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Abstract 

 

Single nucleotide variants (SNVs) that occur in transcription factor binding 

sites (TFBSs) can disrupt the binding of transcription factors and alter gene 

expression which can cause inherited diseases and act as driver SNVs in 

cancer. The identification of SNVs in TFBSs has historically been 

challenging given the limited number of experimentally characterised TFBSs. 

The recent ENCODE project has resulted in the availability of ChIP-Seq data 

that provides genome wide sets of regions bound by transcription factors. 

These data have the potential to improve the identification of SNVs in 

TFBSs. However, as the ChIP-Seq data identify a broader range of DNA in 

which a transcription factor binds, computational prediction is required to 

identify the precise TFBS. Prediction of TFBSs involves scanning a DNA 

sequence with a Position Weight Matrix (PWM) using a pattern matching 

tool.  

 In this thesis, the prediction of TFBSs has been improved by: (a) evaluating 

a set of locally-installable pattern-matching tools and identifying the best 

performing tool (FIMO), (b) using the ENCODE ChIP-Seq data to evaluate a 

set of de novo motif discovery tools that are used to derive PWMs which can 

handle large volumes of data, (c) identifying the best performing tool 

(rGADEM), (d) using rGADEM to generate a set of PWMs from the ENCODE 

ChIP-Seq data and (e) by finally checking that the selection of the best 

pattern matching tool is not unduly influenced by the choice of PWMs. 
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These analyses were exploited to obtain a set of predicted TFBSs from the 

ENCODE ChIP-Seq data. 

 The predicted TFBSs were utilised for a comprehensive analysis of the 

Shannon entropy values of somatic cancer driver, and passenger SNVs that 

occur in TFBSs. Clear signals in Shannon entropy values were identified, 

and subsequently exploited to identify a threshold that can be used to 

prioritize driver SNVs for experimental validation.     
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1 Introduction 

This thesis is concerned with identifying and understanding the effects of 

Single Nucleotide Variants (SNVs) that occur in transcription factor binding 

sites (TFBSs). This is an area where little research has been carried out. 

This is in contrast to the large volume of research that has been carried out 

on investigating and predicting the effects of non-synonymous SNVs on 

protein structure and function.   

1.1 Single Nucleotide Variants 

SNVs are the most common form of genetic variation. SNVs are point 

mutations that result in base substitutions (Altshuler et al., 2010; Cline and 

Karchin, 2011). SNVs arise as a result of errors in the DNA replication 

process where DNA polymerases insert incorrect nucleotides that go 

undetected by the genome maintenance systems, and therefore are not 

corrected. SNVs can also arise as a result of exposure to radiation or 

chemical agents. There are two types of SNVs: germline and somatic.  

Germline SNVs are SNVs that occur in the germ cells (cells that are destined 

to become the egg cell or a sperm cell) and are subsequently passed on to 

the offspring. Certain germline SNVs cause inherited diseases. An inherited 

disease is a disorder that results from a mutation in a single gene and has 

100% penetrance. Examples include cystic fibrosis and sickle cell anaemia.    
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Somatic SNVs are SNVs that occur in somatic cells i.e. cells that are not 

gametes and are not passed on to offspring. Certain somatic SNVs act as 

drivers in cancer. DNA sequencing is used to detect germline SNVs causing 

inherited diseases and somatic SNVs acting as drivers in cancer (Jamuar 

and Tan, 2015; Chong et al., 2015; Pabinger et al., 2014; Watson et al., 

2013; Klug et al., 2012).  

   

1.2 Whole Genome Sequencing 

The cost of DNA sequencing has fallen sharply in recent years beating 

Moore’s law (Sboner et al., 2011) as shown in Figure 1.1. Moore’s law states 

that computer processing  power will double every two years (Moore, 1998). 

Today it is possible to sequence an entire human genome for less than 

$1000 (Hayden, 2014). This makes it affordable for whole genome 

sequencing to become commonplace (see 

http://www.genomicsengland.co.uk/the-100000-genomes-project/). With the 

cost of genome sequencing continuing to fall, it will soon be cheaper to 

conduct whole genome sequencing instead of targeted sequencing (i.e. 

exome sequencing or sequencing of specific panels of genes) (Fratkin et al., 

2012).                                                                                                                                                                                                                                                                  
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Figure 1.1: Graph showing the falling costs of genome sequencing compared with 

Moores Law  (Reproduced from http://www.genome.gov/sequencingcosts/                    

last accessed on 14/05/2016). 

 

In contrast to exome sequencing and the sequencing of specific panels of 

genes, the use of whole genome sequencing allows the study of both the 

non-coding and the coding regions in the human genome. The former 

comprises ~98% of the human genome, while the latter only comprises ~2% 

(Schnekenberg and Németh, 2013).   

The non-coding region was originally described as junk DNA (Orgel and 

Crick, 1980). However, the recent ENCODE project showed that a large 

proportion of the human genome is functional (Consortium, 2012). While the 

http://www.genome.gov/sequencingcosts/
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exact proportion of the genome that is functional is under debate, it is very 

clear that some of the non-coding region is not junk DNA, and has critical 

function in terms of regulating gene expression and function across cells, 

tissues and organs (Fratkin et al., 2012; Consortium, 2012; Graur et al., 

2013). Therefore the non-coding region is now considered as a rich source 

of disease-associated SNVs that have, to date, not been properly studied, 

and for which the results of the ENCODE project could be of immense help 

in terms of developing highly precise diagnostics (Schnekenberg and 

Németh, 2013; Fratkin et al., 2012).  

1.2.1 Carrying Out Whole Genome Sequencing  

In order to carry out whole genome sequencing, the DNA must first be 

extracted from nucleated cells in a blood or tissue sample. The extracted 

DNA is then randomly fragmented in order to shorten the long DNA into 

shorter fragments. This is a key step, as the size is extremely important for 

construction of the sequencing library (which is discussed in further detail 

below). This fragmentation is normally done by physical (i.e. sonication or 

acoustic shearing), or enzymatic (digestion by DNAse 1 or Fragmentase) 

fragmentation methods. However, enzymatic methods have been found to 

produce more artefacts and therefore physical methods are preferred 

(Marine et al., 2011).  

The next step is to prepare the sequencing library. This involves, first 

performing end repair by blunting the ends of the fragments, and then, 

phosphorylating the 5’ ends using the enzymes T4 Polynucleotide kinase, T4 

DNA Polymerase and Klenow Large Fragment. The 3’ ends are then Poly A-
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tailed (i.e.  stretches of adenine nucleotides are added to the 3’ ends) in 

order to facilitate ligation to the adaptors using the enzymes Taq 

polymerase, or Klenow Fragment (Adey et al., 2010). Adaptors (short 

oligonucleotides of known sequences) are then ligated to the DNA 

fragments. These adaptors act as universal priming sites during the PCR 

amplification and sequencing stages which are discussed in more detail 

below.   All the DNA fragments are used for cluster generation (i.e. the 

conversion of the sequencing library into DNA clusters) and sequencing. 

This is in contrast to both whole-exome sequencing and sequencing of 

specific gene panels, where a physical-capture step enriches the DNA 

fragments for the entire protein coding region in the case of whole exome 

sequencing, and certain genes in the case of sequencing of specific gene 

panels (Metzker, 2009). The absence of the capture step in whole genome 

sequencing results in uniform coverage, removing any areas of low coverage 

caused by inefficient capture. This in turn reduces the average depth of 

coverage that is required for accurate SNV calling, details of which are 

discussed in section 1.2.2.4.  

Distinct clusters are then generated by spatially separating the DNA 

fragments, and then clonally amplifying them using PCR. DNA sequencing is 

then carried out. DNA can either be sequenced from one end (known as 

single end sequencing) or both ends (known as paired end sequencing). The 

latter is considered to be the better approach, as it reduces ambiguity during 

the alignment stage of the data analysis (Schnekenberg and Németh, 2013) 

(details of which are discussed further in section 1.2.2.3).   There are several 

platforms for DNA sequencing including Illumina, Roche and SOLID. While 
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there are some differences in the way they operate, the basic principles are 

identical on all platforms as shown in Figure 1.2. These basic principles are: 

four nucleotides which are fluorescently labelled are first added; if the 

nucleotide is incorporated into the DNA, a detectable signal is generated; the 

signal is then converted into a base in a process known as base calling.  

These steps are repeated over multiple cycles resulting in thousands of DNA 

fragments being analysed and sequenced (Schnekenberg and Németh, 

2013; Head et al., 2014; Natrajan and Reis-Filho, 2011).  The above steps 

for carrying out whole genome sequencing are summarised in Figure 1.3.  

 

Figure 1.2: Summary of the whole genome sequencing process for Illumina 

(A),Roche (B) and SOLID (C) (Reproduced from (Natrajan and Reis-Filho, 2011)). 
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Figure 1.3: Summary of steps for carrying out whole genome sequencing  

(Reproduced from (Schnekenberg and Németh, 2013)). 

 

1.2.2 Analysing Whole Genome Sequencing Data 

The data obtained from whole genome sequencing consist of several million 

short nucleotide sequences that are about 35-400bp in length and are known 

as reads. These reads are provided by the sequencing platform in large 

(hundreds of gigabytes) text files in FASTQ format.  

The FASTQ format is a plain text format for representing nucleotide 

sequences together with their associated quality scores. The FASTQ format 

consists of four records per entry. The first record begins with a ‘@’ 
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character, and is followed by the sequence identifier and optionally a 

description. The second record consists of the sequence which can be split 

across multiple lines. The third record begins with a ‘+’ character and is 

followed optionally by a repeat of the first record (excluding the ‘@’ 

character). The fourth record consists of the quality scores and must be the 

same length as the second record (the sequence). These quality scores 

range from the ‘!’ character (representing the lowest quality) to ‘~’ 

(representing the highest quality). The fourth record can also be split across 

multiple lines. (Cock et al., 2010). The FASTQ format is illustrated in Figure 

1.4. 

@SRR014849.1 EIXKN4201CFU84 length=93 

GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGG 

GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA 

AGCAATGCCAATA 

+SRR014849.1 EIXKN4201CFU84 length=93 

3+&$#"""""""""""7F@71,’";C?,B;?6B;:EA1EA 

1EA5’9B:?:#9EA0D@2EA5’:>5?:%A;A8A;?9B;D@ 

/=<?7=9<2A8== 

      

Figure 1.4: An example of the FASTQ format  (Reproduced from                           
(Cock et al., 2010)). 

 

In order to call SNVs, further analyses need to be conducted on these data 

which comprise several processing steps that together comprise the 

workflow for calling SNVs from whole genome sequencing data (Altmann et 

al., 2012; Schnekenberg and Németh, 2013; Pabinger et al., 2014). This 

workflow can be automated in many ways. This can involve writing scripts 

(either shell scripts or scripts written in a scripting language such as Perl or 

Python) or using tools such as Ruffus (Goodstadt, 2010), Bpipe (Sadedin et 

al., 2012), Biopieces (http://maasha.github.io/biopieces/) ,Rake 
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(https://github.com/ruby/rake), SnakeMake 

(https://bitbucket.org/snakemake/snakemake/wiki/Home), Anduril (Ovaska et 

al., 2010), Taverna (http://www.taverna.org.uk/) or Galaxy (Goecks et al., 

2010).   The basic workflow is shown in Figure 1.5 and the individual steps 

are discussed in more detail in the following sections. 
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Figure 1.5: Workflow for calling SNVs from whole genome sequencing data. 

The quality control and read alignment steps are common to all techniques 

involving next generation sequencing e.g. whole genome sequencing, RNA-
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Seq, ChIP-Seq while the alignment post-processing and SNV calling steps 

are exclusive to genome resequencing (whole genome sequencing and 

exome sequencing). 

1.2.2.1 Quality Control  

The sequencing platforms are prone to errors in chemistry and 

instrumentation. Therefore the raw sequence data that are generated will 

contain sequence artefacts. These are errors in base calling, poor quality 

reads and contamination by adaptors. In order to prevent erroneous 

biological conclusions from being drawn as a result of these errors, it is 

essential to check the quality of the reads. This involves visualising the base 

quality scores and nucleotide distributions. Any errors are then removed by 

trimming the reads and/or filtering the reads based on base quality score, 

primer contamination and GC bias. This is done by using the FastQC 

package (http: //www.bioinformatics. babraham.ac.uk/projects/fastqc/) for the 

visualisation and using utilities in the FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) to filter and trim the reads as 

required (Altmann et al., 2012). 

1.2.2.2 Read Alignment  

After the reads have been processed to remove the sequence artefacts, they 

are aligned with the human reference genome. This involves determining the 

location within the human reference genome for a particular read which 

requires the human reference genome and an alignment tool (Pabinger et 

al., 2014; Nielsen et al., 2011).  

http://hannonlab.cshl.edu/fastx_toolkit/
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There are currently two sources for the human reference genome: The 

University Of Santa Cruz (UCSC) and the Genome Reference Consortium 

(GRC), both of which provide multiple human genome versions. These are 

usually the latest version and one or more older versions. Currently UCSC 

provides versions hg18, hg19 and hg38 (currently the latest release) while 

GRC provides versions GRCh37 and GRCh38 (which is currently the latest 

release). The human reference genomes present in both UCSC and GRC 

are identical (Pabinger et al., 2014). 

A plethora of alignment tools have been developed over the past few years 

(Pabinger et al., 2014; Flicek and Birney, 2009). These include Bowtie 

(Langmead et al., 2009), Bowtie2 (Langmead and Salzberg, 2012), BWA (Li 

and Durbin, 2009), MAQ (Li et al., 2008a), SOAP (Li et al., 2008b), SOAP2 

(Li et al., 2009c), ZOOM (Lin et al., 2008a), SHRiMP (Rumble et al., 2009), 

BFAST (http://genome.ucla.edu/bfast/) and MOSAIK 

(http://bioinformatics.bc.edu/marthlab/Mosaik/). These tools follow the same 

fundamental procedure to align the reads to the human reference genome, 

and have parameters to control the number of mismatches between the 

reads and the human reference genome. If the parameters are set only to 

allow perfect matches, then it would not be possible to detect any SNVs. On 

the other hand, setting the parameters to allow many mismatches will result 

in many wrongly aligned reads and result in the calling of false positive 

SNVs. Therefore, the parameter settings to control the number of 

mismatches between the reads and the human reference genome must be 

carefully chosen.   The procedure that the tools use to align the reads to the 

human reference genome exploits heuristic techniques to focus quickly on a 
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small set of locations in the human reference genome, where the best 

mapping is likely. After the identification of a smaller subset of potential 

mapping locations, a more accurate alignment algorithm such as Smith-

Waterman is run on the smaller subset. It would be computationally 

infeasible to run these more accurate alignment algorithms to search all 

possible locations in the human genome where the reads can map. The 

aligned reads are stored in the sequence alignment/map (SAM) format 

(Flicek and Birney, 2009; Altmann et al., 2012), a plain text format for storing 

read alignments. All lines are tab delimited. The SAM format consists of two 

sections: a header section, and an alignment section with each line in the 

header section beginning with a ‘@’ character. Each line in the alignment 

section has eleven compulsory fields. The compulsory fields are:  

1. the read name 

2. a bitwise flag providing extra information about the read 

3. the reference sequence name 

4. the chromosome name 

5. the position of the first matching base  

6. the mapping quality score 

7. a string describing the pairwise alignment (this string reports the 

number of mismatches (‘M’), the number of insertions (‘I’), the number 

of deletions (‘D’), the number of skipped bases (‘N’), the number of 

bases not in the alignment which have been retained in the sequence 

(‘S’), the number of bases not in the alignment which have been 
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excluded from the sequence (‘H’) and if the read has been fully 

aligned (‘P’))   

8. the chromosome name of the next read (which is reported with an ‘=’ 

character if it is the same chromosome as the previous read) 

9. position of the next read, the inferred insert size (approximate size of 

any insertions and deletions with deletions reported as negative 

numbers) 

10. the sequence  

11. The base quality score 

 

Any unavailable information is represented with a ‘*’ character or a zero (Li 

et al., 2009b). The SAM format is illustrated in Figure 1.6. 

