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Abstract

Inherited diseases and cancer are often characterized by single DNA base mutations that

can result in altered gene expression, altered mRNA splicing, or changes to the protein

structure. The effects of the latter category on protein function and how this is related to

disease is the easiest of these to understand. Pathogenic deviations (PDs) are mutations

reported to be disease-causing, while true single nucleotide polymorphisms (SNPs) are un-

derstood to have a negligible effect on phenotype. With recent developments in biotech-

nology, the most relevant being the increased reliability and speed of sequencing, a wealth

of information regarding SNPs and PDs has been acquired. Quite apart from the analyti-

cal challenge of analysing this information with a view to identifying novel therapies and

targets for disease, the challenge of simply storing, mapping, and processing these data

is significant in itself. This thesis builds on earlier work in the Martin group in which a

database (SAAPdb) was developed to map mutation data to protein structure and allow

the likely local protein structural effects of a mutation to be evaluated.

In this thesis, a general introduction to the relevant biology (Chapter 1) and bioinformatics

tools and resources (Chapter 2) is provided. In Chapter 3, the Single Amino Acid Polymor-

phism database (SAAPdb) is described and the work done to fix bugs and update the data

is outlined. Despite this work, owing to continuous maintenance problems identified when

updating the program, the Martin group has now switched to using a ‘pipeline’ version

that no longer relies on any pre-calculated data stored in a database.

Earlier work performed during a Masters project showed that some of the analyses were

extremely sensitive to structural details. These analyses have been updated and extended,

confirming earlier results. Consequently, some of the analyses were updated to replace

Boolean True/False (Good/Bad) assignments with energy or pseudo-energy values. A

pseudo-energy potential was developed for evaluating the effects of mutations to-proline

or from-glycine (Chapter 4) and a new full-energy method for assessing the effects of side-
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chain clashes was evaluated (Chapter 5). A method using the structural analyses data to-

gether with random forests to predict whether a mutation will be damaging was then devel-

oped (Chapter 6). This method was demonstrated to be better than all competing individual

methods. A variation of this approach was used to distinguish between two phenotypes

(hypertrophic cardiomyopathy – HCM, and dilated cardiomyopathy – DCM ) caused by

mutations in the cardiac beta-myosin gene (MYH7, Chapter 7). The thesis finishes with a

general discussion and conclusions (Chapter 8).

The final SAAPpred predictor using the updated SAAPdap and the improved analysis out-

performs competing methods (for mutations where a structure is available) giving an ac-

curacy of 0.885 and MCC = 0.73 showing that a detailed analysis of structural features is

beneficial in predicting the effect of any novel mutation. SAAPpred performed very well

when discriminating between pathogenic and neutral SNPs in MYH7 having an accuracy

of 0.794 – 0.927 using one PDB structures per mutation and multiple PDB structures respec-

tively. This was followed by creation of a novel predictor which attempts to distinguish

between HCM and DCM mutations using SAAP analysis, exploiting feature selection and

an additional set of features on structural clustering. This is the first prediction of detailed

phenotype and works surprisingly well giving an accuracy of 0.75 and MCC = 0.531.
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Chapter 1

Biological Introduction

Proteins are one of the basic building blocks of the human body and are

essential for nearly everything the body does. A faulty modification of the ge-

netic material of the cell may produce a malfunctioning protein. The study and

analysis of the structure of proteins and their mutations will improve the under-

standing of mutational effects, which may lead to cures for untreated diseases.

Many mutations are related to disease and mutations of single nucleotides

may affect the structure and interactions of proteins by means of amino acid

substitutions. Recently, there has been increased research into these mutations.

In order to understand the molecular mechanisms of disease, it is essential to

evaluate the effect of these mutations on the structure and function of proteins.

Andrew Martin’s group has gathered information on mutations related

to human diseases and Single Nucleotide Polymorphism (SNP) data (which

should not be a direct cause of disease), and incorporated it into the Single

Amino Acid Polymorphism database (SAAPdb) (Hurst et al., 2009). This is a

database of disease-causing and neutral mutations, which have been analysed

to determine what effect, if any, they may have on protein structure and

function. This PhD is a part of the SAAP project and aims to maintain and

expand SAAPdb, introduce the SAAP Pipeline (SAAPdap) and build a SAAP

Predictor (SAAPpred). This chapter explores the biological basis of mutations

and the effects that they can have on protein structure and function.

19
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1.1 Mutation

Mutation or genomic aberration is one of the most important aspects of disease research. A

mutation refers to a change in genetic structure, which may occur spontaneously, by chance,

or through damage caused by radiation, mutagenic chemicals, or even viruses (Rothenberg

and Chapman, 1989). Mutations do not have a consistent effect on phenotype (McMil-

lan, 2009), although a mutant gene may affect the normal transmission and expression of a

trait (Rothenberg and Chapman, 1989). Thus:

• some have negligible or no effect on phenotype;

• some introduce variation in phenotype without compromising health;

• some may offer a phenotypic advantage; and

• some result in a general phenotypic disadvantage:

– some result in increased susceptibility to disease;

– some are directly causative of a disease; and

– some are fatal.

1.1.1 Mutations within genes

A DNA strand is a double helix structure, where the two strands run in opposite (anti-

parallel directions). Each strand consists of a sequence of nucleotides or ‘bases’: adenine

(A), guanine (G), cytosine (C) and thymine (T) with a sugar-phosphate backbone. Com-

plementary base pairing between purine (A/G) and pyrimidine (C/T) bases (specifically

between A-T and C-G) holds the two helical strands together (Figure 1.1).

The DNA sequence of a gene is constantly undergoing transformation by mutation. Mu-

tations vary in size from a single distinct DNA nucleotide, through to a huge portion of a

chromosome or entire chromosome (e.g. Down’s syndrome). Here, the focus is on muta-

tions occurring at the gene or ‘coding’ level, as mutations in coding regions are frequently

associated with the development of various genetic diseases.

Approximately 3.2 billion of these sequence base pairs of DNA make up the

human genome, which encodes ≈20,000 protein-encoding genes (International Hu-

man Genome Sequencing Consortium, 2004), which account for roughly 1.52% of the

genome (Lander et al., 2001). A codon is a unit of three nucleotides that encodes a single

amino acid. There are 61 codons that define a specific amino acid (known as sense codons)
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plus three stop codons, which signal the end of translation of the mRNA message into

a protein (Lesk, 2005). The genetic code for nuclear protein-coding genes is universal

(given in Table 1.1). These ‘coding’ regions of the genome are organised into ‘genes’

(distinct protein encoding units that define individual proteins). Any mutations in these

‘coding’ regions may therefore alter the structure and/or function of a protein, or alter

the quantities of proteins expressed. The remainder of the genome (≈98%), consists of

non-coding regions whose functions may include providing chromosomal structural

integrity and regulating where, when, and in what quantity proteins are made.

