Cys ?? 16.78 4.21× 10−5 1.09 -1.94 -2
Phe→Cys ? 4.30 3.82× 10−2 0.86 -2.04 -2
Leu→Pro ?? 29.45 5.74× 10−8 2.32 -0.37 -3
Arg→Pro ?? 10.98 9.22× 10−4 0.80 -1.53 -2
Gly→Asp ?? 16.21 5.66× 10−5 1.40 -0.63 -1
Leu→Arg ?? 8.50 3.55× 10−3 1.21 -0.72 -2
Ser→Pro ? 5.14 2.34× 10−2 0.19 -1.40 -1
Gly→Ser ?? 9.69 1.86× 10−3 1.18 -0.26 -1
Cys→Arg ? 5.79 1.61× 10−2 1.19 -0.23 -3
Gly→Glu ? 6.19 1.29× 10−2 0.95 -0.36 -2

SNP mutations χ2 p PD LR SNP LR Blo62
Asp→Glu ?? 36.05 1.92× 10−9 -1.21 0.77 2
Arg→Lys ?? 17.13 3.49× 10−5 -1.88 0.02 2
Ile→Phe ?? 16.13 5.91× 10−5 -1.65 0.19 0
Lys→Arg ?? 29.26 6.34× 10−8 -1.02 0.81 2
Val→Ile ?? 36.47 1.55× 10−9 -0.79 1.00 3
Ile→Val ?? 21.51 3.51× 10−6 -1.28 0.42 3
Leu→Val ?? 31.98 1.55× 10−8 -0.42 1.28 1
Gln→His ?? 21.51 3.51× 10−6 -1.21 0.49 0
Ala→Ser ?? 23.04 1.59× 10−6 -0.88 0.75 1
Glu→Asp ?? 31.86 1.65× 10−8 -0.45 1.13 2
Ile→Met ?? 10.58 1.14× 10−3 -1.35 0.10 1
Ser→Ile ?? 8.99 2.72× 10−3 -0.93 0.52 -2
Lys→Asn ?? 17.80 2.45× 10−5 -0.03 1.19 0
Glu→Gln ?? 8.34 3.88× 10−3 -1.06 0.12 2
His→Gln ?? 8.34 3.88× 10−3 -1.06 0.12 0
Met→Ile ?? 16.05 6.16× 10−5 -0.03 1.15 1
Val→Phe ? 5.97 1.46× 10−2 -0.07 0.96 -1
Val→Ala ?? 9.24 2.37× 10−3 -0.15 0.87 0
Ser→Cys ? 4.66 3.09× 10−2 -0.41 0.46 -1
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line, the residues identified in Section 7.3.2 as a PD-favoured native or mutant discriminating

residue. Interestingly, no from-tryptophan mutations are identified, despite Trp→X being iden-

tified as PD+ve discriminating residue in Section 7.3.2. It is possible that the deleterious effect

of from-tryptophan mutations is predominantly due to losing the characteristics of tryptophan

and that the introduced residue is irrelevant; thus the counts for each Trp→X mutation are too

low to be significant. It is also interesting to note that both Cys→Tyr and Tyr→Cys are the mu-

tations that generate the two most disparate log ratio results in the two datasets (c.f. columns 4

and 5 in Table 7.5).

There are nineteen SNP-associated discriminating mutations, which include five pairs of

‘commutative’ mutations (i.e., X→Y and Y→X). The discriminating SNP-associated residues

identified from Figure 7.16 commonly occur in this dataset (lysine, glutamic acid, isoleucine,

valine, phenylalanine and asparagine). Once again, many of these mutations are between

interchangable amino acids (for example, aspartic acid/glutamic acid, lysine/arginine,

isoleucine/valine, leucine/valine and glutamine/glutamic acid).

The final column of Table 7.5 describes the discriminating mutations in terms of their BLO-

SUM62 score (Henikoff and Henikoff, 1992). It is striking that all eleven of the discriminating

mutations enriched in the PD dataset have a negative score, while eleven of the nineteen dis-

criminating mutations enriched in the neutral dataset have a positive score (five further mu-

tations have a BLOSUM62 score of 0). This indicates that the mutations characteristic of the

SNP dataset tend to be between similar residues, which more commonly replace one another

in evolution, whereas PD mutations are more likely to be between amino acids which rarely

replace one another in evolution.

The distribution of BLOSUM62 scores for the deleterious and neutral mutations are shown in

Figures 7.17(a)-7.17(c), and the distribution of their PAM30 scores are shown in Figures 7.18(a)-

7.18(c). It is useful to compare PDs and SNPs using both amino acid substitution matrices be-

cause they are derived from different data: the BLOSUM62 matrix is derived from sequence

alignments of more distantly related species than are used to derive the PAM30 matrix. Al-

though the distributions are not continuous, the CDF plots in Figures 7.17(c) and 7.18(c) serve

to show that PDs have lower BLOSUM62 and PAM30 scores than SNPs. A χ2 test shows that

these differences are statistically sigificant (χ2
df=15 = 533.55, p ' 0 and χ2

df=33 = 315.34, p ' 0

for BLOSUM62 and PAM30 scores respectively).
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(c) CDF plot of PD/SNP BLOSUM62 scores

Figure 7.17: Profiling SAAPs by their BLOSUM62 AA substitution matrix scores
PDs are shown in yellow; SNPs are shown in grey.
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PAM30 scores (PDs)
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(c) CDF plot of PD/SNP PAM30 scores

Figure 7.18: Profiling SAAPs by their PAM30 AA substitution matrix scores
PDs are shown in yellow; SNPs are shown in grey.
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To return to the concept of average dissimilarity as described in Section 7.3.2, Figure 7.19 shows

a matrix, describing all possible mutations. The rows describe the native residues and the

columns describe the mutant residues. Both the colums and rows are ordered by increasing δ.

The matrix is partitioned into a pale yellow PD-associated area and a pale grey SNP-associated

area. This is done by identifying the residue with the highest δ score that is identified as a

PD+ve discriminatory residue (proline, see Table 7.4) and using this residue as the inclusive

PD+ve threshold. Using this method, W, C, G and P cells are defined as the PD-associated area

and all others are defined as the SNP-associated area.

PD+ve discriminatory mutations (as described in Table 7.5) are then indicated by colouring the

corresponding cell with a brighter yellow and SNP+ve discriminatory mutations are indicated

by colouring the corresponding cell with a darker grey. It is clear that the partitioning of the

mutation matrix in this way is very successful in capturing the classification of the discrim-

inatory mutations: only two discriminatory mutations are found in the ‘wrong’ region: the

Leu→Arg mutation and the Ser→Cys mutation.

It is impossible at this stage to comment with any confidence as to whether the profile of residue

substitutions will change if the site of the mutation is, for example, on the surface, in the core or

at a functional site. However, there is a clear and significant tendency for PDs to be mutations

to and from amino acids known to have a unique role in protein structure, and for SNPs to be

mutations between physicochemically similar residues.

7.3.4 PDs affect sites of higher conservation

Residues that are highly conserved across diverse species have been consistently selected for

across different branches of evolution. It is therefore likely that they are critical to protein

function.

The histograms in Figures 7.20(a) and 7.20(b) describe the distribution of conservation scores

for SNPs and PDs. These conservation scores are generated by the species-similarity weighted

method (described in Section 4.2.1) used by ImPACT (see Chapter 4). Only data for those

SAAPs that are mapped to alignments of 10 or more reliable, fully sequenced, functionally

equivalent proteins as identified by FOSTA (see Chapter 3) are included here.
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Figure 7.19: Characterising the SAAPs with respect to the ‘replaceability’ of the native and
mutant residues
The rows describe the native amino acid, the columns describe the mutant amino acid in the polymorphism pair. Amino
acids are ordered by increasing δ; that is, from most unique to more replaceable. The PD-associated mutation region
(as defined by the dicriminatory mutations, see text) is coloured in pale yellow, while the SNP-associated mutation
region is coloured in pale grey. Yellow and grey boxes denote discriminatory mutations (see text): yellow mutations
are over-represented in the PD dataset and under-represented in the SNP dataset, grey mutations are over-represented
in the SNP dataset and under-represented in the PD dataset. It is clear that PDs cluster in the top left hand half of the
matrix, where mutations between the most unique residues are described.
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It is clear from the CDF in Figure 7.20(c) that PDs more often occur at sites of high conservation.

This trend is statistically significant (D = 0.12, p ' 0).

Despite the tendency for PDs to occur at sites of higher conservation, there is also a surprisingly

large proportion of SNPs that are found at sites that are fully conserved. Such SNPs may be at

more flexible or accommodating sites of protein structure (and the 100% conservation may

therefore be a chance event) or there may be some tandem compensatory mutation nearby that

stifles the effect of the polymorphism. Regardless of the mechanism by which the effects of

SNPs at highly conserved sites are neutralised, it is clear that methods that rely exclusively on

sequence data—in particular, sequence conservation—to discriminate between PDs and SNPs

are limited in their potential.

7.3.5 PDs and SNPs have the same torsion angle profiles

φ and ψ angles describe the dihedral angles involving the C-N’-Cα’-C’ and N-Cα-C-N’ respec-

tively. Together they describe allowed conformational regions for amino acid backbones in the

form of a Ramachandran plot (Ramachandran et al., 1963). The ω torsion angle strictly adheres

to a ≈ 0 ◦(cis), ≈ 180 ◦(trans) profile and defines the dihedral angle of the peptide bond (Cα-C-

N’-Cα’) which is delocalised. Beyond defining whether the peptide bond is cis or trans, the ω

angle has little relevance to protein structure, at least in the context of the current analysis, and

only φ and ψ angles are considered here.

Figures 7.21(a)-7.21(c) and 7.22(a)-7.22(c) profile deleterious and neutral SAAPs in terms of the

φ/ψ torsion angles at the site of mutation. There is no statistical difference between PDs and

SNPs with respect to φ/ψ torsion angles (D = 0.02, p = 0.54 and D = 0.02, p = 0.71 respec-

tively).