 

Figure 1.6: An example of the SAM format  (Reproduced from (Li et al., 2009b)).  

 

There are two types of heuristic alignment techniques: hash-based and the 

Burrows Wheeler Transform (BWT).  Hash-based methods are based on the 

use of a hash table data structure to scan and index the sequence data. The 

hash table is able to allow rapid access to information on the location of 

subsequences within the reference genome. The hash table can be built 

either on the set of input reads, or on the human reference genome. In the 
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case of the hash table being built on the set of input reads, the reference 

genome is used to scan the hash table of reads, whereas, in the case of the 

hash table being built on the human reference genome, the set of input 

reads is used to scan the hash table of the reference genome. Tools that 

build hash tables on the reference genome have a constant memory 

requirement. However, this requirement depends on the size and complexity 

of the reference (and will be large in the case of the human reference 

genome), while tools that build hash tables on the set of input reads have 

memory requirements that are smaller and more variable, but the processing 

time to scan the entire genome can be greater if there are fewer input reads 

(Flicek and Birney, 2009). Examples of tools that utilise the hash-based 

method by building a hash table of the input reads  are: MAQ (Li et al., 

2008a), ZOOM (Lin et al., 2008a) and SHRiMP (Rumble et al., 2009), while 

tools that build a hash table of the reference genome are: SOAP (Li et al., 

2008b), BFAST (http://genome.ucla.edu/bfast/) and MOSAIK 

(http://bioinformatics.bc.edu/marthlab/Mosaik/).  

 

Methods that make use of  BWT (Burrows and Wheeler, 1994) exploit the 

‘FM index’ data structure (Ferragina and Manzini, 2000) which enables rapid 

sub-sequence search, and, in the case of the human (and indeed all other 

mammalian genomes), is equal to, or smaller in size than, the reference 

genome itself. There are two steps involved in creating the FM index. Firstly, 

BWT is used for efficient data compression of the reference genome.  

Secondly, the final index is created. This step can be memory intensive, but 

can be done in less memory with a cost in processing time.    This final index 



30 
 

is then used for rapid placement of reads on the human reference genome.  

Methods utilising BWT have a greater processing speed than methods 

utilising hash tables (Flicek and Birney, 2009; Altmann et al., 2012; 

Kärkkäinen, 2007). Examples of tools that utilise BWT are Bowtie 

(Langmead et al., 2009), Bowtie2 (Langmead and Salzberg, 2012), BWA (Li 

and Durbin, 2009) and SOAP2 (Li et al., 2009c).  

1.2.2.3 Alignment Post-Processing 

Once the reads have been aligned to the reference genome, several post- 

processing steps need to be carried out on the aligned reads before variant 

calling is carried out (Altmann et al., 2012). First, the proportion of the reads 

that were successfully aligned needs to be obtained. Next, the aligned reads 

need to be sorted according to their position in the chromosome. 

Since the PCR that is used for amplification and ligation of adaptors can 

introduce duplicated reads, these need to be removed. Some reads can 

have more than one optimal alignment: ‘non-unique alignments’; which also 

need to be removed (Altmann et al., 2012; Pabinger et al., 2014).  The 

above post-processing steps are carried out using either the SAMtools (Li et 

al., 2009b) or Picard (http://broadinstitute.github.io/picard/) suites of tools for 

manipulating aligned reads (Altmann et al., 2012). 

Finally, reads around small indels need to be realigned to prevent calling of 

false-positive SNVs (Altmann et al., 2012). This post-processing step is 

performed by utilities in the GATK suite of tools which are a set of tools for 

analysing next-generation sequencing data (McKenna et al., 2010).  
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1.2.2.4 SNV Calling 

After post-processing of the aligned reads, the next step is to ‘call’ SNVs. 

There are several tools available to do this from whole genome sequencing 

data. These include SAMtools (Li et al., 2009b), GATK (McKenna et al., 

2010), VarScan 2 (Koboldt et al., 2012), SNVer (Wei et al., 2011) and 

SomaticSniper (Larson et al., 2012). Some tools can call both germline and 

somatic SNVs (e.g. SAMtools and VarScan 2) while others can only call 

germline SNVs (e.g. GATK and SNVer) or somatic SNVs (e.g. 

SomaticSniper).  

The SNV calling tools all generate output in VCF format, a plain text format 

for storing SNV data. It consists of two sections: a header section and a data 

section. The header section consists of a number of meta-information lines 

with each one prefixed by the characters ‘##’. These meta-information lines 

describe the tags and annotations used in the data section as well as file 

creation information, reference genome version, software used to call SNVs 

and any other relevant information. The header section also contains a tab 

delimited field definition line which is prefixed by the character ‘#’. The field 

definition line names the eight compulsory fields. These are:  
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1. the chromosome (CHROM) 

2. the position (POS) 

3. the unique identifier (ID) 

4. the reference allele (REF) 

5. the mutation (ALT) 

6. the quality score (QUAL) 

7. filtering information (FILTER)  

8. annotations (INFO) 

The data section contains the data that correspond to the above fields. The 

lines in the data section are tab delimited and must match the number of 

fields defined in the header section (Danecek et al., 2011). The VCF format 

is illustrated in Figure 1.7.  

     

Figure 1.7: An example of the VCF format  (Reproduced from                     

(Danecek et al., 2011)). 
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1.3 Identifying the Functional Consequence of SNVs 

Once a set of SNVs have been called from whole genome sequence data 

the next step is to identify the functional consequence of the SNV. This in 

turn will enable the identification of SNVs that cause Mendelian diseases 

and act as driver SNVs in cancer. The possible functional consequences 

are:  non-synonymous, synonymous, nonsense, sense, splice site and 

transcription factor binding site (Makrythanasis and Antonarakis, 2011).  

Non-synonymous, synonymous, nonsense and sense SNVs occur only in 

the coding region. Splice site SNVs occur in the intron-exon boundary, while 

transcription factor binding site SNVs occur in both the coding and            

non-coding regions (in promoters, introns, exons and regions far upstream of 

genes (up to 10,000 bp)). 

 At the whole genome scale, it is not feasible to employ experimental 

methods to identify the functional consequence of SNVs. Therefore 

computational approaches are required to identify the functional 

consequence of SNVs. This is done by the following tools ANNOVAR (Wang 

et al., 2010), Ensembl VEP (McLaren et al., 2010) and snpEff (Cingolani et 

al., 2012).  

SNVs that have different functional consequences differ in terms of their 

impact on the resulting protein product. Non-synonymous SNVs (also known 

as missense SNVs) are SNVs where one codon is replaced with another that 

encodes a different amino acid. (Read and Donnai, 2011; Khan and Vihinen, 

2007). This is illustrated in Figure 1.8. 
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Figure 1.8: Effect of a non-synonymous SNV.  (Reproduced from 

(http://ghr.nlm.nih.gov/handbook/illustrations/missense) last accessed on 

14/05/2016). 

 

The impact of non-synonymous SNVs on the protein is varied. Certain          

non-synonymous SNVs can severely damage the protein product, and alter 

its normal function, while others have a negligible effect on the normal 

function of the protein. Therefore, in addition to identifying the functional 

consequence of an SNV as being non-synonymous, its impact on the protein 

will also need to be quantified. 

 A plethora of tools have been developed to predict the impact of a               

non-synonymous SNV on protein structure and function (Khan and Vihinen, 

2007; Cline and Karchin, 2011; Pabinger et al., 2014).  These include SIFT 

(Kumar et al., 2009), PolyPhen-2 (Adzhubei et al., 2010), FATHMM (Shihab 

et al., 2013), MutationAssessor (Reva et al., 2011), SNPs3D (Yue et al., 

http://ghr.nlm.nih.gov/handbook/illustrations/missense


35 
 

2006), nsSNPAnalyzer (Bao et al., 2005), SNAP (Bromberg and Rost, 2007), 

SAAPpred (Al-Numair and Martin, 2013), MutPred (Li et al., 2009a), 

SNPS&GO (Calabrese et al., 2009) , SNPs&GO3D (Capriotti and Altman, 

2011), Panther (Thomas et al., 2003), PhD-SNP (Capriotti et al., 2006), 

PMut (Ferrer‐Costa et al., 2004), MAPP (Stone and Sidow, 2005), SusPect 

(Yates et al., 2014), Bongo (Cheng et al., 2008), Hansa (Acharya and 

Nagarajaram, 2012), Parepro (Tian et al., 2007), SNPDryad (Wong and 

Zhang, 2014),  Condel (Gonzalez-Perez and Lopez-Bigas, 2011) and 

CAROL (Lopes et al., 2012). 

Several of these tools make use of only sequence information to predict the 

impact of non-synonymous SNVs (e.g. SIFT, FATHMM, MutationAssessor, 

Panther, PhD-SNP, MAPP, SNPS&GO, Parepro and SNPDryad), while 

others make use of both sequence and structural information (e.g. 

PolyPhen-2, SNPs3D, nsSNPAnalyzer, SNAP, MutPred, SNPs&GO3D, 

PMut, SusPect, SAAPpred and Hansa). On the other hand, certain tools 

exclusively make use of structural information (e.g. Bongo). Recently, tools 

such as Condel and CAROL have been developed that exploit the 

complementarity of different tools for predicting the impact of                       

non-synonymous SNVs on protein function. These tools first obtain the 

output from several tools, and then combine the output scores of these tools 

and give the final prediction of the impact of the non-synonymous SNV.  

Synonymous SNVs (also known as silent SNVs) are SNVs where one codon 

is replaced with another that encodes the same amino acid. Synonymous 

SNVs are conventionally assumed to have no effect on the protein and thus 
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be neutral (Read and Donnai, 2011). Therefore, no further analysis needs to 

be done after identifying an SNV as being synonymous. 

Nonsense SNVs are SNVs where a codon is replaced with a stop codon. 

Protein synthesis then stops at that point as illustrated in Figure 1.9. If the 

SNV occurs at a location which has an exon-exon junction more than 50-55 

nucleotides upstream then nonsense-mediated decay ensues. This results in 

degradation of the mRNA transcript and complete lack of production of the 

protein product. This is equivalent to deletion of the entire gene. If a 

nonsense SNV does not trigger nonsense-mediated decay, then a truncated 

protein is produced as illustrated in Figure 1.10. Either way, nonsense SNVs 

are considered as loss-of-function SNVs (Read and Donnai, 2011; Maquat, 

2005; Kurmangaliyev et al., 2013).  Therefore, no further analysis needs to 

be done after identifying an SNV as being nonsense. 
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Figure 1.9: Effect of a nonsense SNV  (Reproduced from 

(http://ghr.nlm.nih.gov/handbook/illustrations/nonsense) last accessed on 

14/05/2016). 

 

 

Figure 1.10: Locations of the gene where nonsense SNVs trigger and do not trigger 

nonsense mediated decay (Reproduced from (Maquat, 2004)). 

Sense SNVs are SNVs where a stop codon is replaced with a codon that 

codes for an amino acid.  This results in the downstream 3’ Untranslated 

Region becoming part of the open reading frame which will result in a protein 

with a C-terminal extension. The mRNA transcript is hence degraded as the 

resulting protein product will be unstable. Therefore there is a complete lack 

http://ghr.nlm.nih.gov/handbook/illustrations/nonsense
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of production of the protein product which is equivalent to complete gene 

deletion (Klauer and van Hoof, 2012).  Therefore no further analysis needs 

to be done after identifying an SNV as being sense. 

SNVs that occur in splice sites disrupt the splice sites located in the intron-

exon boundary that are required for the removal of introns and the joining of 

the exons which in turn yields the mature mRNA molecule. This results in the 

skipping of the relevant exon, or retention of intronic sequence therefore 

yielding a non-functional copy of the protein product as shown in Figure 1.11 

. Splice site SNVs are also considered as loss of function SNVs (Read and 

Donnai, 2011; Kurmangaliyev et al., 2013). Therefore no further analysis 

needs to be done after identifying an SNV as being in a splice site. 

 

Figure 1.11: Effect of a splice site SNV  (Reproduced from (http://www.cancer.gov/) 

last accessed on 14/05/2016). 

 

 

 

http://www.cancer.gov/
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SNVs that occur in TFBSs can disrupt the key protein-DNA interactions 

required for binding of transcription factors to their corresponding TFBSs 

which regulate transcription as shown in Figure 1.12. Gene expression of the 

corresponding gene is therefore altered. Consequently the mRNA and hence 

protein levels, are altered (Worsley-Hunt et al., 2011; de Vooght et al., 

2009).  However, this is now thought only to be the consequence of SNVs 

occurring in TFBSs in the non-coding regions as questions have been raised 

as to whether TFBSs in protein coding regions are functional in terms of 

regulation of gene expression (Xing and He, 2015). In order to identify SNVs 

that occur in TFBSs, a set of TFBSs are required. 
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Figure 1.12: Effect of an SNV in a transcription factor binding site  (Reproduced 

from (http://www.gene-regulation.com/info/pathodb.html) last accessed on 

14/05/2016). 

 

 

1.4 Experimental Identification of Transcription 

Factor Binding Sites 

There are many experimental techniques that have been used to identify 

TFBSs. These are reviewed briefly below.   

Traditionally, the Electro-Mobility Shift Assay (EMSA) (Garner and Revzin, 

1981) has been the de facto technique for experimentally identifying TFBSs. 

EMSA is carried out by subjecting mixtures of protein and nucleic acid to 

electrophoresis, and then using autoradiography to determine the distribution 

of nucleic acid mixtures.  EMSA works by exploiting the ability of a non-

http://www.gene-regulation.com/info/pathodb.html
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denaturing polyacrylamide gel to act as a molecular sieve, hence separating 

the protein-bound DNA from the unbound DNA. The protein-nucleic acid 

complexes migrate more slowly than the free nucleic acid (Hellman and 

Fried, 2007; Elnitski et al., 2006). The EMSA assay is summarised in Figure 

1.13. 

 

Figure 1.13: The EMSA assay  (Reproduced from (Yang, 1998)). Electrophoresis is 

carried out on mixtures of protein and 32P labelled nucleic acid. This is followed by 

autoradiography. The unbound DNA separates from the protein-nucleic acid 

complexes by migrating faster on the gel.      
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  An alternative technique is the DNase I footprinting/protection assay which 

combines the cleavage reaction of DNase I with the binding properties of the 

EMSA assay  (Galas and Schmitz, 1978). The fundamental principle of the 

DNase I footprinting/protection assay is that the bound protein protects the 

phosphodiester backbone of the DNA from hydrolysis by DNase I. Following 

hydrolysis by DNase I, the resulting fragments undergo electrophoresis and 

are visualised by autoradiography. Any TFBSs that are cleavage-protected 

will appear as a blank image in the semicontinuous ladder of nucleotide 

positions (Brenowitz et al., 2001; Elnitski et al., 2006).  The DNase I 

footprinting/protection assay is summarised in Figure 1.14. 
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Figure 1.14: The DNase I footprinting/protection assay.  Reproduced from 

(www.nationaldiagnostics.com) last accessed on 14/05/2016). The labelled DNA is 

hydrolysed by DNase I and the resulting fragments undergo electrophoresis and are 

visualised by autoradiography. Areas of the DNA bound by protein are protected 

from hydrolysis and appear as blank images.  

 

 

A key problem with both the EMSA and DNase I footprinting/protection 

assays is the identification of unwanted protein-DNA interactions that result 

from the interference of non-specific DNA binding proteins such as DNA 

repair proteins (Elnitski et al., 2006).  