Figure 1.1: Structure of the double-stranded Deoxyribonucleic acid (DNA) and base pairing
schema.
The nucleotides are shown here, attached to the sugar-phosphate backbone. (Obtained from http:

//en.wikipedia.org/wiki/DNA under Creative Commons license).

To understand how mutations in DNA can alter the structure and/or function of a protein

and potentially alter phenotype, the mechanism of protein synthesis must first be under-

stood. The first stage in protein synthesis involves the copying of one of the strands of

DNA into a strand of messenger ribonucleic acid (mRNA) in a process known as transcrip-

tion (Figure 1.3). Following transcription, mRNA moves out of the nucleus into the main

body of the cell, where protein synthesis occurs. A ribosome combines with mRNA at

the start of translation where the codon ‘AUG’ is recognized by an initiator transfer RNA

(tRNA). The ribosome then assists in the elongation phase of the process. At this point, the

anti-codon on the tRNA is sequentially combined with the correct complementary codon in

the mRNA and codes for a particular amino acid (Strachan and Read, 2011).
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Table 1.1: The standard 64 genetic code.

Second Letter

T C A G
Fi

rs
tL

et
te

r

T

TTT (Phe) TCT (Ser) TAT (Tyr) TGT (Cys) T

T
hi

rd
Le

tt
er

TTC (Phe) TCC (Ser) TAC (Tyr) TGC (Cys) C
TTA (Leu) TCA (Ser) TAA Stop TGA Stop A
TTG (Leu) TCG (Ser) TAG Stop TGG (Trp) G

C

CTT (Leu) CCT (Pro) CAT (His) CGT Arg T
CTC (Leu) CCC (Pro) CAC (His) CGC Arg C
CTA (Leu) CCA (Pro) CAA (Gln) CGA Arg A
CTG (Leu) CCG (Pro) CAG (Gln) CGG Arg G

A

ATT (Ile) ACT (Thr) AAT (Asn) AGT (Ser) T
ATC (Ile) ACC (Thr) AAC (Asn) AGC (Ser) C
ATA (Ile) ACA (Thr) AAA (Lys) AGA (Arg) A

ATG (Met) ACG (Thr) AAG (Lys) AGG (Arg) G

G

GTT (Val) GCT (Ala) GAT (Asp) GGT (Gly) T
GTC (Val) GCC (Ala) GAC (Asp) GGC (Gly) C
GTA (Val) GCA (Ala) GAA (Glu) GGA (Gly) A
GTG (Val) GCG (Ala) GAG (Glu) GGG (Gly) G

One by one, amino acids are covalently linked to each other leading to translation into a

polypeptide chain according to the sequence encoded in the DNA via the mRNA (Alberts,

2008). In order to form the amino acid monomers into a polymeric chain, amino acids are

condensed with one another through dehydration synthesis. This reaction occurs when

H2O is lost between the carboxylic group of one amino acid and the amino group of the

next, to form a C-N bond. These polymerization reactions are not spontaneous; however,

they occur through the energy-driven action of the ribosome. A stop codon or nonsense

codon (UAA, UAC and UGA) will combine with a release factor at the end of the process.

This ends the translation process and causes the ribosome to release the complete polypep-

tide (Manson, 2002) (Figure 1.3).
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Figure 1.2: The twenty-one common amino acids together with the less common one (se-
lenocysteine).
The twenty-one amino acids, grouped according to their side chains, pKa’s and charge at physiolog-
ical pH 7.4. Note that selenocysteine it is not encoded directly in the DNA. It is encoded in a special
way by a UGA codon, usually a stop codon. The UGA codon encodes selenocysteine through the
presence of a SElenoCysteine Insertion Sequence (SECIS) element in the mRNA. (Courtesy of Creative
Commons).
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Figure 1.3: A broad overview of protein synthesis.
(1) The DNA double helix unwinds to expose a sequence of nitrogenous bases. (2) A copy of one of
the strands is made in a process known as transcription. The copy is made of messenger ribonucleic
acid (mRNA) which, following transcription, travels out of the nucleus into the main body of the
cell, where protein synthesis occurs. (3) The mRNA couples with the protein synthesis apparatus
(the ribosome). Another type of RNA, known as transfer RNA (tRNA), brings free amino acids to
the ribosome. (4) The anticodon present on the tRNA recognises the codon present on the mRNA,
and the ribosome adds the amino acid to the growing chain of linked amino acids (polypeptides),
cleaving it away from the tRNA. This process is known as translation. (5) As the polypeptide chain
grows, it folds to form a protein. (Reproduced from Human Biology and Health Studies, Thomas Nelson, Walton-
on-Thames, 1996).
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1.1.2 Mutations at the nucleotide level

Ninety percent of mutations are single base changes (Collins et al., 1998), which can be

base substitutions, insertions or deletions. The remaining 10% are insertions or deletions of

larger DNA segments, generally as a result of recombination, or changes owing to relocation

of mobile genetic elements (Collins et al., 1998). A single base substitution, in which a single

nucleotide base is replaced by another nucleotide, is also known as a point mutation. A

‘transition’ happens when a purine substitutes for another purine, or a pyrimidine replaces

another pyrimidine. On the other hand, a ‘transversion’ occurs when a purine substitutes

for a pyrimidine or a pyrimidine replaces a purine (Baird et al., 1981).

Since an alteration in a single nucleotide is easily identified and more easily correlated with

its impact on the structure and function of a protein, single base mutations are perfect for

computational analysis at both the sequence and phenotype level (Mount, 2004).

There are five types of single base substitution mutation, as shown in Table 1.2. Figure 1.4

shows an overview of the effects of mutation on protein synthesis. There are a total of

four mutations in the DNA indicated in purple, green, red and orange. A DNA sequence

representing a single strand also highlights these mutations using the same colours. The

light blue box at the base of the figure shows the sequence of the native protein that would

be synthesised without the presence of the mutation. In the DNA coding section, a purple

T>A represents a mutation that is synonymous (silent). This mutation does not affect the

protein sequence. The green G>T mutation is known as a nonsense mutation that leads to a

premature stop codon. The A>G shaded in red is a missense or non-synonymous mutation.

It substitutes the native cysteine with arginine. The orange-coloured T>C is a non-coding

mutation and takes place outside the gene.