7.3.6 PDs and SNPs have the same secondary structure profiles

In Section 7.3.5, it was found that there is no difference between PDs and SNPs with respect to

the φ/ψ torsion angles. In this section, a related analysis assesses whether there is a correlation

between secondary structure and deleterious mutations.
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(c) CDF plot of PD/SNP conservation scores

Figure 7.20: Profiling SAAPs by their specsim -weighted conservation scores
PDs are shown in yellow; SNPs are shown in grey.
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(c) CDF plot of PD/SNP φ angles

Figure 7.21: Profiling SAAPs by their φ torsion angles
PDs are shown in yellow; SNPs are shown in grey.
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(c) CDF plot of PD/SNP ψ angles

Figure 7.22: Profiling SAAPs by their ψ torsion angles
PDs are shown in yellow; SNPs are shown in grey.
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Figure 7.23: Profiling SAAPs by secondary structure
The proprotion of all represented secondary structures (represented by the corresponding DSSP code) in SAAPdb. PDs
are shown in yellow, SNPs are shown in grey. E represents β-ladders; B represents β-sheets; G represents 310 helices;
H represents α-helices; C represents coils; S represents bends; T represents turns. E and B describe β structures; G and
H describe helical structures; C, S and T describe loop structures. PDs are shown in yellow; SNPs are shown in grey.

DSSP (Kabsch and Sander, 1983) defines eight classes of secondary structure. The 310, α and π

helical structures are denoted by G, H and I respectively and the β-strand and extended β-sheet

are denoted by B and E. The third category describes all other ‘loop’ structures: C for coil, T for

turn and S for bend.

Where a mutation is mapped to multiple structures, the mode secondary structure code has

been recorded (see Section 7.2.1). No mutation is found to exist in the I (π-helix) conformation

following this averaging process and no further data for this class are given.

Figure 7.23 shows how often PDs and SNPs are found in particular types of secondary structure.

There does not appear to be any difference between PDs and SNPs with respect to secondary

structure. This is confirmed by multiple χ2 tests (which use pre-calculated expected values, see

Section 7.2.2.1), the results of which are shown in Table 7.6.
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Table 7.6: χ2 tests comparing secondary structure in PDs and SAAPs
Comparison of PDs and SNPs with respect to their occurence in secondary structure elements. Results are for 2x2
(Yates corrected) χ2 tests using real expected values, as calculated from CATH v3.0.0 HReps structures. E represents
β-ladders; B represents β-sheets; G represents 310 helices; H represents α-helices; C represents coils; S represents
bends; T represents turns. E and B describe β structures; G and H describe helical structures; C, S and T describe loop
structures.

DSSP code χ2 p set
β structures 1.03 0.31 -

B 0.36 0.55 -
E 0.88 0.35 -

Helical structures 0.09 0.77 -
G 0.14 0.71 -
H 0.31 0.58 -

Loop structures 1.61 0.20 -
C 1.64 0.20 -
S 0.74 0.39 -
T 0.00 0.95 -

7.3.7 PDs are more commonly found in the protein core

Relative accessibility measures the accessibile surface area (ASA) in Å2 as a proportion of the

standard ASA observed for that amino acid in an extended Ala-X-Ala peptide. This is calcu-

lated using a local implementation of the Lee and Richards algorithm (Lee and Richards, 1971).

Residues with a high relative accessibility will be found on the surface, while buried residues

will have values of zero.

Figure 7.24(a) shows the distribution of monomer accessibility scores for PDs and Figure 7.24(b)

shows the distribution of monomer accessibility scores for SNPs. Both sets of SAAPs appear to

consist of two components: a concentration at ≤10% ASA (corresponding to buried residues)

and another at 40-60% (corresponding to residues on the surface). The CDFs of both distribu-

tions (Figure 7.24(c)) show that there are proportionally more buried residues in the PD dataset

than the SNP dataset. This difference is found to be signficant (D = 0.076, p ' 0).

A greater proportion of PDs are buried than SNPs. Residues in the core of the protein are gener-

ally critical to the stability of the structure and it follows that mutations in the core of the protein

could critically affect protein stability and be deleterious. It is also likely that surface residues,
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unless at critical functional sites or at tertiary or quaternary interfaces, can change more readily

without disrupting protein structure and/or function. This trend has been identified elsewhere

(Ferrer-Costa et al., 2002; Chasman and Adams, 2001; Saunders and Baker, 2002; Krishnan and

Westhead, 2003; Yue et al., 2005).

7.3.8 PD residues are in contact with more other residues

It is expected that mutating residues that are deeply embedded in the protein structure are

more likely to cause disease. Indeed, in Section 7.3.7 it was shown that PDs are found to have

lower relative ASA (i.e., are more buried) than SNPs. A complementary analysis considers the

number of residue contacts. It is expected that mutations to residues that are in contact with

many other residues will have a greater effect on structure than mutations to residues that have

a low number of residue contacts.

An existing, locally-developed algorithm has been used to calculate the relative number of

residue contacts (excepting primary-sequence-adjacent residues) for each residue in a protein

structure. The raw number of residue contacts is normalised by the number of atoms in the

target residue to generate the relative number of residue contacts, as described in Equation 7.3.

Cin =
Rjd<3.5

Ni
(7.3)

where Cin is the normalised contact number for a residue i; R is the number of residues, j,

which make a contact at an atom centre distance of < d and where j 6= i, and Ni is the number

of atoms in residue i.

The graphs in Figure 7.25 describe the distribution of relative residue contacts in both datasets;

the CDF in Figure 7.25(c) shows that PDs are in contact with a higher number of other residues

than SNPs. This difference is found to be statistically significant (D = 0.12, p = 3.05× 10−14).
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(c) CDF plot of PD/SNP ASA

Figure 7.24: Profiling SAAPs by their relative accessible surface area (ASA)
PDs are shown in yellow; SNPs are shown in grey.
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Distribution of residue contacts in PD dataset
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(c) CDF plot of PD/SNP residue contacts

Figure 7.25: Profiling SAAPs by number of residue contacts
PDs are shown in yellow; SNPs are shown in grey.
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7.3.9 PDs are more often explained

Sections 7.3.2-7.3.8 described PDs and SNPs with respect to basic sequence and structural char-

acteristics. In this section, the SAAPs are profiled with respect to their structural ‘explanations’.

One of the aims of SAAPdb is to ‘explain’ the effect of deleterious mutations by identifying

their effect on local protein structure. It is hypothesized that mutations having an identifiable

effect on protein structure will cause disease, whereas mutations that have little or no effect on

protein structure will not cause disease. As such, it is expected that PDs will more often be

explained by at least one of the analyses described in Chapter 5.

Figure 7.26 shows the results of the analyses, for each unique sequence mutation which has at

least one mapped structure that generates a positive result for the corresponding explanation.

The results of multiple χ2 tests are compiled in Table 7.7. Disease mutations are more often

explained by at least one of the analyses than neutral mutations (see bars marked ‘EXPLAINED’

in Figure 7.26): 87.17% of disease mutations are explained by at least one analysis compared

with 58.68% of neutral mutations. This difference is highly statistically significant (χ2
df=1 =

552.99, p ' 0).

7.3.10 PDs most often affect protein stability

All effects of mutations can be divided into three groups: (1) those which directly affect function

(be it binding, catalysis, allosteries, etc.); (2) those which prevent correct folding; and (3) those

which affect protein stability–i.e., they don’t prevent correct folding, but destabilise the correct

fold with respect to unfolded or misfolded states.

Much research has suggested that the deleterious effects of disease mutations are predom-

inantly due to their effect on protein stability (Ferrer-Costa et al., 2002; Ferrer-Costa et al.,

2004; Wang and Moult, 2001; Yue et al., 2005). This is the most interesting category of muta-

tions as these mutations have the potential to be ‘rescued’ by drugs which bind the correctly

folded state (Boeckler et al., 2008). In the current suite of structural analyses (see Chapter 5),

there are six analyses that assess whether a mutation will make the protein structure unstable.

Figure 7.26 shows that PDs are often explained by at least one of these analyses. In this section,
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Figure 7.26: Profiling SAAPs with respect to explanations
pqs: the mutation disrupts an inter-chain interface as described by PQS; bind: the mutation disrupts a binding site
as described by PDB; mmdb: the mutation disrupts a binding site as described by MMDBBIND; ANY BINDING: the
mutation is positive for bind and/or mmdb; pro: the mutation introduces a proline where torsions are unfavourable;
gly: the mutation replaces a glycine where torsions are unfavourable; clash: the mutation causes a steric clash in the
hypothesised mutant structure; cispro: the mutation replaces a cisproline; ANY FOLDING: the mutation is positive
for pro, gly, clash and/or cispro; hbond: the mutation breaks an existing hydrogen bond; void: the mutation creates
a void in the protein core; corephilic: the mutation introduces a hydrophilic residue in the core; surfacephobic: the
mutation introduces a hydrophobic residue on the surface; buriedcharge: the mutation introduces a buried unsatisfied
charge; ssgeom: the mutation disrupts a disulphide bond as calculated from PDB coordinates; ANY INSTABILITY: the
mutation is positive for hbond, void, corephilic, surfacephobic, buriedcharge and/or ssgeom; highcons: the mutation
affects a highly conserved residue; EXPLAINED: the mutation is explained by at least one of the above analyses.
Different ‘classes’ of explanation (i.e., interface, functional, folding, instability and conservation) are separated by pale
grey vertical lines. Precise percentages are given above the corresponding bar. Statistically significant results are
denoted with red stars (two where p < 0.01 and one where p < 0.05). For more information on these analyses, see
Chapter 5. Yellow bars denote results for PDs, grey bars denote results for SNPs.
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Table 7.7: Structural analysis of the SAAP datasets: individual explanations
Explanation the explanation (see Materials and Methods); χ2: the χ2 statistic from a 2x2 Yates-corrected χ2 test; p: the
p-value (?? denotes p < 0.01, ? denotes p < 0.05); set: the SAAP set which has a significantly higher occurrence of the
corresponding explanation. a denotes a result with cell counts≤ 10 but confirmed with Fisher-exact test. All numbers
are rounded to 2dp.