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB0&url=https%3A%2F%2Fwww.nationaldiagnostics.com%2Felectrophoresis%2Farticle%2Fdnase-i-footprinting&ei=RD6RVYWQJcX-UID_gdAD&bvm=bv.96783405,d.d24&psig=AFQjCNEI5fMekPQMh7CYsCHt3Sriqv-8vA&ust=1435668414830977
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A more technically advanced assay is the  ‘Systematic Evolution of Ligands 

by EXponential enrichment’ (SELEX) assay (Tuerk and Gold, 1990). SELEX 

is used to select dsDNAs that are bound specifically by a particular 

transcription factor from a random library. It works by screening a large pool 

of short, random oligonucleotide probes which are recognized by a protein of 

interest (Tuerk and Gold, 1990). The oligonucleotides that are bound by the 

protein of interest are then separated from the oligonucleotides that are not 

bound in a step known as selection. The oligonucleotides that were bound 

by the target protein are then amplified by PCR. This process of screening, 

selection and PCR amplification is termed a SELEX ‘round’. Multiple rounds 

of SELEX are performed (Tuerk and Gold, 1990; Djordjevic, 2007). The 

SELEX protocol is summarised in Figure 1.15. 
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Figure 1.15: The SELEX assay  Reproduced from (altair.sci.hokudai.ac.jp) last 

accessed on 14/05/2016). SELEX consists of multiple rounds. A SELEX round 

consists of screening a large pool of short nucleotide probes that are recognised by 

the protein of interest. Oligonucleotides that are bound to protein are separated 

from oligonucleotides that are free. PCR amplification of the protein-bound 

oligonucleotides then follows.     

 

1.5 Experimental Identification of Genome Wide 

Transcription Factor Binding Events 

There is now an opportunity to identify and characterize protein-DNA binding 

events at a genome-wide level through the use of the techniques ChIP-chip 

and ChIP-Seq. ChIP-chip and ChIP-Seq are high throughput versions of the 

Chromatin ImmunoPrecipitation (ChIP) assay. 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB0&url=http%3A%2F%2Faltair.sci.hokudai.ac.jp%2Fg6%2FProjects%2FSelex.html&ei=1T6RVeDvDIvWU7D3gDg&bvm=bv.96783405,d.d24&psig=AFQjCNGp3DOZZ48GAhlonJbq30d24_ONxw&ust=1435668516746491
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In a ChIP assay, the DNA-binding protein of interest is cross-linked to the 

DNA using formaldehyde, hence capturing the protein-DNA interactions in 

vivo. The DNA is then fragmented into small fragments of around 200–1000 

bp, and an antibody specific for a given transcription factor is then used to 

immunoprecipitate the DNA-protein complex. The cross-links are then 

reversed, releasing the DNA for PCR amplification (Elnitski et al., 2006). 

However, the ChIP assay has the inability to detect the precise binding sites 

(that are between 9 and 15 bp long) within the identified regions. The ChIP 

assay is summarised in Figure 1.16. 
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Figure 1.16:  The ChIP assay (Reproduced from (www.seoulin.co.kr) last 

accessed on 14/05/2016). Formaldehyde is used to cross-link a DNA binding 

protein to the DNA. The DNA is then fragmented and the DNA-protein complex is 

immunoprecipitated. The cross-links are reversed and the DNA undergoes PCR 

amplification.    

 

ChIP-chip involves labelling the resulting fragments from the ChIP assay  

with a fluorescent molecule (e.g. Cy5 or Alexa 647) followed by hybridization 

to genomic tiling microarrays (Ren et al., 2000). The labelling and 

hybridization steps are similar to cDNA microarrays (Ren et al., 2000; Buck 

and Lieb, 2004). The ChIP-chip experiment is summarised in Figure 1.17. 

ChIP-Seq involves performing end repair, poly-A tailing and then the ligation 

of adaptors to the resulting DNA fragments from the ChIP assay. Clusters of 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjzmc79mLnLAhXJMBoKHRSkAfwQjB0IBg&url=http%3A%2F%2Fwww.seoulin.co.kr%2Fshop%2Fproducts%2Fproduct_01.php%3Fcategory%3D1a4481100000000&psig=AFQjCNG3azq6ws4WBD75N3wzC_sGys7k9g&ust=1457801728916832
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these fragments are then generated. Massively parallel sequencing is then 

carried out (Park, 2009). These steps are similar to other next generation 

sequencing experiments such as whole genome or RNA sequencing. The 

ChIP-Seq experiment is summarised in Figure 1.18.  

 

 

Figure 1.17: The ChIP-ChIP workflow  (Reproduced from www.bcm.edu                              

last accessed on 14/05/2016). The resulting fragments from the ChIP assay are 

labelled with a fluorescent molecule and then hybridised to a microarray.    

 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB0&url=https%3A%2F%2Fwww.bcm.edu%2Fmcfweb%2Findex.cfm%3Fpmid%3D4660&ei=q0CRVc31PMvwUvvWsYgK&psig=AFQjCNHArjd7ZRAaBoiExBr3SjKCutu6Gg&ust=1435668807119061
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Figure 1.18:  The ChIP-Seq Workflow  (Reproduced from (Park, 2009)). End repair, 

poly-A tailing and adaptor ligation is carried out on the DNA fragments resulting 

from the ChIP assay. Clusters of fragments are then generated which are then 

subject to massively parallel sequencing. 
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There are a number of advantages of using ChIP-Seq instead of ChIP-chip 

to identify transcription factor binding regions. A key improvement over ChIP-

chip is in base pair resolution given that arrays have limitations in resolution 

arising from uncertainties in the hybridization step which can also introduce 

noise from cross hybridization between sequences that are not perfectly 

matched. This arises owing to the inherent complexity of nucleic acid 

hybridization, and the fact that it depends on multiple factors such as GC 

content, length, concentration, secondary structure of the target and probe 

sequences (Park, 2009). In addition, the intensity signal measured on arrays 

suffers from non-linearity over its range (Park, 2009) and the dynamic range 

can also be limited such that the signal is below the sensitivity threshold or 

above the saturation point. The result is that biologically relevant peaks 

which are identified in ChIP-Seq are obscured when ChIP-chip is employed. 

In addition, ChIP-Seq allows repetitive regions to be analysed which are 

normally obscured on arrays. This is facilitated by the fact that genomic 

coverage is not limited to the probe sequences that have been fixed on the 

array in the ChIP-chip approach. Hence ChIP-Seq has a higher specificity 

and sensitivity compared with ChIP-chip (Park, 2009; Joshua et al., 2011), 

and has largely superseded the ChIP-chip method. ChIP-Seq is now the 

current gold standard for identifying protein/DNA interaction regions such as 

transcription factor binding regions (Adli and Bernstein, 2011). 
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1.6 Challenges in Identifying SNVs in Transcription 

Factor Binding Sites 

Unfortunately the number of precise experimentally characterised TFBSs is 

very limited. This is because the techniques that experimentally identify 

precise TFBSs (EMSA, DNase I footprinting/protection and SELEX assays) 

are low-throughput and hence are only able to characterize a small number 

of protein-DNA binding events. However, the recent ENCODE project has 

resulted in a large amount of ChIP-Seq data being publicly available. 

Therefore, for many transcription factors, whole genome maps of 

transcription factor binding exist. However, as the binding regions identified 

by these ChIP-Seq experiments are much longer than the binding site for a 

particular transcription factor, the precise TFBS within a region identified by 

ChIP-Seq still needs to be detected. Given that the number of experimentally 

characterised TFBSs are limited, the detection of the precise TFBS within a 

ChIP-Seq region is completely reliant on computational prediction of TFBSs. 

The computational prediction of TFBSs is generally performed by using a 

pattern matching tool to scan ChIP-Seq regions with a Position Weight 

Matrix (PWM) which describes a transcription factor of interest.  Improving 

the computational prediction of TFBSs will aid the identification and 

interpretation of SNVs in TFBSs from whole genome sequencing data 

(Worsley-Hunt et al., 2011; Consortium, 2012; Fratkin et al., 2012; Hunt et 

al., 2014; Bailey and Machanick, 2012). 
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1.7 Aims and Outline of Thesis 

This thesis will focus on improving the computational prediction of TFBSs, 

and, then exploiting the resulting predicted TFBSs to interpret the effects of 

SNVs in TFBSs in particular focussing on driver and passenger SNVs in 

cancer. 

Chapter 2 discusses the improvement of the computational prediction of 

TFBSs through the evaluation of the performance of a set of pattern 

matching tools that can be locally installed, and the identification of the best 

performing tool. Chapter 3 discusses the improvement of the computational 

prediction of TFBSs through the evaluation of a set of motif discovery tools 

that are used to derive PWMs, the identification of the best performing tool, 

the use of this tool to generate a set of new PWMs and by finally checking 

that the selection of the best pattern matching tool is not unduly influenced 

by the choice of PWMs. Chapter 4 discusses the application of the analyses 

in chapters 2 and 3 to the problem of discriminating between somatic cancer 

driver and passenger SNVs in TFBSs. Chapter 5 provides a summary of the 

major findings in this thesis and discusses future work. 
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2 An Independent Assessment of 

Pattern Matching Tools 
 

The work presented in this chapter was presented as a poster at the 

MASAMB 2013 conference held at Imperial College London and has been 

submitted as a paper to BMC Bioinformatics (Jayaram, N., Usvyat, D. and 

Martin, A.C.R. “Evaluating tools for transcription factor binding 

site prediction”). 

 

2.1 Introduction 

2.1.1 Pattern Matching Tools  

 

Pattern matching tools are a key component of TFBS prediction. Pattern 

matching tools fall into two classes: those that predict individual TFBSs and 

those that predict clusters of TFBSs.  
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Pattern matching tools predict putative individual TFBSs or clusters of 

TFBSs by utilising prior knowledge of the experimentally determined TFBSs 

describing a transcription factor of interest. These experimentally-determined 

TFBSs must be represented either as a consensus sequence, or as a PWM 

(Sand et al., 2008; Elnitski et al., 2006).  

 A consensus sequence consists of the most frequent base at each position 

of the experimentally determined TFBS. This consensus sequence can 

either be strict (using only the 4 letters A, C, G and T from the International 

Union of Pure and Applied Chemistry (IUPAC) nucleotide code) or 

degenerate (using the complete 15 letter IUPAC nucleotide code). The 

complete IUPAC nucleotide code is shown in Table 2.1.  
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Nucleotide Code Base 

A  Adenine 

C Cytosine 

G Guanine 

T Thymine 

R Adenine or Guanine 

Y Cytosine or Thymine 

S Guanine or Cytosine 

W Adenine or Thymine 

K Guanine or Thymine 

M Adenine or Cytosine 

B Cytosine or Guanine or Thymine 

D Adenine or Guanine or Thymine 

H Adenine or Cytosine or Thymine 

V Adenine or Cytosine or Guanine 

N Any Base 

 

Table 2.1: The complete IUPAC nucleotide code 

 

Use of the strict consensus sequence fails to take important variable regions 

into account as certain positions within the consensus sequence may consist 

of nucleotides with equivalent frequencies, therefore, resulting in a more 

complex pattern. The use of the strict consensus sequence can therefore 

exclude a subset of the binding site repertoire.   Degenerate consensus 

sequences take into account the occurrence of alternative nucleotides at a 
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particular position in the TFBS. The use of degenerate consensus 

sequences characterises the diversity of the TFBS repertoire, and alleviates 

many of the problems associated with the use of the strict consensus 

sequence. However, degenerate forms of the consensus sequence fail to 

take into account the relative frequencies of the alternative nucleotides 

(Elnitski et al., 2006; Nguyen and Androulakis, 2009; Turatsinze et al., 2008).  

The use of PWMs has proven to be very successful in various problems in 

DNA and protein sequence analysis, and is currently the de facto model for 

TFBS prediction. The PWM model is a matrix of scores which correspond to 

the frequencies of the four nucleotides at each position in the TFBS motif.    

In contrast, to the consensus model, the PWM model therefore takes into 

account the preference for each of the four nucleotides. PWMs can then be 

visualised as a sequence logo. The fundamental assumption of the PWM 

model is that the bases at the different positions of the TFBS motif are 

statistically independent (Nguyen and Androulakis, 2009; Elnitski et al., 

2006). 

These different ways of representing experimentally determined TFBSs are 

summarised in Figure 2.1. 
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Figure 2.1: Different ways of representing a set of experimentally determined 

TFBSs  (left) including consensus sequences (bottom left),PWMs (top right) and 

sequence logos( bottom right) (Reproduced from (Zambelli et al., 2012)). 

 

The pattern matching tools use PWMs to predict TFBSs by scanning a DNA 

sequence of interest with the PWM for a transcription factor of interest. Only 

one PWM at a time can be used to scan the DNA sequence by the pattern 

matching tools currently available.  The pattern matching tools that predict 

individual TFBSs scan the DNA sequence in segments which are the same 

length as the PWM. A raw score or a p-value is calculated to quantify the 

extent of similarity of the sequence segment to the PWM. The sequence 

segments which have scores or p-values that exceed a predefined threshold 

are reported as putative TFBSs (Hannenhalli, 2008; Turatsinze et al., 2008).  

The pattern matching tools that predict clusters of TFBSs predict the TFBSs 

by first scanning the DNA sequence in segments that are the same length as 
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the PWM. A cluster is defined as a region of DNA that has a high density of 

predicted TFBSs for a particular transcription factor. The density of a region 

of DNA in predicted TFBSs is quantified by a raw score or p-value. The 

regions of DNA that have scores or p-values that exceed a particular 

threshold are reported as putative clusters of TFBSs (Turatsinze et al., 

2008). 

The problem with the naïve use of pattern matching tools is that the TFBSs 

are inherently short and degenerate which can result in a high error rate. 

There is therefore a need to evaluate the performance of these pattern 

matching tools in order to improve TFBS prediction (Hannenhalli, 2008; 

Turatsinze et al., 2008).  

 

2.1.2 Evaluating the Performance of Pattern Matching Tools 

In order to conduct an evaluation of pattern matching tools, careful choices 

need to be made regarding the positive and negative controls and the source 

of the PWMs used in the evaluation. These are discussed further in the 

following two sections.   

2.1.3    Choice of Positive and Negative Control Sets 

Evaluating the performance of pattern matching tools requires positive and 

negative control sets.   

The aim of the positive control is to enable the assessment of performance 

through calculation of standard performance measures such as sensitivity 

and positive predictive value. The positive control takes the form of a set of 
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experimentally characterised TFBSs together with their corresponding gene 

sequences (Sand et al., 2008).  

Experimentally validated precise TFBSs are available either from the 

commercial TRANSFAC resource, or from the open access resources 

PAZAR (Portales-Casamar et al., 2009) and ORegAnno (Griffith et al., 

2008). Availability and application of the data from TRANSFAC is restricted 

by a commercial license. Hence, TRANSFAC was rejected for the analyses 

in this thesis. The data in PAZAR are a superset of ORegAnno, making 

PAZAR the most comprehensive open access resource. Hence PAZAR has 

been chosen as the source of the experimentally characterised TFBSs used 

in the work described in this thesis. PAZAR contains TFBSs for a total of 73 

human transcription factors that correspond to a total of 865 unique human 

genes. 

The purpose of the negative control is to assess the false positive rate of a 

pattern matching tool. The negative control can take the form of artificially 

generated sequences or randomized gene sequences corresponding to the 

genome of interest. The problem with using artificially generated sequences 

is that such sequences are generated using a theoretical background model 

(e.g. Bernoulli or Markov) which may not reflect the complexity of the 

genome of interest. Any results obtained can be overly optimistic i.e. result in 

no TFBSs being predicted by any pattern matching tools and therefore failing 

to discriminate between pattern matching tools in terms of their false positive 

rate. This can especially be a problem where vertebrate genomes are 

concerned given their high level of complexity (Sand et al., 2008). The use of 

randomized gene sequences relevant to the genome of interest will be more 
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stringent in terms of the results obtained (Sand et al., 2008).  Hence, 

randomized human gene sequences were chosen to act as the negative 

control for the work described in this thesis.  