Of these mutations, a silent mutation refers to DNA sequence alterations that have no ef-

fect on the final protein product because the same amino acid is inserted as a result of the

degenerate nature of the genetic code. For example, when a mutation changes a codon from

UCU to UCC, it will still encode a serine residue (see Table 1.1). This type of mutation can

only be recognised through gene sequencing and can occur without affecting protein struc-

ture or function (Durbin, 1998). Nonetheless such mutation may have an effect on splicing

or expression (see below).
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A nonsense mutation is one in which a codon for an amino acid is replaced with one that

codes for one of the stop codons (Figure 1.5a). This leads to the manufacture of prematurely

truncated protein, which may function incorrectly. This type of mutation happens in 15-

30% of all hereditary diseases including cystic fibrosis, haemophilia, retinitis pigmentosa

and Duchenne muscular dystrophy.

A missense mutation occurs when the substituted base results in a new codon, which leads

to the insertion of a different amino acid in the protein product (Figure 1.5b). The effect of

a mutation is dependent on the type of amino acid involved, the position in the sequence

and the structural context of the alteration (Khan and Vihinen, 2007). Beyond this chapter,

this thesis will only consider single base substitution missense mutations.

Introns (non-coding sequences) must be spliced out of pre-mRNA, so that only exons (cod-

ing sequences) remain in the mRNA that is used during translation. Splicing must happen

in a very accurate way, which is specified through nucleotide signals that identify specific

splice locations. When a splice mutation occurs, the signals guiding the process are altered

and one or more introns are not removed correctly. If this happens, an incorrect protein will

be produced.

In addition to nucleotide substitutions, nucleotide insertions and deletions can also occur

(Figure 1.5c and 1.5d, respectively). When this happens, the consequences are usually more

serious than with substitution mutations, because, unless a multiple of three bases is in-

serted or deleted, the whole reading frame downstream of the insertion or deletion event is

altered: a frameshift mutation (Figure 1.5e). In an expression mutation, a mutation occur

in a transcription factor binding site of a gene such as a promoter or enhancer and alters

promoter function and thereby alters gene expression levels.

1.2 The effect of mutations on protein structure

The previous sections have covered how a gene encodes a series of amino acids that make

up a protein and that this sequence of amino acids (the primary structure; Figure 1.6a) can

be changed through mutations in the DNA sequence. This section now focusses on the

ways in which changes in the primary structure can fundamentally alter the way in which

a protein forms and functions.

A polypeptide chain dictates regular geometric shapes in three-dimensional (3D) structures

called secondary structure (Figure 1.6b). These are highly regular local substructures. One
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Figure 1.4: A broad overview of the effect of mutation on protein synthesis.
A section of DNA is shown at the top of this figure. Proteins are synthesised from genes and pro-
ceed as follows: (1) The double stranded helix is broken to expose a DNA ‘template’; (2) The DNA is
transcribed (using complementary base pairing) into RNA (ribonucleic acid), specifically; (3) mRNA
‘messenger RNA’ (note that thymine has become uracil); (4) The mRNA is then translated accord-
ing to the genetic code, where each three letter combination of RNA bases corresponds to an amino
acid; (5) The protein is formed by forming peptide bonds between the encoded amino acids (shown
as grey circles). Four mutations are marked in purple, green, red and orange in the DNA. The re-
spective base changes, at the DNA and mRNA levels are given in the corresponding colour. Coding
mutations are marked with a triangle in the corresponding colour above the appropriate nucleotide
at the single-stranded DNA level. The native protein sequence (i.e., the protein that would be syn-
thesized without the mutations) is given below the mutant protein sequence in a light blue box.
The purple T>A mutation is same-sense/synonymous/silent, inducing no change in the protein
sequence (both GUU and GUA encode valine). The green G>T mutation is a nonsense mutation, in-
troducing a premature stop codon (indicated with the thick vertical line). The red A>G mutation is
a missense/non-synonymous mutation, that replaces the native cysteine residue (encoded by UGU)
with an arginine (encoded by CGU). The orange T>C mutation is non-coding as it occurs outside of
a gene. (Adapted from McMillan (2009)).



CHAPTER 1. BIOLOGICAL INTRODUCTION 29

(a) The nucleotide cytosine is replaced by thymine
in the DNA code, signaling the cell to shortening
the protein.

(b) The nucleotide adenine is replaced by cytosine
in the genetic code, introducing an incorrect amino
acid into the protein sequence.

(c) One nucleotide (adenine) is added in the
DNA code, changing the amino acid sequence
that follows.

(d) One nucleotide (adenine) is deleted from the
DNA code, changing the amino acid sequence that
follows

(e) A frameshift mutation changes the amino acid
sequence from the site of the mutation.

Figure 1.5: Types of single base substitutions mutation. (Adapted from Genetics Home Reference, U.S.
National Library of Medicine http://ghr.nlm.nih.gov/handbook/illustrations ) .
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of the main conformational parameters of the amino acid structure is the value of the phi

and psi angles. These angles define the conformation of the polypeptide chain. With re-

peated special values for these angles, the main chain can adopt conformations such as

the α-helix or β-strand (Figure 1.6b). Both of these structures owe their stability to the hy-

drogen bonds between N-H and O=C atoms. Certain combinations of secondary structure

can be observed in folded proteins, which form distinct functional domains or structural

motifs such as a helix-turn-helix, leucine zipper, EF-hand calcium binding, and zinc finger

domains. These are all referred to as supersecondary structures (Berg et al., 2006).

An intact 3D structure of the polypeptide chain and the arrangement of amino acids so

that those far apart in the primary structure come together in space is referred to as the

tertiary structure (Figure 1.6c). The stability of this structure is determined by non-covalent

interactions and disulphide bonds. Each globular protein ultimately folds into a 3D shape

with a distinct inside and outside. The interior of a protein molecule contains a prepon-

derance of hydrophobic amino acids, which tend to cluster and exclude water. The core is

also stabilized by Van der Waals forces and hydrogen bonds. In contrast, the exterior of a

protein molecule is largely composed of hydrophilic amino acids, which are charged or able

to hydrogen-bond with water allowing protein to have greater solubility (Berg et al., 2006).

Many proteins consist of two or more polypeptide chains that are commonly referred to as

‘subunits’. Quaternary structure refers to the arrangement of subunits in a multichain pro-

tein (Figure 1.6d). Protein stability is determined by noncovalent forces such as hydrogen

and ionic bonds, Van der Waals and hydrophobic interactions. Protein chains can associate

with other chains to form dimers, trimers and other higher orders of oligomers. Generally,

multimers contain 2–6 subunits, which may be chains with the same sequence (homomul-

timers) or different sequence (heteromultimers).

The function of a protein relies on the precise conformation of the fully folded protein.