Explanation χ2 p set
PQS interface ?? 119.47 0 PD
PDB binding ?? 82.85 0 PD
MMDB binding ?? 54.31 1.71× 10−13 PD
Any binding ?? 173.85 0 PD
To-Proline ?? 38.63 5.13× 10−10 PD
From-glycine ?? 16.65 4.49× 10−5 PD
Clash causing ?? 113.52 0 PD
From-cisprolinea 0.04 8.33× 10−1 -
Any folding ?? 136.44 0 PD
Hydrogen bond break ?? 84.86 0 PD
Void creation ?? 401.84 0 PD
Hydrophilic in core ?? 32.91 9.67× 10−9 PD
Hydrophobic on surface ? 4.13 4.22× 10−2 SNP
Buried unsatisfied charge ?? 86.69 0 PD
Disulphide (geometric)a ? 4.07 4.37× 10−2 PD
Any instability ?? 956.01 0 PD
High conservation ?? 239.39 0 PD
Explained ?? 552.99 0 PD

χ2 tests are presented with percentages; note that where this is the case, the χ2 tests have been

carried out on the raw counts.

PDs more often break native hydrogen bonds (28.33% of PDs, 16.07% of

SNPs/χ2
df=1 = 84.86, p ' 0); more often create voids in the core of the protein (40.19% of PDs,

11.98% of SNPs/χ2
df=1 = 401.84, p ' 0); more often introduce hydrophilic residues in the core

of the protein (5.54% of PDs, 1.84% of SNPs/χ2
df=1 = 32.91, p = 9.67× 10−9); more often create

a buried, unsatisfied charge (12.13% of PDs, 3.61% of SNPs/χ2
df=1 = 86.69, p ' 0) and more

often break disulphide bonds (1.25% of PDs, 0.54% of SNPs/χ2
df=1 = 4.07, p = 4.37 × 10−2,

p = 0.033 two-tailed Fisher exact test) than SNPs. Unexpectedly, it is found that SNPs more

often introduce a hydrophobic residue on the surface of a protein (9.39% of PDs, 11.30% of

SNPs/χ2
df=1 = 4.13, p = 4.22 × 10−2); Saunders and Baker (2002) also found that this is a

poor predictor of pathogenicity. This will in part be due to SNPs occurring more often on the

protein surface than PDs (see Section 7.3.7).

Cumulatively, the instability analyses explain most of the PDs (65.48%), while only explaining
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35.06% of SNPs, which is a significant result (χ2
df=1 = 956.01, p ' 0). It appears that PDs are

more often associated with destabilising changes in the core of the protein. This is consistent

with the finding described in Section 7.3.7 that PDs are more often buried than SNPs.

7.3.11 Sequence conservation discriminates most successfully between PDs

and SNPs

Figure 7.26 shows that 22.82% of disease mutations occur at a site of high conservation—as

defined by ImPACT (Chapter 4)—whereas less than 5% of neutral polymorphisms affect highly

conserved residues. This difference is highly statistically significant (χ2
df=1 = 239.39, p ' 0) and

is consistent with the hypothesis that mutating residues that are highly conserved is likely to

be disease-causing.

7.3.12 PDs are more diverse in their structural explanations

It is useful to characterise the PD and SNP datasets in terms of their homogeneity. It may

be that SNPs are very similar to each other while PDs have a more diverse structural effect

profile. Differences in explanation diversity as well as differences in the occurrence of particular

explanations (as discussed in Section 7.3.10) are encouraging for future prediction work.

The explanation profiles can be represented as a binary vector, where 1 indicates a postive result

for an analyses (i.e., an explanation), and 0 indicates a negative result (i.e., the absense of an

explanation). A convenient metric for which to compare the explanation profiles, or calculate

the distance between them, is the Hamming distance (here, denoted by DH ). The Hamming

distance between two binary vectors is the number of corresponding elements in which they

differ. For example, the Hamming distance between the binary vectors 01001 and 01100 is

2 (they differ at the third and fifth element). Explanation profiles that are very different will

have a large Hamming distance (the maximum possible Hamming distance is the length of the

vector, where all elements are different), while two identical profiles will have DH = 0.

The Hamming distance between each pairwise comparison within each dataset was recorded.

The graphs in Figure 7.27 characterise the PD and SNP dataset with respect to the diversity
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Figure 7.27: Profiling SAAPs by pairwise hamming distances within each dataset
PDs are shown in yellow; SNPs are shown in grey.
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of the explanation profiles, as measured by the Hamming distance. Figure 7.27(b) shows that

for the vast majority of SNP profile comparisons, DH ≤ 1. That is, most SNPs are identical in

their explanation vectors, or differ by one explanation result. Note that the unexplained vector

is included, and that the high frequency of DH = 0 for the SNP data may be due to a high

frequency of SNPs being unexplained and therefore identical. PDs, however, are more diverse:

Figure 7.27(a) shows that the distribution of DH is shifted to the right as compared to SNPs,

indicating that for the majority of PD profile comparisons, DH ≥ 2.

However, it is possible that this effect is due to the PDs being explained more often by multiple

analyses: if PDs are explained by multiple, simultaneous analyses more often than SNPs are

(see Section 7.3.13), the Hamming distances will always be larger in an all-against-all pairwise

comparison of PDs than in the same comparison within the SNP dataset. To account for poten-

tial bias in the number of simultaneous explanations, it is necessary to have some estimate of the

‘background’ or expected Hamming distance with which to normalised the data. This would

require an, as yet unformed, comprehensive understanding of the co-occurrence of structural

explanations in these datasets. Therefore, the Hamming distance distributions will not be com-

pared and will only be used to characterise each dataset individually.

7.3.13 PDs are more often explained by multiple analyses

The analyses described in Section 7.3.9 showed that PDs are more often explained by at least

one analysis. Here, the number of simultaneous explanations for PDs and SNPs are considered.

In this section, the term ‘simultaneous’ will be used to describe two or more analyses that

explain one SAAP. Given the hypothesis that PDs bring about significant structural disruption

(potentially in more than one way) while SNPs do not, it is expected that PDs will be associated

with multiple structural explanations while SNPs will be associated with very few.

Figures 7.28(a)-7.28(c) describe and compare the distribution of simultaneous explanations for

PDs and SNPs and Table 7.8 describes the results of multiple χ2 tests that compare PDs and

SNPs with respect to the number of simultaneous explanations. SNPs are more likely than PDs

to be explained by zero or one analyses (χ2
df=1 = 464.79, p ' 0 and χ2

df=1 = 9.93, p = 1.63×10−3

respectively). Cumulatively, these categories account for 71.46% of SNPs, but only 38.97% of

PDs. PDs are more often explained by between two and seven explanations: 60.93% of PDs are

explained by two to seven explanations, while only 28.40% of SNPs are explained by two to
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Table 7.8: Structural analysis of the SAAP datasets: the simultaneous explanations
# EXP: the number of simultaneous analyses that are positive, and so explain the SAAP; χ2: the χ2 statistic from
a 2x2 Yates-corrected χ2 test; p: the p-value (?? denotes p < 0.01, ? denotes p < 0.05); set: the SAAP set which
has a significantly higher occurrence of the corresponding explanation; a denotes a result with cell counts ≤ 10 but
confirmed with Fisher-exact test. All numbers are rounded to 2dp.

# EXP %PDs %SNPs χ2 p set
0 ?? 16.74 45.15 464.79 0 SNP
1 ?? 22.23 26.31 9.93 1.63× 10−3 SNP
2 ?? 21.84 15.59 25.90 3.59× 10−7 PD
3 ?? 17.65 8.14 75.65 0 PD
4 ?? 11.18 3.66 72.90 0 PD
5 ?? 6.80 0.81 78.45 0 PD
6a ?? 2.66 0.20 33.25 8.11× 10−9 PD
7a ?? 0.80 0.00 11.90 5.61× 10−4 PD
8a 0.10 0.14 0.10 0.75 -

seven simultaneous explanations.

These results confirm that it is not possible to compare the distributions of Hamming distances

(see Section 7.3.12) in the PD and the SNP datasets: as the PDs are more often explained by

multiple analysis, the Hamming distances will be consistently greater than those derived from

the SNP dataset. However, the Hamming distance analysis can contribute to the understanding

of the structural effects of SAAPs as a measure of diversity within each dataset.

7.3.14 The most common explanation profiles are different for PDs and

SNPs

It has been shown that PDs are more likely to be explained simultaneously by two or more

analyses (see Section 7.3.13). Here, the most common explanation profiles for PDs and SNPs

are identified.

Not all the explanation profile combinations are shown here: to identify those explanation pro-

files that occur more often than expected, a rough estimate of the ‘expected’ frequency of each

profile was calculated as N/E, where N is the size of the dataset (i.e., the number of SAAPs, or

the number of observed explanation profiles) and E is the number of unique explanation pro-

files observed in that dataset. For example, consider a dataset of 100 SAAPs where five unique
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Figure 7.28: Profiling SAAPs by the number of simultaneous explanations
PDs are shown in yellow; SNPs are shown in grey.
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explanation profiles are observed; here, N = 100 and E = 5. The rough estimate of ‘expected’

frequency for each profile would be 100/5 = 20. This estimation results in the same expected

occurrence for each profile which is clearly not representative. Due to dependencies between

analyses, the severity of the analyses themselves and aspects of protein structure, some ex-

planations will occur together more often than others. For example, it may be expected that

mutations identified as disrupting MMDBBIND sites (Section 5.5) will often also be identified

as disrupting binding sites as extracted from the PDB (Section 5.3.3). However, as discussed

in Section 7.3.12, it is difficult to estimate the expected frequencies of explanation profiles at

present. Any profile that exceeds the rough estimate of the expected frequency will be de-

scribed as ‘enriched’.