2.1.4 Choice of PWM Resource 

 

There are two main resources for obtaining PWMs. These are the 

commercial resource TRANSFAC, and the open access resource JASPAR. 

The TRANSFAC resource was established in 1988 and has since been 

regularly updated.  The JASPAR resource was established in 2004 

(Sandelin et al., 2004) and has had five further updates. The updates for 

JASPAR were in 2006 (Vlieghe et al., 2006), 2008 (Bryne et al., 2008), 2010 

(Portales-Casamar et al., 2010), 2014 (Mathelier et al., 2013) and 2016 

(Mathelier et al., 2015a).  

Recently three new open access resources have been established: 

HOCOMOCO (Kulakovskiy et al., 2013b), HOMER (Heinz et al., 2010), 

(http://homer.salk.edu/homer/motif/HomerMotifDB/homerResults.html) and 

CIS-BP (Weirauch et al., 2014). The CIS-BP resource is somewhat different 

from the other PWM resources; rather than primarily focussing on including 

newly derived PWMs, the objective is to collate all pre-existing PWMs from 

existing open-source resources and individual publications and contains 

some redundancy (i.e. multiple PWMs for a particular transcription factor) 

(Weirauch et al., 2014).  
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For the work described in this chapter, the JASPAR resource was chosen to 

be the source of the PWMs as it is a well-respected freely-available resource 

that has been available for a long time and is widely used.  

 

2.1.5 Selection of Pattern Matching Tools 

 

A number of pattern matching tools that predict individual TFBSs and 

clusters of TFBSs have been developed. These pattern matching tools are 

available in two forms: online and locally-installable. The online forms of the 

pattern matching tools are only capable of predicting TFBSs for a rather 

limited number of DNA sequences. Therefore, in order to perform any bulk 

analysis (e.g. predicting TFBSs within regions identified by ChIP-Seq),   the 

locally-installable forms of the pattern matching tools need to be used. The 

pattern matching tools that predict individual TFBSs which have a locally- 

installable version are the open source tools FIMO (Grant et al., 2011), 

Patser (Turatsinze et al., 2008), Clover (Frith et al., 2004a), PoSSuMsearch 

(Beckstette et al., 2006) and matrix-scan (Turatsinze et al., 2008), and the 

commercial tools Match (Kel et al., 2003) and Patch (Matys et al., 2006). The 

pattern matching tools that predict clusters of TFBSs, and have a locally- 

installable version are the open source tools MCAST (Bailey and Noble, 

2003), BayCis (Lin et al., 2008b), Cister (Frith et al., 2001), Cluster-Buster 

(Frith et al., 2003), Comet (Frith et al., 2002) and the commercial tool 

Matrixcatch (Matys et al., 2006).   
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 All of the above pattern matching tools require a set of DNA sequences in 

FASTA format and PWMs as input and produce a list of putative TFBS 

clusters, or individual TFBSs, as output. The putative TFBS clusters or 

individual TFBSs are produced as plain text. Each pattern matching tool 

requires the PWM to be in a particular file format which differs between 

different pattern matching tools.  

In this evaluation, the decision was taken to use only the pattern matching 

tools listed above which are open source. Therefore, the pattern matching 

tools that predict clusters of TFBSs that were chosen for this evaluation were 

MCAST (Bailey and Noble, 2003), BayCis (Lin et al., 2008b), Cister (Frith et 

al., 2001), Cluster-Buster (Frith et al., 2003) and Comet (Frith et al., 2002). 

The pattern matching tools that predict individual TFBSs chosen were FIMO 

(Grant et al., 2011), Patser (Turatsinze et al., 2008), Clover (Frith et al., 

2004a), PoSSuMsearch (Beckstette et al., 2006) and matrix-scan 

(Turatsinze et al., 2008).  Table 2.2 summarises the PWM formats (See 

section 2.1.6) for each of the pattern matching tools considered in this 

evaluation and provides the URLs for downloading the pattern matching 

tools. 
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TOOL PWM FORMAT URL 

MCAST MEME http://meme-suite.org/ 

BayCis tab http://www.sailing.cs.cmu.edu 

Cister Cluster-Buster http://zlab.bu.edu 

Cluster-Buster Cluster-Buster http://zlab.bu.edu 

Comet Cluster-Buster http://zlab.bu.edu 

FIMO MEME http://meme-suite.org/ 

Patser tab http://www.rsat.eu/ 

Clover Cluster-Buster http://zlab.bu.edu 

PoSSuMsearch PoSSuM-PSSM http://bibiserv.techfak.uni-

bielefeld.de/ 

matrix-scan MEME/Cluster-

Buster/TRANSFAC/JASPAR 

http://www.rsat.eu/ 

 

Table 2.2: Summary of the required PWM formats for each of the pattern matching 

tools chosen for evaluation and URLs for downloading the tools. 

2.1.6 PWM file formats 

2.1.6.1 MEME  

The pattern matching tools FIMO and MCAST require the PWMs to be in 

MEME file format. The MEME format illustrated in Figure 2.2 is a plain text 

format which contains the following sections:  
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1. the MEME version line which details the oldest version of MEME-

SUITE that the file can be read by 

2. an alphabet line detailing whether the PWM is for DNA or protein 

3. a line giving information on the background frequencies in the source 

sequence 

4. a line giving the name of the motif 

5. a line giving information on the alphabet length (this is 4 if the PWM is 

for a DNA sequence and 20 if it is for a protein sequence) and the 

width of the PWM  

6. A set of records containing the PWM itself. Each row represents the 

four bases and adds up to one.  
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MEME version 4 

 

ALPHABET= ACGT 

 

 

 

Background letter frequencies 

A 0.303 C 0.183 G 0.209 T 0.306  

 

MOTIF crp 

letter-probability matrix: alength= 4 w= 19  

 0.000000  0.176471  0.000000  0.823529  

 0.000000  0.058824  0.647059  0.294118  

 0.000000  0.058824  0.000000  0.941176  

 0.176471  0.000000  0.764706  0.058824  

 0.823529  0.058824  0.000000  0.117647  

 0.294118  0.176471  0.176471  0.352941  

 0.294118  0.352941  0.235294  0.117647  

 0.117647  0.235294  0.352941  0.294118  

 0.529412  0.000000  0.176471  0.294118  

 0.058824  0.235294  0.588235  0.117647  

 0.176471  0.235294  0.294118  0.294118  

 0.000000  0.058824  0.117647  0.823529  

 0.058824  0.882353  0.000000  0.058824  

 0.764706  0.000000  0.176471  0.058824  

 0.058824  0.882353  0.000000  0.058824  

 0.823529  0.058824  0.058824  0.058824  

 0.176471  0.411765  0.058824  0.352941  

 0.411765  0.000000  0.000000  0.588235  

 0.352941  0.058824  0.000000  0.588235  

 

 

Figure 2.2: An example of the MEME format 

 

2.1.6.2 Cluster-Buster 

The pattern matching tools Cister, Cluster-Buster, Comet and Clover require 

the PWM to be in Cluster-Buster format. The Cluster-Buster format shown in 

Figure 2.3 is a FASTA –like file format for representing PWMs, consisting of 

a FASTA header line followed by the PWM itself. Each row represents the 4 

bases (in the order ACGT) and adds up to one.   
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> crp 

 0.000000  0.176471  0.000000  0.823529  

 0.000000  0.058824  0.647059  0.294118  

 0.000000  0.058824  0.000000  0.941176  

 0.176471  0.000000  0.764706  0.058824  

 0.823529  0.058824  0.000000  0.117647  

 0.294118  0.176471  0.176471  0.352941  

 0.294118  0.352941  0.235294  0.117647  

 0.117647  0.235294  0.352941  0.294118  

 0.529412  0.000000  0.176471  0.294118  

 0.058824  0.235294  0.588235  0.117647  

 0.176471  0.235294  0.294118  0.294118  

 0.000000  0.058824  0.117647  0.823529  

 0.058824  0.882353  0.000000  0.058824  

 0.764706  0.000000  0.176471  0.058824  

 0.058824  0.882353  0.000000  0.058824  

 0.823529  0.058824  0.058824  0.058824  

 0.176471  0.411765  0.058824  0.352941  

 0.411765  0.000000  0.000000  0.588235  

 0.352941  0.058824  0.000000  0.588235  

 

Figure 2.3: An example of the Cluster-Buster format 

 

2.1.6.3 TRANSFAC 

The pattern matching tools Patch, Match and Matrixcatch require the PWMs 

to be in TRANSFAC format, a plain text format for representing PWMs as 

shown in Figure 2.4. It contains the following sections:  

1. an AC line containing a unique accession code 

2. an ID line containing a unique identifier 

3. a header row beginning with ‘P0’ containing the order of the bases  

4. the PWM itself with each record beginning with a 2-digit position 

number 

Blank rows begin with ‘XX’.   
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AC U00001 

XX 

ID V$CRP 

XX 

P0     A         C            G     T 

01 0.000000  0.176471  0.000000  0.823529  

02 0.000000  0.058824  0.647059  0.294118  

03 0.000000  0.058824  0.000000  0.941176  

04 0.176471  0.000000  0.764706  0.058824  

05 0.823529  0.058824  0.000000  0.117647  

06 0.294118  0.176471  0.176471  0.352941  

07 0.294118  0.352941  0.235294  0.117647  

08 0.117647  0.235294  0.352941  0.294118  

09 0.529412  0.000000  0.176471  0.294118  

10 0.058824  0.235294  0.588235  0.117647  

11 0.176471  0.235294  0.294118  0.294118  

12 0.000000  0.058824  0.117647  0.823529  

13 0.058824  0.882353  0.000000  0.058824  

14 0.764706  0.000000  0.176471  0.058824  

15 0.058824  0.882353  0.000000  0.058824  

16 0.823529  0.058824  0.058824  0.058824  

17 0.176471  0.411765  0.058824  0.352941  

18 0.411765  0.000000  0.000000  0.588235  

19 0.352941  0.058824  0.000000  0.588235 

XX 

// 

Figure 2.4: An example of the TRANSFAC format 

 

2.1.6.4 PoSSuM-PSSM 

The pattern matching tool PoSSuMsearch requires the PWMs to be in 

PoSSuM-PSSM format, a plain text format shown in Figure 2.5. It contains 

the following sections stored between two lines- BEGIN and END:  
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1. an ID line containing the identifier for the PWM 

2. an AC line containing the accession for the PWM 

3. a DE line describing the PWM 

4. an AP line detailing whether the PWM is for DNA or protein 

5. an LE line specifying the number of rows of the PWM followed by the 

PWM itself 

The order of the bases is introduced by a ‘#’ and the PWM matrix lines start 

with ‘MA’.  
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BEGIN  

ID V$CRP  

AC U00001 

DE CRP 

AP DNA 

LE 19 

#     A      T       C      G 

MA 0.000000  0.176471  0.000000  0.823529  

MA 0.000000  0.058824  0.647059  0.294118  

MA 0.000000  0.058824  0.000000  0.941176  

MA 0.176471  0.000000  0.764706  0.058824  

MA 0.823529  0.058824  0.000000  0.117647  

MA 0.294118  0.176471  0.176471  0.352941  

MA 0.294118  0.352941  0.235294  0.117647  

MA 0.117647  0.235294  0.352941  0.294118  

MA 0.529412  0.000000  0.176471  0.294118  

MA 0.058824  0.235294  0.588235  0.117647  

MA 0.176471  0.235294  0.294118  0.294118  

MA 0.000000  0.058824  0.117647  0.823529  

MA 0.058824  0.882353  0.000000  0.058824  

MA 0.764706  0.000000  0.176471  0.058824  

MA 0.058824  0.882353  0.000000  0.058824  

MA 0.823529  0.058824  0.058824  0.058824  

MA 0.176471  0.411765  0.058824  0.352941  

MA 0.411765  0.000000  0.000000  0.588235  

MA 0.352941  0.058824  0.000000  0.588235  

 

END 

 

Figure 2.5: An example of the PoSSuM-PSSM format 

2.1.6.5 tab 

The pattern matching tools Patser and BayCis require the PWMs to be in tab 

format as shown in Figure 2.6. This represents the PWM as a tab delimited 

file with a header line introduced by a semi-colon followed by the PWM itself. 

Each row of the PWM is preceded by A, T, C and G, and separated from the 

values by a pipe symbol. Each PWM record is ended with two slashes.  The 

tab format has PWM positions across a line and rows representing the 

bases. This is in contrast to all the preceding matrix formats that have the 
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four bases going across a line with the rows representing the PWM 

positions.  

; MET4 matrix, from Gonze et al. (2005). Bioinformatics 21, 3490-

500. 

A |   7   9   0   0  16   0   1   0   0  11   6   9   6   1   8 

C |   5   1   4  16   0  15   0   0   0   3   5   5   0   2   0 

G |   4   4   1   0   0   0  15   0  16   0   3   0   0   2   0 

T |   0   2  11   0   0   1   0  16   0   2   2   2  10  11   8 

// 

 

Figure 2.6: An example of the tab format 

 

 The pattern matching tool matrix-scan is much more flexible regarding the 

format of the PWMs and accepts PWMs in MEME, Cluster-Buster, tab and 

TRANSFAC formats as well as the native JASPAR format (which is 

discussed below).    

2.1.6.6 JASPAR  

The JASPAR format is a plain text file format shown in Figure 2.7 for 

representing PWMs. Similarly, to the tab format each row of the PWM is 

preceded by A, T, C and G and separated from the values by a pipe symbol. 

The JASPAR format has PWM positions across a line and rows, 

representing the bases.  

A|  0  3 79 40 66 48 65 11 65  0 

C| 94 75  4  3  1  2  5  2  3  3 

G|  1  0  3  4  1  0  5  3 28 88 

T|  2 19 11 50 29 47 22 81  1  6 

   

Figure 2.7: An example of the JASPAR format 
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2.1.7 Aim of Chapter  

The aim of this chapter is to conduct an independent assessment of a set of 

pattern matching tools which can be installed locally, and therefore, be used 

for bulk analysis. This assessment will evaluate the performance of pattern 

matching tools that predict individual TFBSs and pattern matching tools that 

predict clusters of TFBSs.  

 

2.2 Methods 

All software was locally installed. 

There are only 15 human transcription factors which both have PWMs in 

JASPAR and experimentally characterised binding sites in PAZAR as shown 

in Figure 2.8. These are BRCA1, E2F1, ELK4, ESR1, ESR2, GATA2, 

GATA3, IRF1, MAX, NFKB, STAT1, YY1, CTCF, NF-YA and SP1.  Hence, 

the performance of the pattern matching tools could only be assessed for 

these 15 transcription factors. 



72 
 

 

Figure 2.8: Venn diagram showing the overlap between the PWMs in JASPAR.2010 

and the experimentally characterised TFBSs in PAZAR 

 

The PWMs for the 15 human transcription factors were obtained from  the 

2010 release of JASPAR (JASPAR.2010) (Portales-Casamar et al., 2010), 

as this was the latest available release at the time this work was carried out. 

These PWMs are derived from SELEX, or individual promoter assays, and 

were in the JASPAR format. 
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Of all the tools chosen for evaluation, only matrix-scan can accept the 

JASPAR format. For the remainder of the pattern matching tools, these 

PWMs were converted from the JASPAR format into the formats required for 

the particular pattern matching tool using the convert-matrix program from 

the RSAT suite (Thomas-Chollier et al., 2011)  to generate Cluster-Buster 

and the tab formats, and the jaspar2meme program, from  MEME-SUITE 

(Bailey et al., 2015) to generate the MEME format. There is no single 

program capable of converting the JASPAR format to the PoSSuM-PSSM 

format, so the convert-matrix program was used to convert the PWMs from 

JASPAR to TRANSFAC format and then the transfac2gen program (which is 

included with the PoSSuMsearch download) was used to convert the PWMs 

from TRANSFAC to PoSSuM-PSSM format. 