In turn, the correct folding is dictated by the sequence of amino acids that make up the

primary structure. Any change to the amino acid sequence, for example, by the occurrence

of a missense mutation, may result in a change in the way in which amino acids interact

with each other. Even a slight change in protein 3D structure can alter function, which

can have advantageous or deleterious phenotypic consequences. The ways in which amino

acids interact with each other is outlined in the next section.
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Figure 1.6: Structural hierarchy of proteins.
(a) Primary protein structure is a chain of amino acids. (b) Secondary protein structure α helixes and
β sheets occur when the sequence of amino acids is linked by hydrogen bonds. (c) Tertiary protein
structure occurs when certain attractions are present between α helix, β pleated sheets and loops.
(d) Quaternary protein structure describes a protein consisting of more than one amino acid chain.
(Obtained from http://en.wikipedia.org/wiki/File:Main_protein_structure_levels_en.svg

under Creative Commons license).
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1.2.1 Forces controlling protein structure

The chemical nature of amino acids dictates the specific ways in which they interact within

a protein. The structures of the 21 amino acids and their chemical properties are given in

Figure 1.2. The following sections detail the type of bonding or interaction in which each of

these amino acid types can be involved, relating these to the possible effects of disruption

of those interactions.

1.2.1.1 Hydrogen bonds

A hydrogen bond occurs when an electronegative atom interacts with a hydrogen atom

that is covalently bonded to another electronegative atom (Baker and Hubbard, 1984). In

proteins, this directorial interaction usually shares the hydrogen atom between oxygen and

nitrogen atoms (Baker and Hubbard, 1984). The electronegative atom without a hydrogen

bound is described as an acceptor atom and the hydrogen atom (or the atom to which it

is bound) is described as the donor. Figure 1.7 shows the hydrogen bonding capacity of

amino acids.

The vast majority of backbone-sidechain hydrogen bonds are enclosed (inside the protein)

indicating that this type of interaction is important in maintaining the stability of the intra-

protein structure (Eswar and Ramakrishnan, 2000). Non-local hydrogen bonds (sidechain-

sidechain) play an important part in the formation of protein tertiary structure. Although

all hydrogen bonds are essential for the proper formation and stability of protein structure,

it has been shown that the local bonds provide more stability to a protein than non-local

hydrogen bonds (Shi et al., 2002).

Mutation analysis of chemotaxis protein Chey in Escherishia coli has shown that replace-

ment of hydrophobic amino acids (valine) with ones that are capable of establishing hydro-

gen bonds (threonine), increases the stability of the protein structure (Wilcock et al., 1998).

Other studies have shown that replacing threonine with residues not capable of hydrogen

bonding results in protein destabilization (Alber et al., 1987). More recently, a method was

developed to evaluate whether hydrogen bonds can be maintained when mutations occur

to residues involved in hydrogen bonding (Cuff et al., 2006). Computational methods such

as this could help to identify types of mutations that affect one of the most important inter-

atomic interactions in proteomics.
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Figure 1.7: Hydrogen bonding in amino acids.
All residues are able to form backbone hydrogen bonds (although proline can only form a backbone
hydrogen bond as the hydrogen bond acceptor). In addition, some residues are able to form hydro-
gen bonds with their side chain. Dots directly above or below an atom indicate that it may act as
a donor (blue) or acceptor (red). The empty blue dot indicates that histidine is able to donate two
hydrogens when it is positively charged. Residue side chains may form more than one hydrogen
bond, and may act both as a donor and acceptor. (Adapted from McMillan thesis (2009)).
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(a) Residues 277-290,
Secondary structure

(b) Residues 277-290,
Backbone hydrogen bonding

(c) Residues 277-290,
Side chain hydrogen bonding

(d) Residues 251-274,
Secondary structure

(e) Residues 251-274,
Backbone hydrogen bonding

(f) Residues 251-274,
Side chain hydrogen bonding

Figure 1.8: Backbone hydrogen bonding generates α and β secondary structures.
(a) An α helix (residues 277-290) and (d) β sheet (residues 251-274) from the structure of tumour suppressor
protein 53 P53 (PDB ID 2x0u). Hydrogen bonds are indicated by thinner connections (with green indicating
backbone bonds ((b) and (e)) and dark blue indicating side chain bonds ((c) and (f)). Residues are coloured by
structure (with yellow indicating β structures and pink indicating α structures).



CHAPTER 1. BIOLOGICAL INTRODUCTION 35

Hydrogen bonds can be divided into local and non-local interactions depending

on the distance in linear sequence between interacting partners. The majority of

backbone-backbone (Stickle et al., 1992) and backbone-side chain interactions (Eswar and

Ramakrishnan, 2000) are local interactions among near-neighbour residues. α-helices are

created and maintained by local hydrogen bonding among backbone atoms (Kabsch and

Sander, 1983; Wilmot and Thornton, 1988). These make up approximately two thirds

(68%) of hydrogen bonds in the protein (Stickle et al., 1992) (see Figure 1.8). McDonald

and Thornton, (1994) showed that almost all buried H-bond capable side chains are

involved in H-bonding. Hydrogen bonds are fundamental to the proper formation and

stability of protein structure, disruption of a buried H-bond caused by a mutation will

have destabilising effect on protein.

1.2.1.2 Covalent bonds - disulphide bridges

Covalent disulphide bonds form by oxidation of thiol groups in two cysteine

residues (Hazes and Dijkstra, 1988); present on the same or different polypeptides (Mur-

ray and Harper, 2000) (see Figure 1.9). Thangudu et al. (2008) showed that the majority of

those bonds are formed between cysteine residues near to each other in the polypeptide

sequence. Distant disulphide bonds (i.e. between cysteine residues that are more than

eight residues apart) are less frequent, but play an important rôle in the folding and

stability of native protein structures (Abkevich and Shakhnovich, 2000). It has also been

shown that the degree of the stability is dependent on (i) protein conformation and (ii)

the number of residues between linked cysteines: more residues between the disulphide

bridge result in a more stable native structure (Pace et al., 1988).

In 1996, Jeffrey et al.’s (1996) calculations suggested that a disulphide bond should give

rise to 2.5 - 3.5 kcal/mol of stabilization, depending on the primary sequence separation

between the cross-links. Introduction or deletion of disulphides by site-directed mutagen-

esis has produced varying effects on stability and folding depending upon the protein and

location of disulphides in the 3-D structure (Thangudu et al., 2008).

The importance of disulphide bonds to protein stability and function is demonstrated in

Parkinson’s disease, where mutations in DJ-1 can cause an early-onset form of the dis-

ease (Canet-Aviles et al., 2004). Many mutations have been identified, including large

deletions and missense mutations, thought to abolish cysteine kinase activity and disul-

phide bonding at the affected residue (Olzmann et al., 2004; Logan et al., 2010). Restoration
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of a disulphide bridge between two opposite subunits has been shown to stabilize several

DJ-1 mutants and increased the ability to scavenge reactive oxygen species and block pro-

tein aggregation events (Logan et al., 2010). Identification of such destabilizing mutations

is important for the identification of protein stabilization strategies that can be used thera-

peutically. Consequently, disruption of disulphides present in a native structure is likely to

have an important effect on protein stability.