Figures 7.29(a) and 7.29(b) show those explanation profiles that are enriched in the PD and

SNP datasets respectively. The term ‘positive profile’ will be used to describe any explanation

profile that contains at least one explanation, i.e., all observed explanation profiles excepting

the ‘unexplained’ profile.

Firstly, far more positive explanation profiles are enriched in the PD dataset than in the SNP

dataset. This suggests a stronger association between PDs and their positive explanation pro-

files than exists between SNPs and their positive explanation profiles. In Section 7.3.12 it was

shown that SNPs are more similar to each other with respect to their explanation profiles than

PDs, most often differing from each other in zero or one analyses. Taking this finding together

with the trends shown in this Figure 7.29, SNPs can be characterised as primarily unexplained

with the occasional explanation (which may be due to insensitivies in the analyses) while PDs

can be characterised as primarily explained by at least two analyses.

Of the fourteen positive profiles that are enriched in the SNP dataset, half are single analysis

explanations; similarly, a high proportion of the explanation profiles enriched in the PD dataset

are multiple analysis explanation profiles. These observations support the findings of Section

7.3.13, where it was shown that SNPs are more likely to be associated with zero or one analyses

and PDs are more likely to be associated with two to seven simultaneous explanations.

It is interesting to note that the three highest ranking positive profiles in both datasets are the

void, hydrogen bonding and quaternary structure interface analyses. This indicates that—for

these analyses more than any other single analyses—there is a differential in the extent to which

the mutation affects protein structure. As discussed previously in Section 7.3.4 with respect to
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(a) Frequency of explanation combinations for PDs

(b) Frequency of explanation combinations for SNPs

Figure 7.29: Profiling SAAPs by the explanation ‘profile’
The explanation ‘profile’ of a SAAP is the set of analyses that ‘explain’ that SAAP. PDs are shown in yellow; SNPs are
shown in grey.



CHAPTER 7. SAAPDB : DATA OVERVIEW 283

the high number of SNPs found at sites of high conservation, it is possible that void-causing,

hydrogen-bond-breaking and quaternary-structure-affecting mutations can more readily be ac-

commodated by (i) adjustments in the existing structure or (ii) compensatory mutations. In

an investigation into the phenomenon of compensatory mutations in SAAPdb, it was indeed

found that PDs with identifiable compensatory mutations in other species are most commonly

found to disrupt the quaternary interface, disrupt hydrogen bonding or introduce a void in

the protein structure (Barešić et al., 2009). Irrespective of the mechanism by which they are ac-

commodated in SNPs, it is clear that these analyses in particular could be more sensitive and

perhaps should score mutations rather than being binary classifiers.

Concentrating on those positive profiles common in the PD dataset, it is striking that neither

the binding nor MMDBBIND analyses, both found to be significantly associated with PDs pre-

viously (see Figure 7.26 and Table 7.7), occur as single analyses or as a two-explanation pair.

However, they are often found, both separately and together, in several ≥ 3 analysis explana-

tion profiles. This suggests that for a mutation to occur at a binding site is often not enough to

induce a deleterious phenotype. As suggested in Section 7.3.10, where it was found that PDs

are more strongly associated with destabilising protein structure than affecting binding sites,

perhaps the mechanics of protein-ligand binding are more flexible than might be expected.

7.4 Conclusions

This chapter described an analysis of the data in SAAPdb. PDs have most frequently been

characterised as mutations between very different residues, where the introduced or replaced

residue has a unique role in protein structure. They are found embedded in the protein struc-

ture, both in terms of accessibility and in terms of contacts with other residues, and they more

often affect residues that have been conserved across different branches of evolution and there-

fore likely to have been subject to selection pressure. This characterisation is consistent with

findings elsewhere (Wang and Moult, 2001; Ferrer-Costa et al., 2002; Ferrer-Costa et al., 2004; Yue

et al., 2005; Chasman and Adams, 2001; Saunders and Baker, 2002; Krishnan and Westhead,

2003; Dobson et al., 2006; Vitkup et al., 2003).

As described in Chapters 5 and 6, SAAPdb analyses all SAAPs with a view to identifying any

local structural effect owing to the change in amino acid. PDs more often have a discernable
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effect on protein structure than SNPs, and more often affect the structure in more than one way.

Further, PDs have been found to affect protein structure in more diverse ways than SNPs.

It is perhaps surprising that PDs are not more often found at binding sites: disruption of ligand

binding would directly affect protein function. More than double the number of PDs introduce

instability in the protein structure than do affect binding sites (65.48% of PDs as opposed to

30.10%). There are several possible explanations for this trend: (i) protein-ligand binding is

more flexible than is commonly believed; (ii) mutations at binding sites are fatal to the cell,

therefore never observed in a patient, and therefore never reported as disease-associated, or

(iii) given the mechanics of protein structure, a higher proportion of residues are involved in

maintaining protein stability than are involved in binding sites. The similar ratio of instabil-

ity explanations to binding explanations for SNPs (17.10% as compared to 35.05%) is roughly

equivalent to the ratio of instability explanations to binding explanations for PDs (17.10% :

35.05% ' 30.10% : 65.48% ' 2), which lends some weight to the third theory. Further, Steward

et al. (2003) demonstrated that the proportion of disease mutations identified as disrupting var-

ious types of interface (protein-ligand, protein-protein and so on) corresponds to the proportion

of residues occuring at those interfaces. By estimating frequencies of each kind of ‘explanation’

in native protein structures, the results described in Section 7.3.9 could be corrected. However,

without further investigation it is not possible to discount any of the proposed explanations.

In Sections 7.3.2 and 7.3.3, an average dissimilarity statistic δ was used to rank the amino acids

from the most unique residue (tryptophan) to the most replaceable residue (serine). Although

the calculation of this statistic is very simple (see Equation 7.2), it appears to be an effective

statistic with which to describe amino acids when comparing disease-causing and neutral mu-

tations and should be included in the feature vector when training machine learning algo-

rithms. More work should be done to investigate such an average dissimilarity score.



Chapter 8

Conclusions

This thesis has described the SAAPdb database, a resource that collates information on sin-

gle amino acid polymorphisms or SAAPs. SAAPdb attempts to identify the effects of disease

mutations by providing hypotheses as to how they might disrupt structure and/or function.

In Chapter 3, a novel method of identifying functionally equivalent proteins (FEPs) was de-

scribed, called FOSTA (Functional Orthologues from Swiss-Prot Text Analysis). In Chapter 4,

a novel method of identifying high conservation within a multiple sequence alignment was

described, called ImPACT (Improved Protein Alignment Conservation Threshold). Together,

these chapters describe the one sequence analysis that has been incorporated into SAAPdb.

Chapters 5 and 6 described the structural analysis pipeline with which SAAPdb analyses mu-

tations and Chapter 7 described an analysis of the resulting SAAPdb data.

Here, the conclusions that can be drawn from the work presented in this thesis are collated.

285
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8.1 Incorporating sequence data: FOSTA and ImPACT

8.1.1 FOSTA

The benchmarking of FOSTA demonstrated that not only are UniProtKB/Swiss-Prot

annotations informative enough to capture the functionality of proteins, but that the simple

string comparison methods employed by FOSTA are successful in identifying functional

equivalence between proteins. Some inconsistencies identified by the FOSTA analysis of

certain proteins (e.g., human protein C [UniProtKB:P04070/PROC HUMAN]) have since been

rectified by UniProtKB.

UniProtKB has recently changed the format of the description line from which FOSTA extracts

the functional annotations1. Although the change is inconvenient, as existing parsers must be

updated, the update has vastly improved the ease with which the desired data can be extracted.

Furthermore, useful flags have been added to indicate whether the protein record describes, for

example, a fragment. Figure 8.1 shows the change to the format of the horse protein C record,

an example of a record of a protein fragment.

However, the comparison of FOSTA with Inparanoid did highlight some insensitivies in

the methods with which FOSTA identifies functional equivalence. For example, mapping

acronyms or short forms to long forms and vice versa would increase the functional

match sensitivity of FOSTA. More generally, more ‘fuzzy’ matching should be employed to

accommodate slight variations in names and numbers. See Table 3.11 for specific examples

where these changes would lead to additional FEP assignments in FOSTA.

As pointed out in Chapter 3, annotation conventions in UniProtKB/Swiss-Prot are largely

inherited from the source databases and organism-specific annotation communities.

UniProtKB/Swiss-Prot is in a unique position to unify these annotations, thus avoiding any

requirement for fuzzy matching, or for matching long forms of names with acronyms or

abbreviations.
1http://www.expasy.ch/sprot/relnotes/spwrnew.html#rel56.0
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ID PROC HORSE Reviewed; 157 AA.
AC Q28380;
DT 15-DEC-1998, integrated into UniProtKB/Swiss-Prot.
DT 01-NOV-1996, sequence version 1.
DT 12-JUN-2007, entry version 45.
DE Vitamin K-dependent protein C (EC 3.4.21.69) (Autoprothrombin IIA)
DE (Anticoagulant protein C) (Blood coagulation factor XIV) (Fragment).

d
...

ID PROC HORSE Reviewed; 157 AA.
AC Q28380;
DT 15-DEC-1998, integrated into UniProtKB/Swiss-Prot.
DT 01-NOV-1996, sequence version 1.
DT 02-SEP-2008, entry version 49.
DE RecName: Full=Vitamin K-dependent protein C;
DE RecName: EC=3.4.21.69;
DE AltName: Full=Autoprothrombin IIA;
DE AltName: Full=Anticoagulant protein C;
DE AltName: Full=Blood coagulation factor XIV;
DE Flags: Fragment;

d
...