 

2.2.1 Evaluating Performance 

Known precise TFBSs, experimentally characterized from biochemical 

protein-DNA binding experiments, corresponding to the 15 human 

transcription factors, were downloaded from PAZAR in GFF format 

(Portales-Casamar et al., 2009), for a total of 181 human genes. The GFF 

format shown in Figure 2.9 is a tab separated file format used for storing 

genomic information. The first line of the file, consists of a comment 

identifying the file format, and version. This is followed by a set of lines 

describing the data.  Each line contains the following fields:  
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1. the chromosome name  

2. the source name 

3. the feature name 

4. the start position 

5. the end position 

6. the score of the feature 

7. the strand  

8. the attributes (a semicolon separated list of key-value pairs that 

provide additional information) 

A ‘.’ character is used to represent any empty fields.  

##gff-version 3 

1  .  TFBS  1300  1315  .  +   ID=TFBS00001 

1  .  TFBS  1050  1060  .  +   ID=TFBS00002 

1  .  TFBS  3000  3012  .  +   ID=TFBS00003 

1  .  TFBS  5000  5014  .  +   ID=TFBS00004 

1  .  TFBS  7000  7009  .  +   ID=TFBS00005 

   

Figure 2.9: Example of the GFF format 

 

PAZAR contains some redundancy (multiple instances of the same TFBS 

annotated for a given gene at the same location), so, any duplicated TFBSs 

were removed using the UNIX command uniq. Subsets of this dataset were 

then selected, which contained at least one TFBS for the transcription factor 

being evaluated in a particular comparison. The GFF file was then converted 

into BED format using the GFF-to-BED conversion utility in Galaxy (Goecks 

et al., 2010). The BED format shown in Figure 2.10 is also a tab delimited 

format used for storing genomic information containing the following 

compulsory fields:  
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1. chromosome 

2. start position  

3. end position 

chr7    127471196  127471211   

chr7    127472363  127472375   

chr7    127473530  127473540   

chr7    127474697  127474706   

chr7    127475864  127475877   

chr7    127477031  127477042  

chr7    127478198  127478212   

chr7    127479365  127479374   

chr7    127480532  127480542   

 

Figure 2.10: An example of the BED format 

 

TFBSs can occur in the promoter region, and in introns and exons, as well 

as far upstream of genes (up to 10,000 bp) (Farnham, 2009; Cline and 

Karchin, 2011). Consequently, the complete gene sequence (i.e. both exons 

and introns), together with an upstream region of 10,000 bp of each of the 

181 genes was obtained in FASTA format. In addition, the genomic 

coordinates of these sequences were obtained as a text file. The DNA 

sequences and genomic coordinates were obtained from Biomart (Smedley 

et al., 2009) using the biomaRt package in Bioconductor (Durinck et al., 

2005; Durinck et al., 2009; Gentleman et al., 2004). The genomic 

coordinates were converted to BED format using Pybedtools (Dale et al., 

2011).  

Prediction of TFBSs was carried out using the selected pattern matching 

tools together with the PWMs using the DNA sequences obtained from 

Biomart.   The pattern matching tools were run at their default cutoff 
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thresholds, as this is normal practice in order to minimise the false positives 

and false negatives while maximising the true positives (Sand et al., 2008; 

Turatsinze et al., 2008). All of the resulting text files containing the predicted 

TFBSs were converted to BED format using Pybedtools (Dale et al., 2011).  

The coordinates of the predicted TFBSs from all of the selected pattern 

matching tools are relative to their larger genomic fragments (i.e. they are 

relative coordinates). The coordinates of the experimentally characterised 

TFBSs obtained from PAZAR are genomic coordinates (i.e. describing their 

actual location in the genome). In order to compare the predicted TFBSs and 

the known TFBSs, the coordinates of the predicted TFBSs were converted 

from relative to genomic coordinates, using the convert-feature program from 

RSAT (Thomas-Chollier et al., 2011) with output in BED format.   The 

genomic coordinates of DNA sequences obtained previously, were provided 

as the source of genomic coordinates to the convert-feature program. The 

convert-feature program requires all input files in BED format, so both the 

coordinates of the predicted TFBSs and the coordinates of the DNA 

sequences obtained from Biomart were first converted to BED format.   

The predicted TFBSs were compared with the experimentally characterised 

TFBSs, using the intersectBed program from the BEDTools suite (Quinlan 

and Hall, 2010), which requires all input files to be in BED format. Hence the 

reason for converting the coordinates of the experimentally characterised 

TFBSs obtained from PAZAR to BED format. 
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True positives were defined as predicted binding sites having a minimum 

overlap of 70% of base pairs with known binding sites from PAZAR. 

Similarly, false positives were defined as predicted binding sites not having 

an overlap of at least 70% of base pairs with a known binding site, and false 

negatives were defined as known binding sites that were not identified. The 

overlap of 70% in the context of the evaluation of performance of pattern 

matching tools is a practice that has been recommended by Sand et al. 

(2008). Obtaining a true estimate of the total number of negative sites (and 

hence the number of true negatives) is hard due to the ambiguities that exist 

in defining negative sites that are neither experimentally characterised nor 

computationally predicted. Therefore the normal practice of avoiding 

performance measures that require true negative counts was adopted (Sand 

et al., 2008). This comparison of the experimentally characterised TFBSs 

with the predicted TFBSs is shown in Figure 2.11. 
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Figure 2.11: A schematic illustration of the comparison between known and 

predicted TFBSs which are represented by blocks. The dark green blocks represent 

the known TFBSs,  the blue blocks represent the predicted TFBSs, the light green 

blocks represent true positives, the red blocks represent false positives and the 

orange blocks represent false negatives (Reproduced from (Sand et al., 2008)). 

For pattern matching tools that predict clusters of TFBSs, all predicted 

component TFBSs within a region were required to overlap with 

experimentally characterised sites, by a minimum of 70% of base pairs, for a 

prediction to be regarded as a true positive. 
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Performance was assessed by calculating sensitivity, positive predictive 

value and geometric accuracy. These were averaged across the 

transcription factors and genes analysed.  

 

The sensitivity (Sn) describes the fraction of the experimentally 

characterised TFBSs that are covered by the predicted TFBSs which is 

calculated as    

𝑆𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
   ( 2. 1) 

 

Where 𝑇𝑃 is the number of true positives and 𝐹𝑁 is the number of false 

negatives. 

The positive predictive value (PPV) describes the fraction of the predicted 

TFBSs that are also found in the set of experimentally characterised TFBSs. 

It is calculated as  

𝑃𝑃𝑉 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
  (2. 2) 

 

Where 𝑇𝑃 is the number of true positives and 𝐹𝑃 is the number of false 

positives. 

The geometric accuracy (ACCg) describes the trade-off between the 

sensitivity and positive predictive value and is calculated as 

𝐴𝐶𝐶𝑔 =  √𝑆𝑛 × 𝑃𝑃𝑉   (2. 3) 
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In order to create the randomized gene sequences for the negative control, 

all the DNA sequences were scrambled using the shuffleseq program from 

the EMBOSS suite (Rice et al., 2000).  

In the case of the TFBSs predicted using scrambled sequences, there are no 

actual positives and therefore no true positives or false negatives. Any 

predictions are therefore classified as false positives. Performance was thus 

assessed for the scrambled sequences by calculating false positive rate 

which is described here as the ‘false positive rate on scrambled sequences’ 

(FPRs).  The above steps are summarised in Figure 2.12. 
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Figure 2.12: Flowchart summarising methods to evaluate performance of 

pattern matching tools.  See Text.    
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The FPRs is calculated as 

𝐹𝑃𝑅𝑠 =
𝑁𝑝

𝐴𝑁
   (2. 4) 

                                                                                                              

Where 𝑁𝑝 is the number of predicted sites and 𝐴𝑁 is the number of actual 

negatives.  

As discussed in section 2.2.1, obtaining the number of actual negatives (AN) 

(and specifically the number of true negatives) is a hard problem. AN is 

normally calculated as 

 𝐴𝑁 =  𝐹𝑃 +  𝑇𝑁  (2. 5)  

 

Where 𝐹𝑃  is the number of false positives and 𝑇𝑁  is the number of true 

negatives 

 

                                                                                                                          

In calculating FPRs, the AN was defined as 

𝐴𝑁 =  
𝐿

𝑙𝑡
     (2. 6) 

                                                                                                                                     

Where 𝐿 is the length of the DNA sequence and 𝑙𝑡 is the length of the PWM 

in question. 

The FPRs was averaged across the transcription factors and genes 

analysed.  
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2.3 Results and Discussion 

Table 2.3 shows that FIMO (Grant et al., 2011) and MCAST (Bailey and 

Noble, 2003) are the best performing pattern matching tools that predict 

individual TFBSs and clusters of TFBSs respectively. In general, the pattern 

matching tools predicting individual TFBSs perform better than those 

predicting clusters of TFBSs. Because of the more stringent requirements for 

a true positive in predicting clusters of TFBSs (i.e. every predicted site within 

the cluster must have a minimum 70% overlap with a true site), it might be 

expected that the sensitivity for pattern matching tools that predict clusters of 

TFBSs would be lowered, while the specificity would be improved. Indeed, 

the sensitivity of the pattern matching tools that predict clusters of TFBSs is 

somewhat lower than the pattern matching tools that predict individual 

TFBSs. Since the true negative count is not available, the specificity cannot 

be calculated, but surprisingly the FPRs for the pattern matching tools that 

predict clusters of TFBSs is larger than that for the pattern matching tools 

that predict individual TFBSs suggesting that the pattern matching tools that 

predict clusters of TFBSs have lower specificity. 
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While the pattern matching tools which tools that predict individual TFBSs 

outperform those that predict clusters of TFBSs, the choice of the type of 

pattern matching tool depends on the context in which it is to be used. 

Consequently, if prior knowledge is available about the DNA sequence being 

scanned (i.e. a ChIP-Seq region) then using a pattern matching tool that 

predicts individual TFBSs is probably a sensible strategy. When analysing a 

stretch of DNA with no prior knowledge about the presence of a gene, it 

would be better to use a prediction tool that identifies clusters of TFBSs 

since the chance of a random match is much reduced. 
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 Sn PPV  ACCg FPRs 

Individual     

FIMO 0.815 0.735 0.774 0.015 

Patser 0.722 0.653 0.687 0.016 

PoSSuMsearch 0.708 0.635 0.670 0.020 

Clover 0.673 0.584 0.627 0.023 

matrix-scan 0.647 0.579 0.612 0.028 

Cluster     

MCAST 0.774 0.683 0.727 0.033 

BayCis 0.598 0.497 0.545 0.040 

Cister 0.635 0.565 0.599 0.040 

Cluster-Buster 0.657 0.581 0.617 0.039 

Comet 0.682 0.589 0.634 0.038 

 

Table 2.3: Performance of the selected pattern matching tools using PWMs from 

JASPAR.2010.  Average sensitivities (Sn), Positive Predictive Value (PPV) and 

geometric accuracy (ACCg) are reported together with the false positive rate using 

scrambled sequences (FPRs). Performance evaluation was performed across the 

15 transcription factors that overlap between PAZAR and JASPAR. 

 

 

 

. 
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2.4 Conclusions 

As a comprehensive set of experimentally-characterized transcription factor 

binding sites is not available, having good reliable prediction methods is very 

important. While the need for these as an adjunct to gene prediction in the 

human genome has diminished owing to the wide scale experimental 

characterisation of transcription factor binding via high-throughput ChIP 

experiments, it is now much more important in order to have a full 

understanding of the regulation of gene expression, and to be able to 

consider the potential phenotypic effects of mutations occurring in a TFBS.  

However, these high-throughput ChIP experiments do not identify the 

precise TFBS; therefore, in order to make full use of the experimental maps 

of transcription factor binding, the precise TFBS must still be identified within 

a much wider window of bases. This needs to be done by computational 

prediction.  

Evaluating the performance of the pattern matching tools has the potential to 

improve the computational prediction of TFBSs, and hence, aid the analysis 

and interpretation of data from large scale sequencing projects. 

In this chapter,  a set of transcription factor binding site prediction tools that 

could be downloaded and installed locally have been evaluated, identifying 

FIMO and MCAST as the best-performing tools for identifying individual 

TFBSs and clusters of TFBSs respectively.  

 

 



87 
 

 

3 An Independent Assessment of 

Motif Discovery Tools 
 

 

 

Parts of the work presented in this chapter was presented as a poster at the 

MASAMB 2013 conference held at Imperial College London and has been 

submitted as a paper to BMC Bioinformatics (Jayaram, N., Usvyat, D. and 

Martin, A.C.R. “Evaluating tools for transcription factor binding 

site prediction”). 

 

3.1 Introduction 

 

In the previous chapter, the performance of a set of pattern matching tools in 

TFBS prediction was evaluated. The tool FIMO was found to be the best 

performing. However, in addition to having a pattern matching tool with as 

high a performance as possible, the computational prediction of TFBSs 

requires a set of high quality PWMs.   

This chapter discusses the evaluation of a set of motif discovery tools, the 

identification of the best performing motif discovery tool (rGADEM), the 

creation of a new set of PWMs using rGADEM, and the re-evaluation of the 

pattern matching tools that were evaluated in the previous chapter using the 
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new PWMs, to ensure that PWM choice does not have a major impact on 

the performance of the pattern matching tools. 

 

3.1.1 De Novo Motif Discovery 

PWM models are derived by de novo motif discovery from a set of TFBSs 

that have been experimentally determined to bind a particular transcription 

factor. This is done by using one of several de novo motif discovery 

programs which identify a common over-represented signature, or motif, and 

derive a PWM for the transcription factor (Narlikar and Ovcharenko, 2009).  

Motif discovery tools exist in both online and locally-installable forms. The 

online forms of the motif discovery tools are only capable of deriving PWMs 

for a very limited number of DNA sequences. Therefore, in order to perform 

any bulk analysis, the locally-installable forms of the motif discovery tools 

need to be used. 

A plethora of classical de novo motif discovery tools (i.e. deriving PWMs 

from a set of TFBSs collated from SELEX or individual promoter assays) 

have been developed. The classical de novo motif discovery tools that have 

a locally-installable version are: AlignAce (Hughes et al., 2000), Consensus 

(Hertz and Stormo, 1999), GLAM (Frith et al., 2004b), The Improbizer (Ao et 

al., 2004) , MEME (Bailey and Elkan, 1994), MotifSampler (Thijs et al., 2001) 

and SesiMCMC (Favorov et al., 2005). 

The large volumes of data generated from the high-throughput techniques 

ChIP-chip and ChIP-Seq have presented challenges to de novo motif 

discovery. For example, a ChIP-Seq experiment can generate over 10,000 
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sequences in a single run. However, the conventional de novo motif 

discovery programs were developed when only a small number of protein-

DNA binding events could be characterised, and as such, are not equipped 

to handle large volumes of data.  

Hence a common practice has been to use these tools on a subset of the 

sequences (Jothi et al., 2008; Valouev et al., 2008; Hu et al., 2010). 

However, Hu et al. (2010) have suggested that this practice will lead to 

inaccurate PWMs. Therefore, the tools ChIPMunk (Kulakovskiy et al., 2010), 

HOMER (Heinz et al., 2010), rGADEM (Mercier et al., 2011) and MEME-

ChIP (Ma et al., 2014; Machanick and Bailey, 2011) have recently been 

developed that are able to handle the large volumes of data generated from 

these high-throughput technologies. All of these tools have a locally-

installable version available.  