Figure 1.9: Disulphide bonding.
Four disulphide bonds are formed between eight cysteine residues (6-127, 30-115, 76-94 and 64-80) in lysozyme
(PDB ID 7lyz). Cysteine residues are highlighted as α-carbon in green, β-carbon in red and γ-sulphur in blue.
Disulphide bonds are highlighted in yellow.

1.2.1.3 The hydrophobic effect

The amino acid R group (side chain) is either hydrophilic (Figure 1.2; a polar side chain has

a tendency to interact and form hydrogen bonds with water and other polar substances) or

hydrophobic (Figure 1.2; a non-polar side chain, thus preferring other neutral and non-polar

molecules). Hydrophobic residues often cluster together and their R-groups tend to drive

them away from the exterior of proteins and into the interior where they are buried into pro-

tein coreforming micelles (Tanford, 1980). This is considered to be the key driving force in

protein folding, and restricts the available conformations that proteins can adopt (compare
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Figures 1.10a and 1.10b) (Ptitsyn, 1998; Ptitsyn and Ting, 1999; Ting and Jernigan, 2002). A

tightly packed hydrophobic core, maximizing favourable van der Waals contacts and mini-

mizing cavities, is crucial for protein tertiary structure and stability of the protein (Levitt et

al., 1997; Richards, 1997; Lee et al., 2000; Leiros et al., 2000; Wang et al., 2000; Northey et al.,

2002).

Disruption of the hydrophobic core or exposure of hydrophobic amino acids on the surface

can have profound effects on the function of a protein. For example, mutations in the prion

protein that cause an increase in exposure of hydrophobic amino acids are thought to be the

cause of prion toxicity (Corsaro et al., 2011). Moreover, the hydrophobic core is generally

less tolerant of changes that disrupt packing than the solvent-accessible surface (Bowie et

al., 1990). In the field of cancer research, 16 independent missense mutations have been

identified in the BARD1 protein, which is the heterodimeric partner of the ovarian can-

cer predisposition gene product BRCA1. It has been suggested that mutations mapping

to the hydrophobic core forming the BARD1:BRCA1 interface can prevent formation of

the heterodimer and render BRCA1 functionally inactive, thereby predisposing to ovarian

cancer (Morris et al., 2002). Consequently introduction of hydrophilic resides into the hy-

drophobic core, or introduction of hydrophobic residues on the protein surface, is likely to

have an effect on protein stability.

1.2.1.4 Van der Waals forces (dispersion forces)

Van der Waals forces are very weak non-covalent interactions (0.01 - 0.2 kcal/mol) and re-

sult from interactions between induced dipoles that arise from fluctuations in atomic charge

densities giving the attractive component. The repulsive component is the result of the

electron-electron repulsion that occurs as two clouds of electrons begin to overlap (Ponder

and Case, 2003). These weak interactions stabilize the protein based on the huge number

of dispersion forces that occur in protein molecules, and these significantly contribute to

protein folding and stability (Eriksson et al., 1992; Chen and Stites, 2001).

The interaction are described by the Lennard-Jones potential Equation 1.1 and Figure 1.11,

where E is the potential energy, A and B are constant parameter adjustable based on the

interaction atoms and r is the distance between the atoms.

EvdW =
A

r12
− B

r6
(1.1)
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(a) Lysozyme (7lyz)

(b) Lysozyme (7lyz), sliced in half along the Z-axis

Figure 1.10: The hydrophobic core.
Hydrophobicity in lysozyme (PDB ID 7lyz). Blue indicates hydrophilic residues, red indicates hydrophobic
residues. (a) shows the whole protein; (b) shows the same protein, sliced in half along the Z-axis, to expose
the patterns of hydrophobicity in the core of the structure. Hydrophilic residues cluster on the surface, while
hydrophobic residues predominantly form the core.
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Although it is harder to attribute changes in protein function to specific alterations in van

der Waals forces owing to mutation, it is clear that substitution of an amino acid for one

with atoms having different atomic numbers will increase or decrease the strength of the

dipole effect. However, since van der Waals forces are very weak but numerous, alterations

to van der Waals forces resulting from a single point mutation are unlikely to result directly

in deleterious consequences. Mutations that results in a clash between atoms will result in

a very high van dar Waals energy and lead to disruption of the structure.

Figure 1.11: Lennard-Jones potential.

1.2.1.5 Electrostatic interactions and salt bridges

Electrostatic forces can be a charge-charge, charge-dipole, or dipole-dipole interactions. The

attraction of negatively and positively-charged amino acid side chains (Figure 1.2) can form

quite a strong electrostatic force that stabilize protein structure, falling off as the square of

the distance between the charged atoms (Mitchell et al., 1992). Interaction strength also

depends heavily on the dielectric constant of the medium in which the protein is dissolved.

Water and ions can shield electrostatic interactions (as can parts of the protein itself), re-

ducing both their strength and the distance over which they operate. Ionic bond formation

depends on the protonation state of the partners and hence on pH. Ionic bonds are local

electrostatic interactions of charged atoms over a distance of 4Å or less. Salt bridges are

ionic bond interactions between atoms that are also hydrogen bonded (Torshin and Harri-

son, 2001).

Electrostatic interactions are described by Coulomb’s law (Equation 1.2), where q1 and q2

are the charges, ε is the dielectric constant and r is the distance.
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E =
q1q2
εr2

(1.2)

Long-range electrostatic effects are important not only for stabilizing the tertiary (Here-

mans and Heremans, 1989; Torshin and Harrison, 2001) and quaternary structure, but also

for protein function (e.g. catalysis and ligand binding). A substantial component of the

energy involved in protein folding is charge-dipole interactions (Jelesarov and Karshikoff,

2009). This refers to the interaction of ionized R-groups of amino acids with the dipole of

the water molecule.

Mutation of any amino acid can affect the shape of the dielectric and the ion accessibility

surfaces of the proteins. For example, mutation of residues that are charged at physio-

logical pH (arginine, lysine, glutamic acid, aspartic acid and histidine) to the non-polar ala-

nine cause perturbations in the electrostatic potential distribution of proteins without larger

changes to protein structure (Gorham et al., 2011). On the other hand, in phenylketonuria

(PKU), a genetic disease caused by mutations in the human phenylalanine hydroxylase

(PAH) gene, most of the missense mutations identified result in misfolding of PAH (Pey et

al., 2007). Using the protein-design algorithm FoldX, most mutations showed a correlation

between energetic impact and residual protein activities and the patient phenotype (Pey

et al., 2007). This analysis suggested that decreased protein stability through disruption of

electrostatic interactions was the main molecular pathogenic mechanism in PKU.