Figure 8.1: Recent changes to the UniProtKB/Swiss-Prot flatfile format
Above is an extract from the record describing PROC HORSE in UniProtKB/Swiss-Prot v53.0, below is the correspond-
ing extract updated with the new formatting (as of UniProtKB/Swiss-Prot v56.0). The corresponding EC, synonym and
fragment flag data are shown in red, blue and green respectively. The improvements facilitate fast extraction of the rel-
evant information using regular expressions, for example.
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8.1.2 ImPACT

ImPACT was benchmarked against four representative proteins and against a dataset of se-

quence motifs extracted from PROSITE. In addition, a battery of artificial conservation data

was designed to test the response of ImPACT to controlled variations in the distribution of

conservation scores.

The more qualitative evaluations (using four representative proteins and the artificial conser-

vation data) demonstrated that ImPACT generates sensible thresholds for many different con-

servation score datasets. The more quantitative PROSITE analysis, despite concerns regarding

the definition of negative examples, was possibly more informative in that it drew attention to

the fact that ImPACT can perform poorly in sparse alignments. Extensive gaps will generate

very low conservation scores which could dominate the distribution of conservation scores to

be modelled. A valuable addition to the ImPACT method would be to disregard data from

columns that are not adequately represented across the aligned proteins.

A further valuable addition to ImPACT would be some measure of confidence that would ac-

company each generated threshold. This could be a combination of (i) how well the mixture

model has fitted the data; (ii) some measure of the deviation from the threshold that would be

generated from random data; and (iii) some measure of the diversity and number of species in-

cluded in the alignment. It is possible to calculate the former—all modelling methods provide

a measurement of error—but it is more difficult to define how the latter confidence components

might be calculated. An alternative to using a background distribution of random data (which

is likely to deviate from characteristics of multiple sequence alignments) is to use permuted

data, or to use alignments of known functionally deviant proteins to construct a background

distribution of conservation scores. This might be possible by considering the functionally di-

verged homologues (FDHs) generated by FOSTA.

Included in the set of representative proteins with which ImPACT is assessed are P53 and

haemoglobin (HBB), two proteins for which a large number of disease mutations (1 712 and

423 respectively) are analysed in SAAPdb. Although a higher proportion of P53 residues are

100% conserved, the HBB alignment has a higher mean conservation score and is the more

globally conserved protein. To accommodate the higher global conservation, ImPACT correctly

generates a higher ImPACT threshold of 0.9763 for HBB than it does for P53 (0.9636). However,

mutations to HBB are rarely fatal and more often lead to mild anaemia, whereas mutations to
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P53 are found in approximately 50% of human cancers (Greenblatt et al., 1994; Sidransky and

Hollstein, 1996). As such, a higher threshold for HBB appears to depart from what might be

expected: because the phenotypic effect of HBB mutations is less severe than that of P53, it

might be expected that the threshold for high conservation would be lower in HBB than P53.

This apparent incongruity could be due to any number of differences between the two proteins,

including their differential roles; their involvement in multiple pathways; the differential flexi-

bility of the structures and so on. Regardless of the mechanisms by which HBB can withstand

mutations, it is clear that sequence information alone cannot capture the differential phenotypic

effects of these two proteins.

8.2 The analysis of disease mutations

Chapter 7 described a broad analysis of the data in SAAPdb. The existing characterisation of

deleterious PDs (pathogenic deviations) and neutral SNPs (single nucleotide polymorphisms)

was summarised in Table 1.9. This summary is updated in Table 8.2 to include the findings

of Chapter 7 (which are highlighted in yellow) and to compare them to the characterisation

that exists in the literature. Where the results described in this thesis overlap with previ-

ous work, they largely agree with the existing characterisation of disease and neutral SAAPs;

where SAAPdb has used novel analyses (e.g., identification of unsatisfied buried charges, un-

favourable voids and broken hydrogen bonds), the results complement the existing characteri-

sation of disease mutations. Several significant differences—with respect to sequence, structure

and structural effects—have been identified when comparing disease-associated PDs with phe-

notypically neutral SNPs. These findings have implications for future predictive methods and

may facilitate the identification of drug targets.

8.2.1 Understanding the data

PDs are characterised as mutations involving the more ‘unusual’ amino acids, specifically tryp-

tophan, cysteine and proline. The PDs have lower BLOSUM62 and PAM30 amino acid substi-

tution matrix scores than SNPs, indicating that PDs tend to describe mutations between more

different residues. PDs are found more often in the protein core, in contact with a larger number

of other residues and most often disrupt the stability of the protein structure; they most often
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Table 8.1: Comparing SAAPdb findings with the existing characterisations of PDs and SNPs
•: PDs were associated with this feature; ◦: SNPs were associated with this feature. ‘-’: no relationship was found.
?: the paper includes some prediction work. †: the paper considered only deleterious data. A blank cell denotes that
the feature was not considered. Datasets: A = LacI repressor (Suckow et al., 1996); B = T4 lysozyme (Rennell et al.,
1991); C = HIV protease (Loeb et al., 1989); D = dbSNP (Smigielski et al., 2000); J = uses natural residue variation across
species to represent ‘neutral’ SAAPs; M = HMGD (Stenson et al., 2003); N = HGVBase (Fredman et al., 2002); O = OMIM
(McKusick, 1998; Amberger et al., 2009); S = UniProtKB/Swiss-Prot VARIANT (The UniProt Consortium, 2009); X =
other LSMDB (various references). Structural data used: Y∗ = where PDB structures were unavailable, models were
used; Yi = structural features were inferred from sequence. AA: amino acid. SAAPdb findings (see Chapter 7) are
highlighted in yellow.
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Bao & Cui (2005) ? S Y Y • • • • •
Cai et al. (2004) ? AB Y Y • •
Chasman & Adams (2001) ? AB Y Y •◦ • • •
Clifford et al. (2004) ? DX Y Y∗ •
Dobson et al. (2006) ? S Y Y • •
Ferrer-Costa et al. (2002) S Y Y • • • • • •
Ferrer-Costa et al. (2004) ? AS Y Yi •
Khan & Vihinen (2007) † MX n Y • - •
Krishnan & Westhead (2003) ? AB Y Yi • • • •
Needham et al. (2006) ? AB Y Y • - • •
Ng & Henikoff et al. (2001) ? ABC Y n •
Saunders & Baker et al. (2002) ? AC Y Y - • • • •
Stitziel et al. (2003) DO Y Y • - • •
Steward et al. (2003) O Y Y • • •
Sunyaev et al. (2001) ?a DNS Y Y • • • • • •
Torkamani & Schork (2007) X Y Y •◦ • •
Verzilli et al. (2005) ? AB Y Y • • • • •
Vitkup et al. (2003) S Y Y • • • •
Wang & Moult (2001) b DM n Y •
Yue et al. (2005) ? JM n Y∗ • • •

SAAPdb c DOX Y Y •◦ • • • • - • • • •◦ •

a http://genetics.bwh.harvard.edu/pph/
b http://www.snps3d.org/
c http://www.bioinf.org.uk/saap/db/



CHAPTER 8. CONCLUSIONS 291

introduce a void or crevice in the protein structure. Further, PDs are more likely than SNPs to

disrupt sites of high conservation.

It appears that the simple average dissimilarity score used to rank amino acids in terms of their

‘replaceability’ (described by Equation 7.2) is a powerful measurement with which to represent

the amino acids. More work is required to realise fully the potential of such a statistic in the

context of disease mutations.

It is perhaps surprising that PDs are not more often found at binding sites: disrupting ligand

binding would directly affect protein function. More than double the proportion of PDs intro-

duce instability in the protein structure than do affect binding sites (65.48% of PDs as opposed

to 30.10%, see Figure 7.26). This may indicate that interactions at binding sites are more flexible

than previously thought. Alternatively, it may simply reflect the proportion of residues that are

involved in instability compared with binding (as suggested in Steward et al. (2003)); or it may

draw attention to the spectrum of disease mutations that can be observed: many mutations at

the binding site may be fatal to the cell and therefore will never be observed in a living patient;

should this be the case, the only observed mutations at binding sites will not be deleterious.

More investigations are required before any confident statement can be made; a useful first

step would be to quantify the number of binding-associated and instability-associated residues

in protein structures in general: is it more likely that an instability-associated residue would be

chosen at random than a binding-associated residue? With ‘expected’ frequencies of features

known, the data represented in Figure 7.26 could be represented as log ratios (as in Figures

7.16(a) and 7.16(b)).

Indeed, there are many similar questions that have arisen from these investigations that, to be

considered fully, require a more comprehensive understanding of the background or expected

frequencies to be defined. For example, consider the frequency-of-explanation profile data de-

scribed in Figures 7.29(a) and 7.29(b). It is not possible that the same mutation will be explained

on the basis of introducing a hydrophobic residue on the surface and introducing a hydrophilic

residue in the core; it is however likely that some mutations will be explained simultaneously

by breaking a hydrogen bond and creating an internal void (see an example in Figure 7.8). Such

inter-dependencies will not only allow the normalisation of data, but may also reveal important

and interesting relationships that are fundamental to protein structure. For example, perhaps

most hydrophobic residues that are introduced on the protein surface occur at the interface,

which may improve inter-chain binding and therefore explain why the surfacephobic analysis
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is the only structural analysis to be associated with SNPs (see Figure 7.26).

A recent collaboration concentrated on the analysis of mutations in the kinase domain

(Izarzugaza et al., 2009), comparing the explanation profiles of kinase PDs with all other PDs

(non-kinase PDs) in SAAPdb, and comparing kinase PDs with kinase SNPs. This found that,

unlike the vast majority of PDs analysed by SAAPdb previously (see Section 2.1.2), kinase

PDs were significantly less likely to be attributable to some structural effect according to the

SAAPdb analysis pipeline than non-kinase PDs, and that kinase PDs were no more likely to be

attributable to some structural effect than kinase SNPs. It would seem that the current suite

of structural analyses—the formation of which was motivated by a general understanding

of protein structure—is failing to capture some important aspects of kinase structure, most

importantly what differentiates kinase PDs from kinase SNPs. However, when using a set

of kinase-specific features, and using a distance based analysis where proximity to features

was measured rather than only considering the feature sites themselves, there was a clearer

difference between kinase PDs and kinase SNPs.