 

3.1.2 Impact of High-Throughput Technologies on Motif 

Discovery 

It has been suggested that PWMs derived from data from the high-

throughput techniques ChIP-chip and ChIP-Seq methods, will be more 

accurate than PWMs derived from data from techniques such as SELEX, or 

compilations of individual promoter assays that detect limited transcription 

factor binding site numbers. Furthermore, the ChIP-Seq technique has been 

found to produce PWMs with greater accuracy than ChIP-chip owing to the 

superior resolution provided by the ChIP-Seq technique (Hu et al., 2010; 

Portales-Casamar et al., 2010). 
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3.1.3 Aim of Chapter 

The aims of this chapter are firstly to conduct an independent assessment, 

using the ENCODE ChIP-Seq data, of the locally-installable motif discovery 

tools that are able to handle large volumes of data; Secondly, to generate a 

set of PWMs using these data with the best-performing motif discovery tool; 

Finally, to check that the selection of the best pattern matching tool is not 

unduly influenced by the choice of PWMs. 

3.2 Methods 

 

All software was locally installed. 

 

3.2.1 Overlap between Resources 

There are currently a total of 90 transcription factors that are represented in 

the ENCODE ChIP-Seq data. ChIP-Seq datasets for 29 transcription factors 

have access restrictions. Only the transcription factors that had ChIP-Seq 

datasets with no access restrictions were selected.  

The 61 transcription factors without access restrictions are: AP-2A, AP-2Y, 

ATF3, BHLHE40, BRCA1, BRF2, CHD2, C-FOS, C-JUN, C-MYC, CEBPB, 

CTCF, E2F1, E2F4, E2F6, EBF1, ELK4, ERRA, GATA1, GATA2, GATA3, 

GRP20, GTF2B, HA-E2F1, HNF4A, HSF1, IRF1, IRF3, JUND, KAP1, MAFF, 

MAFK, MAX, NF-E2, NF-YA, NF-YB, NFKB, NRF1, POL2, PRDM1, RFX5, 

RPC155, SETDB1, SPT20, SREBP1, SREBP2, STAT1, STAT2, STAT3, 

TAL1, TBP, TCF7L2, TFIIIC-110, TR4, USF2, YY1, ZNF143, ZNF217, 
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ZNF263, ZNF274 and  ZZZ3. However, in order to perform an independent 

assessment of the different motif discovery tools and to check that the 

selection of the best pattern matching tool is not unduly influenced by the 

choice of PWMs, the transcription factors will need to have experimentally 

characterised TFBSs in PAZAR.    

Out of the selected 61 transcription factors, there are only 13 human 

transcription factors which are represented in the ENCODE ChIP-Seq data 

and have experimentally characterised TFBSs in PAZAR (Portales-Casamar 

et al., 2009) as shown in Figure 3.1. These are BRCA1, E2F1, ELK4, 

GATA2, GATA3, IRF1, MAX, NFKB, STAT1, YY1, CTCF, NF-YA and TAL1. 

Hence, unless otherwise specified, the evaluations discussed in this chapter 

could only be performed for these 13 transcription factors. 
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Figure 3.1: Overlap of transcription factor data.  

The Venn diagram shows overlaps between experimentally characterised TFBSs in 

PAZAR, and those transcription factors represented in the ENCODE ChIP-Seq 

data. 

 

3.2.2 Deriving PWMs 

The methods used for deriving de novo PWMs are summarized in            

Figure 3.2.  

For each transcription factor represented in the ENCODE project, two sets of 

ChIP-Seq samples together with a ChIP-Seq control sample are available for 
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each transcription factor. ChIP-Seq control samples are obtained from a 

mock experiment without the specific antibody (Bardet et al., 2012).    

All of the ChIP-Seq datasets for the selected human transcription factors 

were downloaded from the ENCODE project 

(http://hgdownload.cse.ucsc.edu/goldenPath/) in FASTQ format (see section 

1.2.2). It is important that the short reads arising from ChIP-Seq are aligned 

properly to the reference genome, otherwise false positives and false 

negatives would arise from the reads being mapped to the wrong location. In 

order to avoid this, the quality of the reads was checked using FastQC (http: 

//www.bioinformatics. babraham.ac.uk/projects/fastqc/). Any adaptors and 

low quality reads were then removed using the FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/). This was done for all of the ChIP-

Seq datasets for the selected human transcription factors. 

The reads were then mapped to the human genome version hg19 using 

Bowtie (Langmead et al., 2009). This was done for all of the ChIP-Seq 

datasets for the selected human transcription factors. 

Bowtie was chosen because it is the recommended aligner for ChIP-Seq 

data (Bardet et al., 2012). The –best parameter was used so that the best 

alignment for a particular read would be reported. This however tends to 

reduce the speed. The –m parameter was set to 1 to ensure that only reads 

that aligned to one part of the genome were aligned. This is a practice that is 

recommended by Bardet et al. (2012). The –n parameter controls the 

allowed number of mismatches between the read and the genome would be 

allowed and ranges between 0 and 2. Upon investigation of different values 

http://hannonlab.cshl.edu/fastx_toolkit/


94 
 

from 0 to 2 for –n, a value of 1 was found to give the highest percentage of 

reads that aligned to the genome without ambiguity and was used for all 

experiments. The hg19 version of the human genome, the latest available 

release at the time of doing this work was downloaded from 

ftp://ftp.ccb.jhu.edu/pub/data/bowtie_indexes/hg19.ebwt.zip. The resulting 

Sequence Alignment/Map format (SAM) files (see section 1.2.2.2) were 

converted to binary format (BAM) files, and indexed using SAMtools (Li et 

al., 2009b). The BAM format is the binary version of the SAM format. This 

step reduces the file size, and allows rapid access which is essential given 

the large size of the data (several gigabytes). These BAM files were then 

converted to BED format ( see section 2.2.1) using the bamtobed program in 

the BEDTools suite (Quinlan and Hall, 2010). These steps were done for all 

of the ChIP-Seq datasets for the selected human transcription factors. 

After the reads were aligned to the reference genome, peak calling was 

performed by identifying statistically significant binding regions that are 

enriched in the ChIP-Seq sample compared with the control sample (Park, 

2009). The use of the control sample in the peak calling step helps to control 

biases and artefacts that occur in the experimental protocol (Park, 2009; 

Bardet et al., 2012) as recommended by Bardet et al. (2012).  Peaks were 

called using MACS (Zhang et al., 2008) for both ChIP-Seq samples for each 

transcription factor in the set of selected transcription factors. MACS was 

chosen as it is the recommended peak caller for calling peaks that are to be 

used in de novo motif discovery (Wilbanks and Facciotti, 2010). Default 

parameters were used as this is the practice recommended by Wilbanks and 

Facciotti (2010) and Bardet et al. (2012). MACS requires the input to be in 
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BED format hence the reason for converting the BAM files to BED format. 

Common peaks between ChIP-Seq samples for a particular transcription 

factor were selected for further analysis, using the Bioconductor package 

ChIPpeakAnno (Zhu et al., 2010; Gentleman et al., 2004). This is a practice 

that has been recommended by Bailey et al. (2013). A set of peak regions, 

centred on the summits of the peaks (±100 bp), were obtained, in order to 

prevent bias towards longer peak regions (Bardet et al., 2012). These peak 

regions were then converted to FASTA format using the Bioconductor 

package ChIPpeakAnno (Zhu et al., 2010; Gentleman et al., 2004). This is 

because the motif discovery tools require DNA sequences in FASTA format 

as input.   

For evaluation purposes, de novo motif discovery was carried out on the 

peak regions derived from the ENCODE ChIP-Seq data using MEME-ChIP 

(Ma et al., 2014; Machanick and Bailey, 2011), HOMER (Heinz et al., 2010), 

ChIPMunk (Kulakovskiy et al., 2010) and rGADEM (Mercier et al., 2011) for 

the 13 transcription factors that overlap between PAZAR and the ENCODE 

ChIP-Seq data. Since these programs are able to deal with large datasets, 

all peak regions were used.  

 

3.2.3 Finding optimum parameters for the motif discovery 

tools 

 

It is key that the PWM generated for a particular transcription factor matches 

the experimentally validated binding pattern in the literature. The tools have 
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parameters that can be adjusted for motif discovery, and all possible 

combinations of these were explored, using a step size of 10%, in order to 

generate PWMs that resembled the experimentally validated binding pattern 

in the literature. It was found that for MEME-ChIP, HOMER and ChIPMunk 

the default values, for the parameters produced PWMs that resembled the 

experimentally validated binding patterns. Any change from the default 

values produced PWMs that were drastically different from these 

experimentally validated binding patterns. In the case of rGADEM however, 

the e-value parameter had to be set to a value of 0.5, with the remainder of 

the parameters set at their default values, to generate PWMs that resembled 

experimentally validated binding patterns. Again, deviation from these values 

including use of the default e-value of 0.0, resulted in PWMs that were 

drastically different from the experimentally validated binding patterns. 

During the exploration of parameters, it was found that the first PWM 

generated, always best resembled the experimentally validated binding 

pattern, and consequently the motif discovery tools were set to generate just 

one PWM for a particular transcription factor.  
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Figure 3.2:  Flowchart summarising methods used to derive PWMs from the 

ENCODE ChIP-Seq data. See text. 
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3.2.4 Evaluation of Motif Discovery Methods 

Logically, it makes sense, to evaluate motif discovery methods first, and 

then, to evaluate the tools available for matching the derived PWMs to DNA 

sequences. However, the evaluation of the performance of motif discovery 

methods requires a pattern matching tool to test the performance of the 

resulting PWMs. Therefore, a pattern matching tool must be selected for this 

purpose. In the previous chapter, the performance of a number of pattern 

matching tools in TFBS prediction was evaluated using PWMs from the 2010 

release of JASPAR.  The best performing tool (FIMO) was then used in this 

chapter for evaluating the motif discovery methods. 

The FIMO pattern matching tool requires the input PWMs in MEME format. 

The motif discovery tool MEME-ChIP generates PWMs in this format, while 

the rGADEM, ChIPMunk and HOMER motif discovery tools all produce 

PWMs in tab format. There is no single program capable of converting 

PWMs from tab to MEME format. Therefore, the PWMs that were derived 

using rGADEM, ChIPMunk and HOMER were first converted from tab to 

JASPAR format using the convert-matrix program from the RSAT suite 

(Thomas-Chollier et al., 2011). These were then converted from JASPAR to 

MEME format using the jaspar2meme program , from MEME-SUITE (Bailey 

et al., 2015).   

Performance was evaluated on the PWMs that resembled well established 

motifs by using the FIMO motif scanning tool using the protocol outlined in 

section 2.2.1 with the exception that since the evaluation was performed 
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over the 13 transcription factors that overlapped between PAZAR and 

ENCODE ChIP-Seq the number of genes used in the evaluation was 167.  

The PWMs obtained using the different methods were compared with each 

other in terms of their similarity. This was done by the calculation of 

normalised Euclidean distances between equivalent PWMs using the 

TFBSTools package in Bioconductor 

(http://www.bioconductor.org/packages/release/bioc/html/TFBSTools.html). 

The normalised Euclidean distance was chosen as it has been found to be 

the most effective method for comparing PWM similarity (Gupta et al., 2007). 

Reverse complement matrices were also checked, and the minimum 

distances recorded. Results for each matrix set comparison were averaged 

across the transcription factors used. The normalised Euclidean distance 

ranges from 0 to 1 where 0 denotes complete identity and 1 denotes 

complete dissimilarity. The normalised Euclidean distance is calculated as 

follows: 

𝐷(𝑎, 𝑏) =  
1

2𝑙
 . ∑ √ ∑ (𝑝𝑖,𝑏    −

1 𝑝𝑖,𝑏 
2 )

2
  

𝑏∈{𝐴,𝐶,𝐺,𝑇}

𝑙

𝑖=1

      (3.1) 

Where 𝑙 is the length of the PWM,  𝑝𝑖,𝑏    
1 is the value in column 𝑖    with DNA 

base 𝑏 for PWM 1 and 𝑝𝑖,𝑏 
2 is the value in column 𝑖    with DNA base 𝑏 for 

PWM 2. 
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3.3 Results and Discussion 

 

3.3.1 Evaluating the Performance of Motif Discovery Tools 

Table 3.1 shows that rGADEM has the best performance and MEME-ChIP 

the worst on all four performance measures. 

Table 3.2 shows that by comparing the PWMs generated in this work using 

different motif discovery tools, that while all PWMs resemble experimentally 

validated binding patterns, there are significant differences in the PWMs 

generated by different motif discovery tools.  

Table 3.2 also shows that the largest difference is between the PWMs 

derived using the best performing method (rGADEM) and PWMs from the 

worst performing method (MEME-ChIP).   

Figure 3.3 shows the similarity between the PWMs generated by the 

different motif discovery tools in the form of a tree. This was created by using 

Table 3.2 as vectors for clustering using Ward's minimum variance technique 

and visualised using the DRAWGRAM utility from the Phylip package 

(http://evolution.genetics.washington.edu/phylip.html). 
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TOOL Sn PPV  ACCg FPRs 

ChIPMunk 0.886 0.786 0.835 0.009 

MEME-ChIP 0.865 0.771 0.817 0.012 

rGADEM 0.932 0.840 0.885 0.002 

HOMER 0.901 0.794 0.846 0.007 

 

Table 3.1: Performance of the different motif discovery tools using FIMO. 

Average sensitivities (Sn), Positive Predictive Value (PPV) and geometric accuracy 

(ACCg) and false positive rate on scrambled sequences (FPRs) are reported. Note 

that PWMs were generated only for the 13 transcription factors that overlap 

between the ENCODE ChIP-Seq data and PAZAR data. 
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Table 3.2: Normalised Euclidean distances between PWMs derived using the 

different motif discovery tools. Note that comparisons between the matrices 

generated in this work were performed over the 13 PWMs which were used for 

performance evaluation (i.e. those that correspond to transcription factors that 

overlap between ENCODE-ChIP-Seq data and PAZAR). 

 

 rGADEM HOMER ChIPMunk MEME-ChIP 

rGADEM 0 ─ ─ ─ 

HOMER 0.161 0 ─ ─ 

ChIPMunk 0.264 0.120 0 ─ 

MEME-ChIP 0.372 0.202 0.153 0 
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Figure 3.3: Tree showing the similarity between the PWMs generated by the 

different motif discovery tools  

3.3.2 Derivation of a New Set of PWMs 

 

Having shown that the rGADEM motif discovery method clearly out-performs 

the other methods, motif discovery was then performed on a further set of 48 

transcription factors, using rGADEM on the peak regions derived from the 

ENCODE ChIP-Seq data. It was decided to store the PWMs in MEME format 

as this is the format required for FIMO which is the best performing pattern 

matching tool. There is no single program capable of converting PWMs from 

tab to MEME format. Therefore the resulting PWMs were converted from the 

tab to JASPAR format using the convert-matrix program from the RSAT suite 
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(Thomas-Chollier et al., 2011) and then from JASPAR to MEME format using 

the jaspar2meme program , from  MEME-SUITE (Bailey et al., 2015).     

 

3.3.3 The hCRM Resource  

 

The 61 PWMs derived using rGADEM were then made publically available 

via the web. This new resource is referred to hereafter as the ‘human ChIP-

Seq rGADEM matrices’ (hCRM) and they may be downloaded from 

http://www.bioinf.org.uk/tfbs/.  The hCRM PWMs can be obtained individually 

or via bulk download as a ZIP file or gzipped tar file. This web site also 

allows the matrices to be browsed and viewed as ‘sequence logos’, and 

downloaded individually. The two ways the website can be displayed are 

summarised in Figure 3.4 and Figure 3.5. 

 

http://www.bioinf.org.uk/tfbs/
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Figure 3.4:  Screenshot from the website showing an individual hCRM PWM, its 

sequence logo and the link to download the PWM in MEME format. 
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Figure 3.5:  Screenshot from the website showing the hCRM PWMs and the link to 

bulk download them in MEME format. 

 

3.3.4 Re-Evaluation of Pattern Matching Tools 

 

Having shown that rGADEM generates better PWMs than other motif-

discovery methods, the objective was then to reassess the performance of 

all the pattern matching tools investigated in the previous chapter. 