1.2.1.6 Binding sites in protein structures

A protein ligand is a biomolecule, atom, or ion (e.g. substrates, inhibitors, activators, metals

and neurotransmitters), which binds to a specific binding site on a protein and has an effect

on its activity, function, or conformation (Figure 1.12). Consequently mutations to residues

interacting with ligands are likely to have an effect on protein function. The ligand inter-

acts with its specific protein using the three standard intermolecular forces: (i) electrostatic

forces between oppositely-charged ionic or polar groups, (ii) hydrogen bonds and (iii) van

der Waals forces as well as through the hydrophobic effect.

A mutation that disrupts ligand binding has been observed in X-linked lymphoprolifer-

ative (XLP) syndrome. Missense mutations in the SH2 domain protein SH2D1A or SAP,

prevent binding to its physiological ligands including the signalling lymphocyte activating

molecule (SLAM) (Li et al., 2003). It is theorized that reduced binding of SAP to SLAM
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results in activated SLAM binding to other SH2 domain proteins, resulting in T cell acti-

vation and hyperproliferation of lymphocytes (Nelson and Terhorst, 2000). XLP is a rare

genetic disorder characterized by a predilection for fatal or near-fatal Epstein-Barr virus in-

fection, subsequent hypogammaglobulinemia, and a markedly increased risk of lymphoma

or other lymphoproliferative disease (Chaganti et al., 2008).

Figure 1.12: Ligand binding.
The structure of a complex between the human MDM2 protein and a small molecule inhibitor (PDB ID 3lbk)
which mimics the native ligand. The ligand (inhibitor) 6-chloro-3-[1-(4-chlorobenzyl)-4-phenyl-1H- imidazol-
5-yl]-1H-indole-2-carboxylic acid is shown embedded in a binding pocket, and residues within 4.5Å of the
ligand are highlighted in red (the rest of the protein is shown in dark grey, with secondary structural elements
indicated).

1.3 Phenotypic consequences of mutation

Clearly, an alteration in DNA may change the sequence of a protein such that it leads to a

partially or completely non-functional protein. Table 1.2 listed the different effects that sin-

gle base mutations may have, and all but truly silent mutations may result in disease. Stud-

ies on Drosophila melanogaster, show that where a mutation has altered a protein sequence,

there is a 70% chance of the mutation being harmful (Sawyer et al., 2007). Conversely, as
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described in Section 1.1.1, some mutations are known to confer a genetic advantage, while

others have no effect at all. Such mutational consequences are discussed below.

1.3.1 Mutations with phenotypic advantage

Mutations generally have a negative connotation and are assumed to provide nothing but

health complications. However, the Lawrence Berkeley National Laboratory at the United

States’ Department of Energy has published research regarding a rare mutation in proteins

that protects humans from cardiovascular disease (Berkeley-Lab, 2002). This discovery is a

possible breakthrough in creating more effective medicines for eliminating cholesterol and

preventing its accumulation. Damage from oxidation, where free radicals remove electrons

from healthy tissues, can be a result of mutations. Diseases such as Alzheimer’s, osteoporo-

sis, and atherosclerosis are believed to be caused by excessive oxidation. In atherosclerosis,

free radicals tend to withdraw electrons from lipids in artery walls, resulting in plaque

formation and blockage of the arteries. However, the Berkeley study showed that the

apolipoprotein A-I protein (apoA-I), when it undergoes a particular mutation (Arg173Cys),

keeps an antioxidant embodied in the sulphur-based residue, cysteine, that absorbs un-

paired electrons and blocks arterial inflammation (Berkeley-Lab, 2002).

The Berkeley research is a response to a paradox that has been puzzling the world of

medicine since 1980. At this time, an Italian citizen was sent to Milan’s Lipid Centre be-

cause of his high level of blood triglyceride; one of the factors that increases the threat of

heart ailments. Additional medical checks showed that the patient also had a very low

level of protective high-density lipoprotein (HDL), which removes unwanted cholesterol

from the coronary arteries and hinders the formation of plaques. However, the patient had

not displayed any pathological signs. This patient and others from the same region of Italy

were later identified as having a mutated form of the protein apoA-I.

The mutant form known as apoA-I Milano occurs in less than 1 in 50 people and introduces

a free cysteine, which possesses a sulfhydryl group. In the Milano mutation, almost 70%

of the protein exists as dimers, mainly caused by an inter-chain disulphide bridge. Such

pairing prevents the accumulation of HDL, leading to the deficiency found in humans who

have this mutation. The remaining 30% of Milano mutant proteins remain as monomers in

which the sulfhydryl is unoccupied and is available to perform other reactions including

acting as a strong antioxidant. Consequently the mutation has the ability to counter cardio-

vascular disease by resulting in the elimination of cholesterol, as the reactions that cause its

accumulation are prevented.
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The next step in the Berkeley project is to utilise these data to develop more effective ther-

apies, such as recent peptide-based cardiovascular disease treatments. Common therapies

targeted against apoA-I eliminate cholesterol from the arteries through HDL. However, fu-

ture treatments could link this with the antioxidant system caused by the mutation, thus

both preventing the accumulation of cholesterol and limiting oxidation.

1.3.2 Neutral mutations

Mutations that occur naturally in DNA are normally corrected by DNA repair systems or

have no selective advantage or disadvantage (Brctic Kostic, 2005). Mutations that do not

affect the phenotype are called neutral mutations (Sunyaev et al., 2000). Where this kind of

substitution results in the use of a different amino acid in a protein, the replacement amino

acid usually has very similar physicochemical features which have a negligible effect on

the protein (e.g. if codon AAA is mutated to AGA, arginine would be used in the resulting

protein instead of lysine).

A study by Ma et al. (2002) showed that when scanning a coding region of the NLI-IF gene

(Nuclear LIM Interactor-Interacting Factor), which is physically near to the tuberculosis-

associated gene NRAMP1, three SNPs [204C-A, 402T-C and 472G-A] were identified. None

of these mutations in NLI-IF, showed any significant association with human tuberculosis.

According to the neutral theory of Kimura (Speicher et al., 2010), the great majority of

evolutionary changes at the molecular level are caused by selectively neutral or selectively

nearly neutral mutations. Thus, these three SNPs were neutral variants with little or no

selective advantage or disadvantage.

1.3.3 Damaging mutations and penetrance

The term ‘penetrance’ is used in genetics to characterise the likelihood of individuals that

carry an allele or genotype, to manifest a particular phenotype. It refers to the proportion

of individuals with a disease-associated mutation showing clinical symptoms (Brenner

and Miller, 2001), or the chance that a person who carries a mutation will be affected by

the disease (Brctic Kostic, 2005; Liao, 2009). As low penetrance mutations rarely develop

the symptom or trait with which they have been related at a detectable level, it is hard to

disentangle environmental and genetic factors (Brenner and Miller, 2001).