It is possible that several of the kinase domain mutations interfere with the movement from

the inactive to the active state and vice versa. Indeed, in a comprehensive study of oncogenic

mutations in B-RAF by Wan et al. (Wan et al., 2004), it was proposed that several oncogenic

mutations destabilise the inactive state by disrupting the hydrophobic interactions between the

P-loop and the DFG motif in the kinase domain, promoting the active conformation and thus

mimicking the phosphorylated state.

8.2.2 Applying the findings to protein structure in general

Most (at the time of writing, November 2008, 85.50%) protein structures described by the PDB

were derived via X-ray crystallography (see Section1.5); as such, most of the structures analysed

by SAAPdb will also be X-ray structures. It is important to appreciate that protein crystals are

merely ‘snapshots’ of protein structure. The manner in which PDB structures are derived—by

enforced crystallisation—cannot capture the flexibility of protein structures. However, by con-

sidering the data and trends described in Chapter 7 as indirect measurements of the response

to structural ‘lesions’, some comment on protein flexibility is possible: the extent to which pro-

tein structures can accommodate mutant residues, and what kinds (with respect to structural

explanations) of mutant residues can be accommodated, will convey information regarding the
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flexibility of the structures. For example, the analysis described in Chapter 7 demonstrated that

PDs are more often found to affect protein stability than ligand binding sites. This may suggest

that protein-ligand binding is more flexible, or can more easily accommodate mutations, than

the network of scaffolding interactions that stabilise protein structure. Further, this trend may

be owing to differences between obligate and transient interactions: perhaps transient binding

is more flexible than obligate binding, which may be as constrained as the buried interior of a

protein.

As discussed in Sections 7.4 and 8.2.1, such trends must be investigated further before attribut-

ing effects to variations in protein flexibility. Should the trends be verified, they could inform

an alternative representation of protein structure to include hypothesised sites of flexibility,

providing a more realistic model of protein structure with which to work.

8.2.3 Extending the pipeline

There are many potential structural effects of SAAPs that are currently not assessed by SAAPdb,

as highlighted by the analysis of the kinase domain (see Section 8.2.1) where oncogenic muta-

tions are known not only to destabilise the inactive form of B-RAF, but mimic the phosphory-

lated, active form of the protein (Wan et al., 2004) thus disrupting native protein function. Data

derived from other external resources (including the Catalytic Site Atlas (Porter et al., 2004),

PROCOGNATE (Bashton et al., 2008) or dbPTM (Lee et al., 2006)) could be incorporated to

widen the focus of SAAPdb with respect to explaining mutations. It may also be beneficial to

consider the protein in a wider context, for example its role in known pathways (Kanehisa et

al., 2008).

What is entirely missing from SAAPdb currently is the consideration of genomic data. The

focus of SAAPdb is the manifestation and effects of genomic mutations at the protein level,

primarily with respect to structure; however, there is undoubtedly more information implicit

in the raw genomic data (Cargill et al., 1999). For example, are PDs more often transversions

(where a purine base (AG) is substituted with a pyrimidine base (CT) or vice versa) and there-

fore an alteration of the chemical nature of the base, and SNPs more often transitions (muta-

tions between purine bases or between pyrimidine bases), where the chemical nature of the

base does not change? Is there any bias in codons targeted by PDs or SNPs, or is there a bias

in the particular position in the codon that is mutated? At the very least, estimates of base
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change substitution rates, calculated from a basic understanding of biochemistry and mutage-

nesis mechanisms, could allow protein level data to be ‘normalised’ such that genomic effects

are removed from analysis at the protein level (e.g., Care et al. (2007)). For example, argi-

nine has a high rate of mutability (due to deamination of 5’-CpG dinucleotides in the arginine

codon); such information could be used to normalise, for example, amino acid frequencies as

shown in Figure 7.16 (where, indeed, arginine is one of the most commonly mutated residues).

Further, mutations may have effects in controlling expression or splicing. Such effects have

been completely disregarded in this thesis.

8.2.4 Moving onto prediction

Despite the emergence of a biologically rational characterisation of disease mutations, consis-

tent with existing literature, none of the features is strongly predictive on its own. Further,

there appears to be a significant ‘pathogenicity-differential’ in the results of some analyses;

that is, some analyses both commonly explain disease associated mutations and commonly

explain neutral mutations, indicating that there is a differential in the extent to which the muta-

tion affects protein structure. This is most true for the void-creating, hydrogen-bond-breaking,

quaternary-structure-affecting and conserved-residue-affecting mutations.

This suggests that careful and considered application of machine learning techniques could

exploit the weak predictive power of all of these individual features, resulting in a potentially

very sensitive and accurate method for classifying previously unseen mutations as disease-

causing or neutral. As mentioned in Section 8.2.1, inter-dependencies between features may

exist and the method should be designed to take advantage of informative inter-dependencies

while being able to factor out redundant data.

Furthermore, the investigations into kinase mutations described in Section 8.2.1 showed that

protein families vary in their explanation profiles. In addition to calling for more research into

the extent of such differences and how such protein families might be represented as train-

ing data to a predictive model, it is recommended that machine learning methods should at

least initially build classifiers for each protein family. One method to predict specifically ki-

nase mutations (Torkamani and Schork, 2008), achieves an MCC of 0.87, higher than any other

‘general-purpose’ prediction method. Further, several methods use the popular LacI (Suckow
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et al., 1996), HIV protease (Loeb et al., 1989) and/or T4 lysozyme (Rennell et al., 1991) muta-

genesis datasets, often reporting widely varying performance between these datasets (Ng and

Henikoff, 2001; Chasman and Adams, 2001), particularly when the training and test sets are het-

erogeneous, that is, they are drawn from different mutagenesis datasets (Chasman and Adams,

2001; Krishnan and Westhead, 2003; Needham et al., 2006).

Preliminary work using several unoptimised machine learning methods (both with respect to

the method parameters and with respect to the input vector) as provided by WEKA (Witten

and Frank, 2005)—including several methods used previously in the literature (e.g., decision

trees (Krishnan and Westhead, 2003), SVMs (Krishnan and Westhead, 2003; Tian et al., 2007),

1R (Dobson et al., 2006))—suggests that there is much potential in the current dataset for suc-

cessful discrimination: default parameterisations of KNN2, rule learner3 and decision tree4 al-

gorithms all exceed the current ‘gold-standard’ prediction performance of Tian et al. (2007) of

MCC=0.50. The results are summarised briefly in Appendix [A]. Active collaborations with

Professor David Corne (Heriot-Watt University, Edinburgh), Professor Mark Girolami (Univer-

sity of Glasgow) and Professor Giuliano Armano (University of Cagliari) are pursuing further

work in this area.

8.2.5 Implications for disease therapies

There is much potential for SAAPdb data to be used in the identification of novel drug targets.

If one can characterise the specific reason that a mutated protein is not able to function properly,

a counteractive rescue mechanism could be developed.

Recently, Boeckler et al. (2008) reported the development of an in-silico screened drug that was

shown to rescue the function of a P53 mutant, Y220C. This mutant was known to destabilise

the protein by introducing a crevice in the protein structure (compare Figure 8.2(a) with Figure

8.2(b)); incidentally, SAAPdb does successfully identify this mutation as void-creating. Boeck-

ler et al., by way of in-silico screening and multiple NMR spectroscopy experiments, identified

a compound (PhiKan083) that bound to the destabilised mutant P53 structure, but not the na-

tive P53 structure, and is sufficiently distant from the DNA binding region not to interfere with

functionality (see Figure 8.2(c)). Friedler et al. (2002) have shown that alternative pharma-

2weka.classifiers.lazy.IBk
3weka.classifiers.rules.PART
4weka.classifiers.trees.J48
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(a) P53 native structure (b) P53/Y220C mutant structure (c) PhiKan083 bound to P53/Y220C

Figure 8.2: Stabilising a P53 mutant: a potential cancer therapeutic
The Y220C P53 mutant is the ninth most frequent p53 mutant that is implicated in cancer. An in-silico/NMR screening
procedure identified the PhiKan083 compound that binds and stabilises the mutant form of P53 (Boeckler et al., 2008).
The relevant sections of the native and mutant P53 structures are shown in Figures 8.2(a) (1tsr, chain B) and 8.2(b)
(2vuk, chain B) respectively. The native Y220 residue is highlighted in Figure 8.2(a) in green; the mutant C220 residue
is highlighted in Figures 8.2(b) and 8.2(c) in red; the stabilising compound PhiKan083 is shown in Figure 8.2(c) in
magenta; voids are represented as blue spheres. Voids are identified by AVP as described in Section 5.3.7.

ceuticals could bind to the functional native structure of P53, thus ‘chaperoning’ the correctly

folded structure. Such compounds may form the basis of future P53-deficient cancer therapies,

or indeed therapy for any disease caused by structurally-destabilising mutations.

It is therefore encouraging to note that most disease-associated mutations in SAAPdb have

been shown to affect protein stability. There is potential for similar stabilising compounds to be

identified for other destabilising protein mutations, thus rescuing native protein function and

potentially treating disease.

8.3 Final thoughts

Large-scale automated analyses systems like SAAPdb are becoming more standard in bioin-

formatics: sequencing technologies are improving with respect to reliability, scale and speed,

and high performance computational resources are becoming more affordable. The frequency

with which disease mutation data are published is increasing (Ding et al., 2008; Sreedharan et

al., 2008; Wang et al., 2007a; Stevanin et al., 2007; Mao et al., 2007; The Wellcome Trust Case Con-

trol Consortium, 2007) are a few recent examples.
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Such methods rely on external data sources maintaining the same data format; maintaining the

public interface with the data, and enforcing rigourous standards in how the data are repre-

sented. Unfortunately, it is the exception rather than the norm that data formats and interfaces

are maintained and that standards are enforced. To cope with such changes within a system

like SAAPdb, time that could be dedicated to analysing the data is instead required to correct

parsers and mirroring systems.