Performance, however, could only be assessed for the 13 transcription 

factors that overlap PAZAR and hCRM.  The hCRM PWMs are in MEME 
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format which is the required format for the FIMO and MCAST pattern 

matching tools, and an accepted format for the matrix-scan pattern matching 

tool. The convert-matrix program from the RSAT suite was used to convert 

the PWMs into the Cluster-Buster format required for the pattern matching 

tools Cister, Cluster-Buster, and Comet and into the tab format required for 

the Patser and BayCis pattern matching tools. To convert the PWMs into the 

PoSSuM-PSSM format required for the PoSSuMsearch pattern matching 

tool, the convert-matrix program from the RSAT suite (Thomas-Chollier et 

al., 2011) was used to convert the PWMs from MEME to TRANSFAC format 

and the transfac2gen program (included with the PoSSuMsearch download) 

was then used to convert the PWMs from TRANSFAC to the PoSSuM-

PSSM format. The performance of the pattern matching tools was then 

reassessed by using the protocol described in section 2.2.1 with the 

exception that, since the evaluation was performed over the 13 transcription 

factors that overlapped between PAZAR and hCRM, the number of genes 

used in the evaluation was 167.  

In the previous chapter, FIMO was identified as the best pattern matching 

tool for predicting individual TFBSs and MCAST was identified as the best 

pattern matching tool for predicting clusters of TFBSs using the 

JASPAR.2010 PWMs. Table 3.3 shows that these two tools still perform best 

using the hCRM PWMs derived here. Indeed the overall ranking of all the 

tools remains the same: 

MCAST > Comet > Cluster-Buster > Cister > BayCis for cluster predictions 

and 
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FIMO > Patser > PoSSuMsearch > Clover > matrix-scan for individual 

predictions. 

While evaluated on slightly different datasets, comparing the results in Table 

2.3 (where tool evaluation was performed using JASPAR.2010 PWMs over 

15 transcription factors that overlap between PAZAR and JASPAR) with the 

results in Table 3.3 (where tool evaluation was performed using hCRM 

PWMs over 13 transcription factors that overlap between PAZAR and 

hCRM) clearly shows that PWMs derived from ChIP-Seq data outperform 

PWMs derived from SELEX or individual promoter assays regardless of the 

choice of PWM scanning tool.  

While it is possible that there is some inter-relationship between the choice 

of motif discovery method and the pattern matching tool used to search 

those motifs against a DNA sequence, this seems unlikely to be significant. 

The ranking of tool performance was the same when used with the 

JASPAR.2010 PWMs and the hCRM PWMs. Similarly, using FIMO, PWMs 

generated using rGADEM were shown to outperform those generated using 

MEME-ChIP. 
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 Sn PPV ACCg FPRs 

Individual     

FIMO 0.932 0.840 0.885 0.002 

Patser 0.887 0.774 0.829 0.009 

PoSSuMsearch 0.874 0.758 0.814 0.012 

Clover 0.850 0.736 0.791 0.015 

matrix-scan 0.830 0.718 0.772 0.018 

Cluster     

MCAST 0.907 0.779 0.840 0.014 

BayCis 0.792 0.688 0.738 0.024 

Cister 0.829 0.723 0.774 0.022 

Cluster-Buster 0.849 0.739 0.792 0.019 

Comet 0.870 0.759 0.813 0.015 

 

Table 3.3: Performance of the selected pattern matching tools using the hCRM 

PWMs derived in this work.  Average sensitivities (Sn), Positive Predictive Value 

(PPV) and accuracy (ACCg) are reported together with the false positive rate using 

scrambled sequences (FPRs). Performance was evaluated across the 13 

transcription factors that overlap the hCRM matrices and PAZAR.  

 

 

 



110 
 

3.4 Conclusions 

 

In conclusion, it has been shown that PWMs derived from the ENCODE-

ChIP-Seq data using rGADEM outperform those derived using other motif 

discovery methods. Consequently, the resulting hCRM dataset should be 

regarded as an enhanced addendum to resources such as JASPAR, 

HOCOMOCO, HOMER and CIS-BP. Clearly, as more ChIP-Seq data 

become available, additional PWMs will be able to be generated. 

The hCRM matrices have been made publicly available for free download 

from http://www. bioinf.org.uk/tfbs/.  
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4 Utilising Transcription Factor 

Binding Site Prediction to Prioritize 

Candidate Somatic Driver SNVs 

 

4.1 Introduction  

4.1.1 Somatic SNVs in Cancer 

Cancer is a leading cause of death worldwide. This is expected to increase 

further due to the ageing population with cancer being expected to surpass 

heart disease as the main killer (Wishart, 2015; Gutschner and Diederichs, 

2012). Cancer is characterised as a group of abnormal cells that grow 

outside of the normal cell growth boundaries. This behaviour is characterised 

by six hallmarks which together form the fundamental principles of malignant 

tumour formation (Gutschner and Diederichs, 2012):  (i) evasion of apoptosis 

(therefore resisting cell death), (ii) self-sufficiency in growth signals, (iii) 

insensitivity to anti-growth signals, (iv) sustained angiogenesis (which 

enables a consistent supply of nutrients and oxygen and the removal of 

carbon dioxide and waste products generated from metabolism), (v) limitless 
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replicative potential and (vi) tissue invasion and metastasis (Hanahan and 

Weinberg, 2000). This is summarised in Figure 4.1. The acquisition of these 

hallmarks is dependent on the accumulation of mutations. However, the 

rates of spontaneous mutation are very low due the ability of the genome 

maintenance systems to detect and repair mutations. Therefore, in order to 

acquire the above six cancer hallmarks, cancer cells need to increase the 

rate of mutation. This is done by mutating the various genes involved in the 

genome maintenance system e.g. TP53 (Hanahan and Weinberg, 2011). 

 

Figure 4.1: The six hallmarks of cancer (Reproduced from (Hanahan and Weinberg, 

2011)). 

 

The majority of these mutations tend to be somatic SNVs (Meyerson et al., 

2010). While many somatic SNVs occur in the coding regions, the majority 

occur in the non-coding regions (Pon and Marra, 2015).  In relation to 

cancer, there are two types of somatic SNVs: drivers and passengers. Driver 

SNVs are defined as rare SNVs that confer a selective growth advantage to 

the cell. Passenger SNVs are defined as SNVs that do not confer a growth 
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advantage to the cell, and are not directly involved in cancer formation 

(Vogelstein et al., 2013). Common SNVs (occurring in >1% of the 

population) are automatically classified as passenger SNVs. Therefore, 

passenger SNVs comprise a mixture of rare and common SNVs (Pon and 

Marra, 2015). Clearly research in cancer genetics is heavily focussed on 

driver rather than passenger SNVs (McFarland et al., 2013). 

There has been a comprehensive characterisation of somatic SNVs across a 

large number of tumour samples. This has been enabled by the recent 

advances in technologies for massively parallel sequencing of DNA that 

allow sequencing of whole exomes and genomes (Watson et al., 2013).  

This in turn has led to large scale projects such The Cancer Genome Atlas 

(TCGA) (Weinstein et al., 2013), and the International Cancer Genome 

Consortium (ICGC) (Hudson et al., 2010).   

Consequently, there has been a huge rise in the number of somatic driver 

SNVs identified, and these are deposited in the databases COSMIC (Forbes 

et al., 2015), ICGC (Hudson et al., 2010) and TCGA (Weinstein et al., 2013). 

The data in COSMIC are a superset of ICGC and TCGA making COSMIC  

the largest and most comprehensive resource of somatic cancer SNVs 

(Forbes et al., 2015; Chin et al., 2011).     

The rise of whole genome sequencing of human cancers has opened up the 

opportunity to study the large numbers of somatic SNVs that occur in       

non-coding regions (Poulos et al., 2015a).  It has been found that over 40% 

of somatic SNVs occur in TFBSs, and somatic SNVs are statistically 

enriched in TFBSs (P < 1 × 10−10, two-sided Fisher’s exact test) (Mathelier et 
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al., 2015b; Melton et al., 2015). Somatic SNVs occurring in TFBSs have also 

been found to have the potential to disrupt the binding of transcription 

factors, thereby altering the gene expression of the corresponding gene, and 

therefore aiding the survival and proliferation of cancer cells (Mathelier et al., 

2015c; Melton et al., 2015; Poulos et al., 2015b). It has therefore been 

suggested  that somatic SNVs in TFBSs are a source of unidentified somatic 

driver SNVs (Poulos et al., 2015a), and that the identification of somatic 

driver SNVs in TFBSs will improve diagnosis and enable more personalised 

therapies (Pabinger et al., 2014). 

4.1.2 Prioritizing Candidate Somatic Driver SNVs in TFBSs 

There is now a clear need to prioritize candidate somatic driver SNVs in 

TFBSs for experimental validation due to the sheer volume of data being 

generated. In order to fulfil this need, there has to be an improvement in the 

computational prediction of TFBSs. This is important in order to identify the 

somatic SNVs that occur in TFBSs given the limited number of 

experimentally characterised TFBSs. In chapters 2 and 3, independent 

performance evaluations were carried out to identify the best performing 

tools which in turn will improve TFBS prediction.  

Once a somatic SNV has been found to occur in a TFBS, there needs to be 

a way of assessing its likely effect on transcription factor binding.  A somatic 

SNV that occurs at a position in the TFBS that is more conserved is likely to 

be much more disruptive to the binding of transcription factors to DNA, than 

a somatic SNV that occurs at a position in the TFBS with low conservation 

(Cline and Karchin, 2011; Gonzalez-Perez et al., 2013). This is because, 
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more conserved positions reflect the fact that the transcription factor requires 

a particular nucleotide for binding. There are several measures of assessing 

conservation. However, only the Shannon entropy measure is applicable to 

nucleotide sequences.   

This is because the remainder of the measures take into account the 

biochemical properties of amino acids (Capra and Singh, 2007). It has 

therefore been suggested that the utilisation of Shannon Entropy to prioritize 

somatic driver SNVs that occur in TFBSs might be an effective strategy 

(Gonzalez-Perez et al., 2013; Poulos et al., 2015a; Mathelier et al., 2015b; 

Spivakov et al., 2012; Cline and Karchin, 2011; Johansson and Toh, 2010).  

4.1.3 Aims of Chapter 

The aims of this chapter are: firstly, to exploit the analyses in the previous 

two chapters in order to perform a more comprehensive prediction of precise 

TFBSs, secondly, to perform a comprehensive analysis of the Shannon 

Entropy values of somatic driver and passenger SNVs that occur in TFBSs 

and finally to exploit this analysis to help prioritize candidate somatic driver 

SNVs in TFBSs for experimental validation. 

4.2 Methods 

All software was locally installed. 

 

4.2.1 Prediction of TFBSs 

The standard practice of predicting the TFBSs within ChIP-Seq regions 

when the resulting predicted TFBSs are to be used for the identification of 
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SNVs in TFBSs was adopted (Mathelier et al., 2015c). This ensured that a 

very reliable set of predicted TFBSs was obtained. 

ChIP-Seq peaks were downloaded from the ENCODE project 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSy

dhTfbs/) in plain text format. This is the standard dataset used for predicting 

TFBSs and identifying SNVs within them (Mathelier et al., 2015c). As 

mentioned in section 3.2.1, 61 of the 90 transcription factors represented in 

the ENCODE project have no access restrictions and had their 

corresponding ChIP-Seq peaks downloaded. These transcription factors are 

AP-2A, AP-2Y, ATF3, BHLHE40, BRCA1, BRF2, CHD2, C-FOS, C-JUN, C-

MYC, CEBPB, CTCF, E2F1, E2F4, E2F6, EBF1, ELK4, ERRA, GATA1, 

GATA2, GATA3, GRP20, GTF2B, HA-E2F1, HNF4A, HSF1, IRF1, IRF3, 

JUND, KAP1, MAFF, MAFK, MAX, NF-E2, NF-YA, NF-YB, NFKB, NRF1, 

POL2, PRDM1, RFX5, RPC155, SETDB1, SPT20, SREBP1, SREBP2, 

STAT1, STAT2, STAT3, TAL1, TBP, TCF7L2, TFIIIC-110, TR4, USF2, YY1, 

ZNF143, ZNF217, ZNF263, ZNF274 and  ZZZ3.  

These ChIP-Seq peaks were then converted to FASTA format using the 

Bioconductor package ChIPpeakAnno (Zhu et al., 2010; Gentleman et al., 

2004) because the FIMO tool (Grant et al., 2011),  requires the input DNA 

sequences to be in FASTA format.  Prediction of TFBSs was carried out on 

these sequences using FIMO which was identified as the best performing 

pattern matching tool in chapter 2, and the hCRM PWMs derived using 

rGADEM (Mercier et al., 2011), which was identified as the best performing 

motif discovery tool in chapter 3.   
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The resulting predicted TFBSs were converted to BED format using 

PyBedTools (Dale et al., 2011).  As mentioned in section 2.2.1, the 

coordinates of the predicted TFBSs from FIMO are relative to their larger 

genomic fragments (i.e. are relative coordinates), while the coordinates of 

the ChIP-Seq peaks obtained from the ENCODE project are genomic 

coordinates i.e. describing their actual location in the genome. Therefore, in 

order to identify SNVs in TFBSs, the  coordinates of the resulting predicted 

TFBSs were converted from relative coordinates to genomic coordinates 

using the convert-feature program from RSAT (Thomas-Chollier et al., 2011) 

with output in BED format. The genomic coordinates of the ChIP-Seq peaks 

obtained from the ENCODE project was provided as the source of genomic 

coordinates to the convert-feature program.  These were converted to BED 

format using Pybedtools (Dale et al., 2011).  As mentioned in section 2.2.1, 

the convert-feature program requires all input files in BED format. The above 

steps are summarised in Figure 4.2. 

 



118 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Flowchart showing the prediction of TFBSs within ENCODE ChIP-Seq 

peaks.  See text.  
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Set of predicted precise TFBSs 
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4.2.2 Obtaining a Set of Somatic Cancer Driver and 

Passenger SNVs That Occur In TFBSs 

Non-coding somatic cancer SNVs were downloaded from COSMIC (Forbes 

et al., 2015) version 73 (the latest version at the time of doing this work) in 

VCF format. This VCF file is sorted by chromosome in ascending order. A 

total of 9 million non-coding somatic SNVs were downloaded. It was decided 

to use only the non-coding somatic SNVs in COSMIC given that questions 

have been raised whether TFBSs in protein coding regions are functional in 

terms of regulation of gene expression (Xing and He, 2015). 

These non-coding somatic SNVs were then mapped to the predicted TFBSs 

and annotated with their minor allele frequency (from the 1000 genomes 

project). This was done using the variant_effect_predictor.pl program from 

the Ensembl VEP (McLaren et al., 2010), which utilises the Ensembl API . 

Prior to this, the predicted TFBSs were sorted, compressed using bgzip     

(Li et al., 2009b), and then indexed using Tabix (Li et al., 2009b) which was 

required to enable the variant_effect_predictor.pl program to map the SNVs 

to the predicted TFBSs. The SNVs that were found to occur in the predicted 

TFBSs were annotated with the keyword FIMO-TFBS, together with the 

name of the corresponding transcription factor using the custom annotation 

capabilities of the Ensembl VEP. Version 81 of both the Ensembl VEP and 

Ensembl API was used, as these were the latest available versions at the 

time of doing this work. The Ensembl VEP was chosen because it has a 

flexible method of filtering results with the capability of the user writing their 
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own filter strings, and it has the ability to incorporate allele frequency 

information (Erzurumluoglu et al., 2015). 

Initially the variant_effect_predictor.pl program was very slow to run          

(~9 hours). In order to improve the run time, several steps were implemented 

as recommended on the Ensembl VEP website. These are described below: 

1. First a cache file was downloaded for the human genome from                                                                              

ftp://ftp.ensembl.org/release81/VEP/homo_sapiens_vep_81.tar.gz 

2. The --cache flag for the variant_effect_predictor.pl program was 

enabled in order to use the cache file. This step reduced the runtime 

by 3 hours. 