It is well known that defects in the cell cycle, leading to unregulated cell division can cause

cancer. For example, variations in DNA located near some genes that control growth can
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also increase the risk of skin and brain cancer. Cline (2009) published five studies that show

that changes close to the CDKN2A and CDKN2B genes increase the likelihood of some

kinds of tumour. Previous research suggests that these genes are ‘tumour suppressors’.

Two per cent of people with melanoma also have CDKN2A mutations. Complete deletion

of CDKN2A and CDKN2B is observed in almost half of all tumours in the brain. These

genes have a significant rôle in several of the most basic processes in cells.

Of the five studies by Cline (2009), two were concerned with gliomas, which represent

about 80% of all cancers of the brain and generally have a very poor prognosis. The other

three studies looked at skin cancers. Two of the three studies related to melanoma while the

other concerned basal cell carcinoma. Melanoma represents less than 5% of all skin cancers

but accounts for most deaths caused by the disease. On the other hand, basal cell carcinoma

is not deadly, but must also be treated carefully.

Mutations close to the genes CDKN2A and CDKN2B were considered independent in the

three cancer-related studies. This may indicate that each has its own impact on increasing

risk. Changes within and around CDKN2A and CDKN2B may also be important in other

diseases; SNPs near those genes are associated with coronary artery ailments and type 2

diabetes (Cline, 2009).

On the other hand, high penetrance mutations are mutations where the carrier usually

shows the effect of the defective gene. For example, carriers of BRCA 1 and 2 mutations

have a higher than 80% chance of being afflicted with breast and/or ovarian cancer (War-

burton, 2008).

Very high penetrance disease-causing mutations or ‘pathogenic deviations’ (PDs) are easier

to identify and study, because the attribute created by the allele will always be apparent.

This is called Mendelian inheritance because the attribute manifests itself by genetic trans-

mission that can be accounted for by a distinct gene model (Brenner and Miller, 2001). In

addition, Mendelian inherited PDs may demonstrate dominance and co-dominance.

A common example of a Mendelian inherited disease is sickle cell anaemia. When a nu-

cleotide at the 17th position of the gene encoding the β chain of haemoglobin is altered,

the codon change leads to an amino acid in the 6th position of the chain being changed

from glutamic acid to valine. This results in a change in the quaternary configuration of

haemoglobin that has a significant effect on human physiology.
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Another example is described by Karkkainen (2000), who found that human hereditary

lymphoedema is related to PDs in the vascular endothelial growth factor receptor 3

(eGFR3). An arginine to proline mutation in the extremely conserved structure of

the catalytic site causes the protein kinase domain to become inactive; this restricts

angiogenesis and vasculogenesis, and eventually causes lymphoedema. Clones of cells

with different attributes within the same individual can develop owing to PDs in somatic

cells. Most of the experimental data on pathogenic single amino acid polymorphisms

relates to non-lethal PDs identified in somatic cells.

1.4 Study aims and objectives

‘Find out the cause of this effect,

Or rather say, the cause of this defect,

For this effect defective comes by cause.’

William Shakespeare

Variations in the human genome are a key data source for studies of disease develop-

ment, potential treatments and understanding evolutionary mechanisms (Venselaar et al.,

2010; Studer et al., 2013). Advances in high-throughput sequencing have accelerated the

rate at which mutations are identified and exome sequencing (i.e. sequencing of the protein

coding part of the genome) is likely to become the most common tool for the identifica-

tion of Mendelian disease genes in the coming years (Gilissen et al., 2012). Though these

sequencing methods are becoming more commonplace, it is still very difficult to predict

whether a SNP will cause a disease.

One way to determine the effect of mutation on protein function is by experimental explo-

ration. Such experiments involve site-directed mutagenesis of different residues in different

positions, which is time consuming and costly. An alternative to this approach is 3D mod-

elling of side-chain mutations, though these models can only be predictive if they are highly

accurate. That one seemingly insignificant change in a side-chain may cause a significant

loss of protein function, while another has no effect, makes this type of modelling highly

difficult to achieve (Feyfant et al., 2007). Nonetheless, the predictive power of models im-

proves as the quality of the information put into them improves and the number of train-

ing points used increases. For example, one model included molecular mechanics energy
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terms for bond distances, angles, dihedral angles, peptide bond planarity, and non-bonded

atomic contacts to predict the effect of mutation on protein structures (Feyfant et al., 2007).

A better understanding of how structural constraints affect protein evolution will help to

optimize models of sequence evolution and to determine the consequences of a mutation

event (Studer et al., 2013).

Several web servers are available to help interpret mutational effects. Some methods are

for the study of very specific mechanisms (e.g. a study of molecular mechanism of ki-

nase activation by cancer mutations (Dixit et al., 2009)), whereas others are developed to

predict whether a variation is harmful or benign (Adzhubei et al., 2010). Traditional pre-

diction methods include SIFT (Ng and Henikoff, 2001), PolyPhen (Ramensky et al., 2002),

PolyPhen-2 (Adzhubei et al., 2010) and Panther (Thomas et al., 2003), which classify vari-

ants according to empirically derived rules (PolyPhen), Bayesian methods (PolyPhen2), or

mathematical operations (SIFT, Panther) (Thusberg et al., 2011). While Panther and SIFT

are based on evolutionary information, other methods including PolyPhen, and state of the

art prediction methods such as SNPs&GO (Calabrese et al., 2009) and MutPred (Li et al.,

2009) are based on a combination of protein structural and/or functional parameters and

multiple sequence alignment (MSA) derived information (Thusberg et al., 2011). More re-

cently, functional analysis of Hidden Markov Models (FATHMM) has been used to capture

position-specific information within a MSA of homologous sequences (Shihab et al., 2013).

This system has been shown to out-perform both SNPs&GO and MutPred for the predic-

tion of functional effects of protein missense variants (Shihab et al., 2013). These methods

are described in more details in Chapter 2.

This PhD forms part of the Single Amino Acid Polymorphism (SAAP) project and aims to

maintain and expand SAAPdb, improve the analysis, introduce the SAAP database Pipeline

(SAAPdap) and build a SAAP Predictor (SAAPpred). Having collected the mutation data in

SAAPdb (Chapter 3), the database system analyses what effect, if any, mutations may have

on protein structure and therefore function. SAAPdb attempts to identify the structural

effect and therefore explain the mutation. The development of a conservative, comprehen-

sive structural analysis pipeline with which to analyze SAAPs, is one of the main aims of

the SAAP project (Hurst et al., 2009).