Bioinformatics is a young field, but can benefit from well-established conventions in com-

puter science. Ideally, data representation systems (including UniProtKB, the PDB and dbSNP)

should adhere to strict standards of formatting (e.g., valid XML or JSON) enabling fast and

reliable extraction of data from all records without having to deal with rare exceptions. They

should be backwards compatible; that is, parsers written for previous versions of the dataset

should also be able to parse newer versions. Should the addition of attributes and values be

absolutely necessary, extensible systems of data representation like XML and JSON allow new

data to be included without breaking existing parsers, provided existing schemas are not vi-

olated. Should the format change, old representations should be deprecated, but gradually

phased out rather than removed. Reformatting the UniProtKB description field as described

above (see Figure 8.1) requires that every UniProtKB parser being used across the world be

individually updated: although the change clearly facilitates the extraction of data from the

description (DE) lines, any method that expects the data in the previous format will now fail

to extract the appropriate data. Ideally the maintainers of such resources would also provide a

parser and API to access the data. Should fundamental, defining features of a record change,

some feature of the record identifier should also change: currently, if UniProtKB/Swiss-Prot

changes the sequence of the protein, this is not expressed in the accession number; the user

would have to compare sequence version numbers.

The fact that data formats do change on a regular basis demonstrates that the problem of rep-

resenting these data is not conceptualised fully from the outset. More effort and discussion

with regards to which data are relevant, how these data are related and what standards should

be enforced is necessary before data are collected. Furthermore, biological resources must ex-

pect to be interrogated computationally and as such should facilitate data extraction. It is clear,

then, that the best representation of data, both with respect to the biology and the informat-

ics, can only be achieved by way of collaboration between biologists, computer scientists and

bioinformaticians.
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[A] Preliminary predictive work

As described in Chapter 8, some very preliminary, exploratory predictive work has been

carried out on the SAAPdb data using several unoptimised methods in Weka (Witten and

Frank, 2005). Results are shown in the figure below. Default parameterisations of KNN

(weka.classifiers.lazy.IBk), rule learner (weka.classifiers.rules.PART)

and decision tree (weka.classifiers.trees.J48) algorithms all exceed the current

‘gold-standard’ prediction performance of Tian et al. (2007) of MCC=0.50.

Several issues with regards to the predictive methods are unresolved. Quite apart from the

optimial parameterisation of the individual methods, the issues of dataset sampling and feature

vector contents require to be considered.

Sampling methods (discussed in Dobson et al. (2006)) define how the datasets should be bal-

anced, if at all. In SAAPdb, there are many more PDs mapped to structure than SNPs; over-

sampling would repeat examples in the SNP dataset so as to balance the size of the datasets,

while undersampling would reduce the size of the PD datset to that of the SNP dataset. The

results shown in the graphs below suggest that oversampling is more successful than under-

sampled or unbalanced datasets; however, this requires more investigation and may simply be

due to biasing the datasets. Alternatively, some methods may not be sensitive to dataset size

and consideration of sampling may not be required.

The feature set used to generate these results was reasonably rudimentary, containing only a

binary vector with the results of fourteen analyses (the UniProtKB/Swiss-Prot feature analysis

was removed as it was found to be unreliable, see Section 5.11); the relative accessibility, and

the native and mutant amino acids, represented as strings. It does not include numerical repre-

sentation of the amino acids (for example, the BLOSUM/PAM amino acid substitution matrix

score, both of which were shown to be statistically significant when comparing the PD and SNP

datasets, see Section 7.3.3), nor does it include the apparently powerful ‘average dissimilarity’

score (Section 7.3.2) for the native and mutant residues.

As seen in Section 7.2.1 some proteins are described by the PDB more than once. It follows that

some sequence mutations will be analysed more than once in the analysis pipeline. It is yet to

be decided how such multiple results are to be combined to represent the one mutation. It is
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undesirable to present each analysis to the predictive method at the training stage, as this will

bias the predictor. The results in the figure below describe ‘aggregated’ counts, where all struc-

tural analysis results were aggregated into one vector, where a positive result was assigned to

the sequence mutation if any of the mapped structures generated a positive result. Also con-

sidered was a ‘hybrid’ counting system, where the sequence mutation was assigned a positive

result for an analysis if at least half of the mapped structures generated a positive result. Re-

sults were very slightly better for the aggregated results. Most desirable would be to use a

machine learning method that can make use of this additional information, without biasing the

predictor towards those data that are mapped to multiple structures.

Although very rudimentary, it is clear that significant predictive power lies in these data. With

the proper consideration of machine learning approaches and the appropriate choice of feature

vector, it should be possible to improve the current gold standard prediction performance.
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Results of some very preliminary predictive work Chapter 8 briefly described some very preliminary predictive

carried out on the data from SAAPdb; these are the results. Empty symbols describe training errors, closed symbols

describe validation errors; paired training and validation errors are joined by a line. Different symbols indicate various

data sampling approaches: the unbalanced approach is indicated with a square; the oversampling approach is indicated

with a circle; the undersampling approach is indicated with a triangle. Each graph describes a different performance
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statistic (from top left to bottom right: Matthew’s Correlation Coefficient (MCC); accuracy (ACC); specificity (SPEC);

sensitivity (SENS); positive predictive value (PPV); false positive rate (FPR); false negative rate (FNR); balanced error

rate (BER); root mean squared error (RMSE). All methods are plotted on the same graph (legend given above).
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[B] Biology

[B.i] Amino acid colours (taken from RASMOL ‘amino’ colour scheme)

These colours are used primarily in Chapter 4 to colour the multiple sequence alignments.

They are taken from the Rasmol (Sayle and Milner-White, 1995) ‘amino’ colour scheme, which

colours residues according to traditional amino acid properties (e.g., hydrophobicity and

charge).
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[C] Amino acid subsitution matrices

[C.i] PAM30

A R N D C Q E G H I L K M F P S T W Y V B J Z X *

A 6 -7 -4 -3 -6 -4 -2 -2 -7 -5 -6 -7 -5 -8 -2 0 -1 -13 -8 -2 -3 -6 -3 -1 -17

R -7 8 -6 -10 -8 -2 -9 -9 -2 -5 -8 0 -4 -9 -4 -3 -6 -2 -10 -8 -7 -7 -4 -1 -17

N -4 -6 8 2 -11 -3 -2 -3 0 -5 -7 -1 -9 -9 -6 0 -2 -8 -4 -8 6 -6 -3 -1 -17

D -3 -10 2 8 -14 -2 2 -3 -4 -7 -12 -4 -11 -15 -8 -4 -5 -15 -11 -8 6 -10 1 -1 -17

C -6 -8 -11 -14 10 -14 -14 -9 -7 -6 -15 -14 -13 -13 -8 -3 -8 -15 -4 -6 -12 -9 -14 -1 -17

Q -4 -2 -3 -2 -14 8 1 -7 1 -8 -5 -3 -4 -13 -3 -5 -5 -13 -12 -7 -3 -5 6 -1 -17

E -2 -9 -2 2 -14 1 8 -4 -5 -5 -9 -4 -7 -14 -5 -4 -6 -17 -8 -6 1 -7 6 -1 -17

G -2 -9 -3 -3 -9 -7 -4 6 -9 -11 -10 -7 -8 -9 -6 -2 -6 -15 -14 -5 -3 -10 -5 -1 -17

H -7 -2 0 -4 -7 1 -5 -9 9 -9 -6 -6 -10 -6 -4 -6 -7 -7 -3 -6 -1 -7 -1 -1 -17

I -5 -5 -5 -7 -6 -8 -5 -11 -9 8 -1 -6 -1 -2 -8 -7 -2 -14 -6 2 -6 5 -6 -1 -17

L -6 -8 -7 -12 -15 -5 -9 -10 -6 -1 7 -8 1 -3 -7 -8 -7 -6 -7 -2 -9 6 -7 -1 -17

K -7 0 -1 -4 -14 -3 -4 -7 -6 -6 -8 7 -2 -14 -6 -4 -3 -12 -9 -9 -2 -7 -4 -1 -17

M -5 -4 -9 -11 -13 -4 -7 -8 -10 -1 1 -2 11 -4 -8 -5 -4 -13 -11 -1 -10 0 -5 -1 -17

F -8 -9 -9 -15 -13 -13 -14 -9 -6 -2 -3 -14 -4 9 -10 -6 -9 -4 2 -8 -10 -2 -13 -1 -17

P -2 -4 -6 -8 -8 -3 -5 -6 -4 -8 -7 -6 -8 -10 8 -2 -4 -14 -13 -6 -7 -7 -4 -1 -17

S 0 -3 0 -4 -3 -5 -4 -2 -6 -7 -8 -4 -5 -6 -2 6 0 -5 -7 -6 -1 -8 -5 -1 -17

T -1 -6 -2 -5 -8 -5 -6 -6 -7 -2 -7 -3 -4 -9 -4 0 7 -13 -6 -3 -3 -5 -6 -1 -17

W -13 -2 -8 -15 -15 -13 -17 -15 -7 -14 -6 -12 -13 -4 -14 -5 -13 13 -5 -15 -10 -7 -14 -1 -17

Y -8 -10 -4 -11 -4 -12 -8 -14 -3 -6 -7 -9 -11 2 -13 -7 -6 -5 10 -7 -6 -7 -9 -1 -17

V -2 -8 -8 -8 -6 -7 -6 -5 -6 2 -2 -9 -1 -8 -6 -6 -3 -15 -7 7 -8 0 -6 -1 -17

B -3 -7 6 6 -12 -3 1 -3 -1 -6 -9 -2 -10 -10 -7 -1 -3 -10 -6 -8 6 -8 0 -1 -17

J -6 -7 -6 -10 -9 -5 -7 -10 -7 5 6 -7 0 -2 -7 -8 -5 -7 -7 0 -8 6 -6 -1 -17

Z -3 -4 -3 1 -14 6 6 -5 -1 -6 -7 -4 -5 -13 -4 -5 -6 -14 -9 -6 0 -6 6 -1 -17

X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -17

* -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 1

[C.ii] PET91

A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 10 -1 0 -1 -1 -1 -1 1 -2 0 -1 -1 -1 -3 1 1 2 -4 -3 1 0 -1 0 0