3. The –offline flag for the variant_effect_predictor.pl program was then 

enabled in order to prevent the program accessing the Ensembl 

database, as retrieving information from only the cache file on the 

local file system is faster than retrieving information from the Ensembl 

database even if it is locally installed. This step reduced the runtime 

by a further 2 hours.  

4. The convert_cache.pl script from the Ensembl VEP was then used to 

convert the cache file to a Tabix indexed file. This step reduced the 

runtime by a further 3 hours.  

5. The Ensembl-XS package was then used to improve the run time still 

further as this package contains fast re-implementations in C of 

several key subroutines used in the variant_effect_predictor.pl 

program. This step reduced the runtime to 20 mins.  

ftp://ftp.ensembl.org/release81/VEP/homo_sapiens_vep_81.tar.gz
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Therefore, the run time was greatly reduced from ~ 9 hours to 20 mins by the 

implementation of the above steps. 

The 9 million non-coding somatic SNVs were then filtered to exclude any 

SNVs that were not annotated with the keyword FIMO-TFBS, and therefore, 

not found to occur in TFBSs. The resulting set of 159901 SNVs that were 

found to occur in TFBSs were then filtered further to obtain the sets of 

somatic driver and passenger SNVs that occur in TFBSs. The set of somatic 

driver SNVs in TFBSs were obtained by filtering these SNVs to exclude any 

SNVs that were not annotated by COSMIC as being a known driver SNV. 

 A total of 72329 somatic driver SNVs that occurred in TFBSs were obtained. 

As a set of experimentally characterised passenger SNVs is not available, 

the standard practice of selecting only common SNVs (with a minor allele 

frequency >0.01) was employed to classify these SNVs as passengers (Pon 

and Marra, 2015).  A total of 87572 somatic passenger SNVs that occurred 

in TFBSs was obtained. These steps are summarised in Figure 4.3. The 

filtering was done using the filter_vep.pl program from the Ensembl VEP. 

Both somatic driver and somatic passenger SNVs were found to occur in the 

set of TFBSs corresponding to transcription factors used in this work with the 

exception of ERRA and IRF1 where only somatic driver SNVs are found to 

occur. 
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Figure 4.3: Flowchart summarising the steps taken to obtain the set of somatic 

driver and passenger SNVs in TFBSs. See text.                                                                                                                                                                                                                                                                                                                                                                                                                 
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4.2.3 Calculation of Shannon Entropies for Somatic Driver 

and Passenger SNVs in TFBSs 

Shannon Entropies were calculated for the somatic driver and passenger 

SNVs in TFBSs using the TFBSTools package in Bioconductor 

(http://www.bioconductor.org/packages/release/bioc/html/TFBSTools.html). 

Shannon Entropy (H) is calculated as follows  

𝐻 =  − ∑ 𝑝𝑖 𝑙𝑜𝑔𝑏 𝑝𝑖

𝑖

    (4. 1) 

Where 𝑝𝑖 is the probability of the character 𝑖 and 𝑏 is the base of the 

logarithm. This is normally 2 (Spivakov et al., 2012). For DNA, the Shannon 

entropy ranges from 0 to 2 where 0 denotes complete conservation and 2 

denotes an equal probability of all four bases when 𝑏= 2.  

 

 

4.3 Results and Discussion 

A histogram of the Shannon entropies of somatic  driver and passenger 

SNVs in TFBSs was plotted using the ggplot2 package (Wickham, 2009) in 

R (Team, 2014). This is shown in Figure 4.4.  



124 
 

 

Figure 4.4: Shannon Entropies of somatic driver and passenger SNVs 

 

Figure 4.4 shows that somatic driver SNVs in TFBSs tend to have lower 

Shannon entropies (i.e. be at conserved positions within TFBSs) while 

somatic passenger SNVs in TFBSs tend to have higher Shannon entropies 

(i.e. be at variable positions within TFBSs). Figure 4.4 also shows that the 

Shannon entropies of the somatic driver and passenger SNVs are normally 

distributed. 
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 While the separation was very clear, a two sample Welch’s t-test was 

performed in order to assess whether there was a significant difference 

between the means of the Shannon entropies of the somatic cancer driver 

SNVs in TFBSs and the Shannon entropies of the somatic cancer passenger 

SNVs in TFBSs. This was done using the t.test function in R (Team, 2014) 

which defaults to the two sample Welch t-test. This was chosen because the 

datasets are normally distributed, but with different variances and sample 

sizes.  

As expected, two sample Welch t-test showed a very significant difference in 

the means of Shannon entropies between the somatic driver and passenger 

SNVs with a t statistic of -1002.561 at 154574.5 degrees of freedom and a  

p-value of < 2.2 x 10-16. 

These results suggest that there are clear signals in terms of the Shannon 

entropies of the somatic driver and passenger SNVs in TFBSs which could 

be used to prioritize somatic driver SNVs in TFBSs for experimental 

validation.  

 

4.3.1 Evaluating the Ability of Shannon Entropy to Prioritize 

Candidate Somatic Driver SNVs in TFBSs 

 

Figure 4.4 also shows an overlap between the Shannon entropies of somatic 

driver and passenger SNVs in TFBSs. Therefore, in order to use Shannon 

entropy to prioritize candidate somatic driver SNVs in TFBSs effectively, the 
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optimum Shannon entropy threshold (i.e. the threshold with the best 

performance) within this overlap needs to be found. An SNV with a Shannon 

entropy below this threshold can then be considered as a candidate somatic 

driver SNV, while an SNV with a Shannon entropy above this threshold can 

be considered as a candidate somatic passenger SNV.  

In order to find this optimum Shannon entropy threshold, the threshold was 

varied along the set of Shannon entropies that were calculated for the 

somatic cancer driver and passenger SNVs occurring in TFBSs. This was 

done in steps of 0.1 from 0 to 2 (the full range of Shannon entropies). A 

driver SNV with a Shannon entropy value at or below the threshold was 

counted as a true positive (TP), while a driver SNV with a Shannon Entropy 

value above the threshold was counted as a false negative (FN). In contrast, 

a passenger SNV with a Shannon entropy value at or below the threshold 

was counted as a false positive (FP), while a passenger SNV with a 

Shannon entropy value above the threshold was counted as a true negative 

(TN). This was done using R (Team, 2014).  For each value of the Shannon 

entropy threshold, the Matthews Correlation Coefficient (MCC) (Matthews, 

1975) was calculated to assess performance.  

 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁 

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 
   (4. 2) 

 

The MCC was chosen as a performance indicator because, it utilizes 

information on true positives, false positives, true negatives and false 
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negatives, and therefore evaluates the performance in a more balanced 

manner than for example sensitivity or specificity (Baldi et al., 2000). A graph 

of MCC against Shannon entropy threshold was then generated using R 

(Team, 2014) as shown in Figure 4.5. 

 

Figure 4.5: MCC plotted against Shannon entropy threshold for the full range of 

Shannon entropies (0 to 2). 

 

 Figure 4.5 shows that the optimum Shannon entropy threshold lies between 

1 and 1.1. In order to identify the optimum Shannon entropy threshold more 
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precisely, the protocol used to calculate the MCC described in section 4.3.1 

was repeated, but this time between 1 and 1.1 in steps of 0.01. Another 

graph of MCC against Shannon entropy threshold was generated using R 

(Team, 2014) as shown in Figure 4.6. 

 

Figure 4.6: MCC plotted against Shannon entropy threshold focusing on the 

Shannon entropies between 1 and 1.1. 

 

Figure 4.6 shows that the optimum Shannon entropy threshold is 

1.04.Therefore an SNV with a Shannon entropy value at or below 1.04 can 
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be considered as a candidate somatic driver SNV, while an SNV with a 

Shannon entropy value above 1.04 can be considered as a candidate 

somatic passenger SNV. 

 

4.4 Conclusions 

The rapid growth in the whole genome sequencing of human cancers has 

opened up the opportunity to analyse and interpret the somatic SNVs that 

are present in TFBSs. Somatic driver SNVs in TFBSs tend to disrupt 

transcription factor binding leading to altered gene expression and 

consequently aiding cell proliferation and survival. Somatic passenger SNVs 

on the other hand do not disrupt transcription factor binding which in turn 

does not alter gene expression and therefore cell proliferation and survival 

would not be aided. Therefore there is a need to prioritize somatic driver 

SNVs in TFBSs.  

In this work, the analysis of a set of somatic driver and passenger SNVs 

revealed that there were clear signals in terms of Shannon Entropy value. 

Somatic driver SNVs had lower Shannon entropy values (i.e. are at 

conserved positions within TFBSs) while somatic passenger SNVs had 

higher Shannon entropy values (i.e. are at variable positions within TFBSs). 

This was subsequently exploited to identify the optimum Shannon entropy 

threshold value which could be used to prioritize candidate somatic driver 

SNVs in TFBSs.  
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This work is potentially of immense value for the identification of novel 

somatic driver SNVs. This in turn will improve diagnosis and enable more 

personalised therapies. 
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5 Conclusions 

5.1 Improving the prediction of TFBSs 

The coupling of SNVs identified through whole genome sequencing with the 

publicly available ChIP-Seq regions that have resulted from the ENCODE 

project provides the opportunity to reveal novel SNVs that occur in TFBSs, 

which cause inherited diseases, and act as driver SNVs in cancer. In the 

long term, this will assist in improving the diagnosis of inherited diseases 

(where 30-50% of causal SNVs are missed), and will improve the diagnosis 

of, and aid in more personalised therapies for, cancer (Fratkin et al., 2012).  

The ENCODE ChIP-Seq regions are much longer than the precise binding 

site for a particular transcription factor, and therefore, the precise binding site 

still needs to be detected. This needs to be done by the computational 

prediction of TFBSs, as there are a limited number of experimentally 

characterised TFBSs available. Therefore, in order to make the most of this 

opportunity, there needs to be an improvement in the computational 

prediction of TFBSs. 

There are two components to the computational prediction of TFBSs: a 

PWM and a pattern matching tool (Worsley-Hunt et al., 2011).  

PWMs are derived using motif discovery tools of which many are available. 

Some of these motif discovery tools have the capability to handle large 

volumes of data, while others do not. Motif discovery tools exist in both 

online and locally-installable forms. Only the locally-installable versions of 

the motif discovery tools that have the capacity to handle large volumes of 
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data can be used, given the sheer volume of ChIP-Seq data that has 

resulted from the ENCODE project.   

As with the motif discovery tools, pattern matching tools exist in both online 

and locally-installable forms. However, just as with motif discovery, only the 

locally-installable versions can be used given the sheer volume of ChIP-Seq 

data that has resulted from the ENCODE project. 

Several locally-installable pattern matching tools and motif discovery tools 

that are able to handle large volumes of data have been developed. 

However, to date, there has not been an independent performance 

evaluation of these tools. 

In chapter 2, an independent evaluation of a set of open source and locally- 

installable pattern matching tools that predict both individual TFBSs and 

clusters of TFBSs was carried out. The pattern matching tools that predict 

individual TFBSs were found to outperform the pattern matching tools that 

predict clusters of TFBSs. The pattern matching tool that was found to have 

the best performance was FIMO (Grant et al., 2011). The performance 

evaluation of the pattern matching tools was done before the evaluation of 

the motif discovery tools because, the evaluation of the performance of motif 

discovery methods requires a pattern matching tool to test the performance 

of the resulting PWMs. Therefore, a pattern matching tool must be selected 

for this purpose.  

In chapter 3 an independent assessment of a set of open source and locally- 

installable motif discovery tools that are able to handle the large volumes of 

data that have arisen from the ENCODE project was carried out.  The motif 
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discovery tool rGADEM (Mercier et al., 2011) was found to have the best 

performance. A new set of PWMs were then generated using rGADEM. This 

new set of PWMs was named hCRM and has been made publicly available 

for free download (http://www.bioinf.org.uk/tfbs/).  The set of pattern 

matching tools that were evaluated in chapter 2 were re-evaluated using the 

hCRM PWMs in order to check that the selection of the best pattern 

matching tool is not unduly influenced by the choice of PWMs.   The pattern 

matching tool FIMO was still the best performing and the overall ranking of 

tools remained the same. However, the use of the hCRM PWMs (which were 

derived from ChIP-Seq data)  to evaluate the pattern matching tools gave a 

better performance in comparison to evaluation of the pattern matching tools 

that made use of the JASPAR.2010 PWMs (which were derived from SELEX 

or individual promoter assays).  

 

5.2 Application of TFBS Prediction to non-coding 

somatic cancer SNVs  

In recent years, there has been a huge increase in the number of somatic 

cancer non-coding SNVs that have been identified due to the rise in whole 

genome sequencing of human cancers. This presents a unique opportunity 

to develop an approach to the prioritization of somatic non-coding cancer 

driver SNVs that occur in TFBSs for experimental validation (Watson et al., 

2013).  Chapter 4 focusses on Shannon entropy to prioritize somatic non-

coding cancer driver SNVs that occur in TFBSs. A more comprehensive 

prediction of TFBSs was first done by exploiting the analyses in chapters 2 

http://www.bioinf.org.uk/tfbs/
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and 3. Then an analysis of the Shannon entropy values of the driver and 

passenger SNVs occurring in TFBSs was performed. This analysis revealed 

that the driver SNVs tended to have low Shannon entropies (i.e. be at 

conserved positions within TFBSs) while the passenger SNVs tended to 

have high Shannon entropies (i.e. be at variable positions within TFBSs). 

This analysis was exploited to prioritize somatic driver SNVs in TFBSs by 

identifying the optimum Shannon entropy threshold for distinguishing 

between driver and passenger SNVs. The optimum threshold was found to 

be 1.04 but no somatic driver SNVs were identified with a Shannon entropy 

of >1.3 and no somatic passenger SNVs were identified with a Shannon 

entropy of <0.8. 

5.3 Future Work 

5.3.1 More Complex models 

The PWM model is the most widely used model for TFBS prediction. 

However, the PWM model, is limited by its assumption that positions within a 

binding site are independent, something which is not true in all cases as it 

has been found that nucleotide interdependencies can exist (Nguyen and 

Androulakis, 2009; Hannenhalli, 2008). 

Recently, more complex alternatives to the PWM model that take into 

account nucleotide interdependencies have been developed. These more 

complex alternatives are the  “transcription factor flexible models” (TFFM) 

(Mathelier and Wasserman, 2013) and “Dinucleotide PWMs” (Kulakovskiy et 

al., 2013a).  
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It has been found that more complex models do not outperform PWMs for 

the vast majority of transcription factors. However, for a small number of 

individual transcription factors e.g. REST , it has been suggested that the 

usage of more complex models could result in better performance (Weirauch 

et al., 2013). Thus, in future, it may be worth evaluating PWMs, TFFMs and 

dinucleotide PWMs and selecting an appropriate model for each of these 

individual transcription factors. 

5.3.2 Application of TFBS prediction to non-coding SNVs 

causing inherited diseases 

There are currently very few examples of germline non-coding SNVs that 

have been found to cause inherited diseases (Heibel et al., 2011; Ludlow et 

al., 1996; Reijnen et al., 1992; van Wijk et al., 2003; Manco et al., 2000). 

Whole genome sequencing is currently being carried out for many inherited 

diseases on a large scale (e.g. the UK100K project). As a result, a large 

amount of germline non-coding SNVs that cause inherited diseases is 

expected to become available in the next few years. Similarly to the work 

done in chapter 4, the predicted TFBSs can be used to identify germline 

non-coding inherited disease causing SNVs in TFBSs. An analysis of the 

Shannon entropy values of these SNVs and the Shannon entropy values of 

a set of common SNVs (occurring in >1% of the population) that have been 

obtained from dbSNP could then be carried out. The results of this analysis 

could then be exploited to prioritize non coding inherited disease causing 

SNVs in TFBSs by identifying the optimum Shannon entropy threshold for 

distinguishing between inherited disease causing and neutral SNVs.   
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