R -1 10 0 -1 -1 2 0 0 2 -3 -3 4 -2 -4 -1 -1 -1 0 -2 -3 0 1 0 0

N 0 0 10 2 -1 0 1 0 1 -2 -3 1 -2 -3 -1 1 1 -4 -1 -2 2 0 0 0

D -1 -1 2 10 -3 0 4 1 0 -3 -4 0 -3 -5 -2 0 -1 -5 -2 -3 3 2 0 0

C -1 -1 -1 -3 10 -3 -4 -1 0 -2 -3 -3 -2 0 -2 1 -1 1 2 -2 -2 -3 0 0

Q -1 2 0 0 -3 10 2 -1 3 -3 -2 2 -2 -4 0 -1 -1 -3 -1 -3 0 3 0 0

E -1 0 1 4 -4 2 10 1 0 -3 -4 1 -3 -5 -2 -1 -1 -5 -4 -2 2 3 0 0

G 1 0 0 1 -1 -1 1 10 -2 -3 -4 -1 -3 -5 -1 1 0 -2 -4 -2 0 0 0 0

H -2 2 1 0 0 3 0 -2 10 -3 -2 1 -2 0 0 -1 -1 -3 4 -3 0 1 0 0

J 0 -3 -2 -3 -2 -3 -3 -3 -3 10 2 -3 3 0 -2 -1 1 -4 -2 4 -2 -3 0 0

L -1 -3 -3 -4 -3 -2 -4 -4 -2 2 10 -3 3 2 0 -2 -1 -2 -1 2 -3 -3 0 0

K -1 4 1 0 -3 2 1 -1 1 -3 -3 10 -2 -5 -2 -1 -1 -3 -3 -3 0 1 0 0
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M -1 -2 -2 -3 -2 -2 -3 -3 -2 3 3 -2 10 0 -2 -1 0 -3 -3 2 -2 -2 0 0

F -3 -4 -3 -5 0 -4 -5 -5 0 0 2 -5 0 10 -2 -2 -2 -1 5 0 -4 -4 0 0

P 1 -1 -1 -2 -2 0 -2 -1 0 -2 0 -2 -2 -2 10 1 1 -5 -3 -1 -1 -1 0 0

S 1 -1 1 0 1 -1 -1 1 -1 -1 -2 -1 -1 -2 1 10 1 -3 -1 -1 0 -1 0 0

T 2 -1 1 -1 -1 -1 -1 0 -1 1 -1 -1 0 -2 1 1 10 -4 -3 0 0 -1 0 0

W -4 0 -4 -5 1 -3 -5 -2 -3 -4 -2 -3 -3 -1 -5 -3 -4 10 0 -4 -4 -4 0 0

Y -3 -2 -1 -2 2 -1 -4 -4 4 -2 -1 -3 -3 5 -3 -1 -3 0 10 -3 -1 -2 0 0

V 1 -3 -2 -3 -2 -3 -2 -2 -3 4 2 -3 2 0 -1 -1 0 -4 -3 10 -2 -2 0 0

B 0 0 2 3 -2 0 2 0 0 -2 -3 0 -2 -4 -1 0 0 -4 -1 -2 10 1 0 0

Z -1 1 0 2 -3 3 3 0 1 -3 -3 1 -2 -4 -1 -1 -1 -4 -2 -2 1 10 0 0

X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

[C.iii] BLOSUM62

A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 6 -2 -2 -3 -1 -1 -1 0 -2 -2 -2 -1 -1 -3 -1 2 0 -4 -3 0 -2 -1 -1 -6

R -2 8 -1 -2 -5 1 0 -3 0 -4 -3 3 -2 -4 -3 -1 -2 -4 -3 -4 -2 0 -2 -6

N -2 -1 8 2 -4 0 0 -1 1 -5 -5 0 -3 -4 -3 1 0 -6 -3 -4 5 0 -2 -6

D -3 -2 2 9 -5 0 2 -2 -2 -5 -5 -1 -5 -5 -2 0 -2 -6 -5 -5 6 1 -2 -6

C -1 -5 -4 -5 13 -4 -5 -4 -4 -2 -2 -5 -2 -4 -4 -1 -1 -3 -4 -1 -5 -5 -3 -6

Q -1 1 0 0 -4 8 3 -3 1 -4 -3 2 -1 -5 -2 0 -1 -3 -2 -3 0 5 -1 -6

E -1 0 0 2 -5 3 7 -3 0 -5 -4 1 -3 -5 -2 0 -1 -4 -3 -4 1 6 -1 -6

G 0 -3 -1 -2 -4 -3 -3 8 -3 -6 -5 -2 -4 -5 -3 0 -2 -4 -5 -5 -1 -3 -2 -6

H -2 0 1 -2 -4 1 0 -3 11 -5 -4 -1 -2 -2 -3 -1 -3 -4 3 -5 -1 0 -2 -6

I -2 -4 -5 -5 -2 -4 -5 -6 -5 6 2 -4 2 0 -4 -4 -1 -4 -2 4 -5 -5 -2 -6

L -2 -3 -5 -5 -2 -3 -4 -5 -4 2 6 -4 3 1 -4 -4 -2 -2 -2 1 -5 -4 -2 -6

K -1 3 0 -1 -5 2 1 -2 -1 -4 -4 7 -2 -5 -2 0 -1 -4 -3 -3 -1 1 -1 -6

M -1 -2 -3 -5 -2 -1 -3 -4 -2 2 3 -2 8 0 -4 -2 -1 -2 -1 1 -4 -2 -1 -6

F -3 -4 -4 -5 -4 -5 -5 -5 -2 0 1 -5 0 9 -5 -4 -3 1 4 -1 -5 -5 -2 -6

P -1 -3 -3 -2 -4 -2 -2 -3 -3 -4 -4 -2 -4 -5 11 -1 -2 -5 -4 -4 -3 -2 -2 -6

S 2 -1 1 0 -1 0 0 0 -1 -4 -4 0 -2 -4 -1 6 2 -4 -3 -2 0 0 -1 -6

T 0 -2 0 -2 -1 -1 -1 -2 -3 -1 -2 -1 -1 -3 -2 2 7 -4 -2 0 -1 -1 -1 -6

W -4 -4 -6 -6 -3 -3 -4 -4 -4 -4 -2 -4 -2 1 -5 -4 -4 16 3 -4 -6 -4 -3 -6

Y -3 -3 -3 -5 -4 -2 -3 -5 3 -2 -2 -3 -1 4 -4 -3 -2 3 10 -2 -4 -3 -2 -6

V 0 -4 -4 -5 -1 -3 -4 -5 -5 4 1 -3 1 -1 -4 -2 0 -4 -2 6 -5 -4 -1 -6

B -2 -2 5 6 -5 0 1 -1 -1 -5 -5 -1 -4 -5 -3 0 -1 -6 -4 -5 5 0 -2 -6

Z -1 0 0 1 -5 5 6 -3 0 -5 -4 1 -2 -5 -2 0 -1 -4 -3 -4 0 5 -1 -6

X -1 -2 -2 -2 -3 -1 -1 -2 -2 -2 -2 -1 -1 -2 -2 -1 -1 -3 -2 -1 -2 -1 -2 -6

* -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 1
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[D] Database queries

[D.i] Generating a list of species pairings from FOSTA

SELECT f1.species, f2.species

FROM feps f1, f2

WHERE f1.fosta_family = f2.fosta_family

AND f1.runid = 1

AND f2.runid = 1

AND f1.species != f2.species;

[D.ii] Finding the number of proteins in FOSTA for each species

SELECT f.species, count(f.*)

FROM feps f

GROUP BY f.species;

[D.iii] Finding the FEPs common to both $speciesA and $speciesB

SELECT f1.id, f2.id

FROM feps f1, feps f2

WHERE f1.id != f2.id

AND f1.fosta_family = f2.fosta_family

AND f1.species = ’$speciesA’

AND f2.species = ’$speciesB’

AND f1.runid = 1

AND f2.runid = 1;
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[E] SQL functions

[E.i] Calculating the ‘charge shift’ of a mutation

CREATE OR REPLACE FUNCTION charge_shift(integer) RETURNS int AS ’

DECLARE

mutanalysisRowID ALIAS FOR $1;

nativeRes varchar;

nativeCharge int;

nativeStatus varchar;

mutantRes varchar;

mutantCharge int;

mutantStatus varchar;

BEGIN

SELECT INTO nativeRes,mutantRes m.aa_wildtype,m.aa_mutant

FROM mutanalysis m

WHERE m.mutanalysis_row_id=mutanalysisRowID;

SELECT INTO nativeStatus a.charged

FROM amino_acids a

WHERE a.threelettercode=nativeRes;

nativeCharge := 0;

IF nativeStatus = ’’positive’’ THEN nativeCharge := 1 ;

ELSIF nativeStatus = ’’negative’’ THEN nativeCharge := -1 ;

END IF;

SELECT INTO mutantStatus a.charged

FROM amino_acids a

WHERE a.singlelettercode=lower(mutantRes);

mutantCharge := 0;

IF mutantStatus = ’’positive’’ THEN mutantCharge := 1 ;

ELSIF mutantStatus = ’’negative’’ THEN mutantCharge := -1 ;

END IF;

RETURN ( mutantCharge - nativeCharge );

END

’ LANGUAGE plpgsql;