However, it is important to realise that there may be more than one structure available for

a protein containing a mutation. The protein structure may have been solved with different

mutant residues, solved at different resolutions, in different space groups, or simply be

multiple chains in a crystal structure. Thus, mutants may or may not be the same as the
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mutation being examined. In all of these cases, certain ‘explanatory factors’ describing the

local structural effects of a mutation may or may not be present in the various structures.

Previously (in the MSc project preceding this PhD study) cases where two or more struc-

tures of the same protein were available were examined. This was undertaken in order to

assess the significance of structure variation on fifteen explanatory SAAPdb analyses, and

to understand why the effects differ in the alternative structures. For instance, a mutation

might introduce a charge shift in the core of the structure or may cause a clash (i.e. it is

too big to fit in the space available) in one structure, but not in another (Al-Numair, 2010).

The study showed that several of the analyses that were Boolean in nature (i.e. an effect

either was, or was not, present) were very sensitive to precise structural details. This im-

plied that such explanatory factors will be less reliable when low resolution structures or

homology models are used for analysis. Consequently, an important aim was to change

from a Boolean analysis to real-valued scales.

Overall, this project started by rebuilding the entire SAAPdb, incorporating updated and

novel data sources. This was followed by re-analysing cases where multiple structures of

mutations are available, to determine the analysis sensitivity to precise structure. The find-

ings will help to assess the significance of factors by looking at the sensitivity of different

analysis to alternative structures. This understanding allows us to improve and expand the

data analysis spectrum and change the Boolean structural analyses to a continuous variable.

These analyses can then be implemented and integrated into the SAAPdb pipeline. The

project then focuses on determining rules that will aid in the interpretation of, or making

predictions based on, the data by making a distinction between SNPs and PDs, in terms of

their impact on protein structure. Hence, this information is useful for predicting whether

a novel mutation would result in a disease phenotype and in future for designing novel

disease therapies.



Chapter 2

Bioinformatics Resources and

Methods

The analysis of the structural effect of mutations requires an understanding

of a number of underlying resources and techniques described in this chapter.

The Single Amino Acid Polymorphism Database (SAAPdb) is a resource devel-

oped in the Martin group that imports mutation data from raw data sources

and analyses those data. The SAAP data analysis pipeline (SAAPdap), also re-

quires access to numerous other resources, while the SAAP prediction software

(SAAPpred) uses machine learning techniques to predict the pathogenicity (or

phenotype) of an novel SAAP. The contributions of this research to the SAAP-

dap and the function of SAAPpred are described here and in chapter 3.

48
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2.1 Primary information resources

The first step in building SAAPdb (see Chapter 3) was to prepare and import data

from external sources. DNA data from the human genome were gathered from

GenBank (Benson et al., 2011) and the European Molecular Biology Laboratory (ENA)

sequence database (Leinonen et al., 2011). Protein sequence-based information was

downloaded from UniProtKB (Consortium, 2011); and protein structures were retrieved

from the Protein Data Bank (PDB) (Rose et al., 2011). Single Nucleotide Polymorphisms

(SNPs) were acquired from dbSNP (Sherry et al., 2001). Pathogenic Deviation (PD)

mutation data were gathered from several resources: the majority were derived from the

Online Mendelian Inheritance in Man (OMIM) database (Amberger et al., 2011), and

a variety of smaller locus-specific mutation databases (LSMDBs) were also used. The

PDBSWS protocol (Martin, 2005) was used to map sequence data onto structural data.

These resources and their contents are described in more detail in this section.

2.1.1 GenBank, ENA and the DNA Data Bank of Japan

GenBank (Benson et al., 2011)1, ENA (Flicek et al., 2011)2 and the DNA Databank of Japan

(DDBJ) (Sugawara et al., 2008)3 all contain publicly available nucleotide sequences along

with supporting bibliographic and biological annotations (Cochrane et al. 2011). Gen-

Bank is maintained by the National Centre for Biotechnology Information (NCBI) in the

United States. The ENA database is produced by the European Bioinformatics Institute in

the United Kingdom. DDBJ is provided by the National Institute for Genetics in Japan. Each

database collects a portion of the total sequence data reported worldwide, and the three sys-

tems are synchronised on a daily basis through an extensive information exchange, so that

each database contains all of the available information.

2.1.1.1 GenBank

GenBank was created in 1982 at the Los Alamos National Laboratory, and development

continued at Stanford University in the mid-1980s. By 1992, it had become the responsi-

bility of the NCBI. Most submissions to GenBank come from individual laboratories or via

batch submissions from large-scale sequencing projects. These sequencing projects include

whole genome, shotgun (WGS), and environmental sampling projects. Sequences are also

1http://www.ncbi.nlm.nih.gov/genbank/
2http://www.ebi.ac.uk/ena/
3http://www.ddbj.nig.ac.jp/
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deposited in GenBank by the United States Patent Office. Almost all records enter GenBank

as direct electronic submissions. The information is first reviewed for quality assurance

after which new entries are assigned an accession code (a unique identifier – usually a com-

bination of one or more letters and numbers, such as a single letter followed by five digits

(e.g. U12345) or two letters followed by six digits (e.g. AF123456)).

Each GenBank record must contain contiguous sequence data from a single molecule type.

The various molecule types can include DNA, RNA, precursor RNA, mRNA (cDNA), ri-

bosomal RNA, transfer RNA, small nuclear RNA and small cytoplasmic RNA. GenBank

records include fields such as: a brief description of the sequence (source organism, gene

name/protein name, function); the accession code; a version number (which also includes

a GI code in the same field an identifier for the sequence); and keywords (a word or phrase

describing the sequence). Also included are descriptions of the source organism; literature

references (authors, titles, journal, etc.); features (i.e. information about genes and gene

products and regions of biological significance that can include regions of the sequence that

code for proteins and RNA molecules); and a number of other features.

Release 196 (15 June 2013) of GenBank held over 165 million sequences from over 380,000

named organisms at the genus level and below. For example, there were more than 570

complete microbial genomes and more than 190 eukaryotic genome assemblies (including

the reference human genome). About 12% of GenBank sequences are from humans. In

building SAAPdb (Chapter 3), release 183 (11 April 2011) of GenBank was used which held

over 135 million sequences.

The entire GenBank dataset or subsets can be downloaded for local use by file transfer

protocol (FTP). These databank subsets include taxonomic categories such as bacteria and

viruses. Alternatively, parts of the database can be downloaded based on the sequencing

strategy used to obtain the data. These sections include expressed sequence tags (ESTs),

genome surveys, high-throughput genomics, high-throughput cDNAs and environmental

samples.

2.1.1.2 The European Nucleotide Archive (ENA)

ENA (formerly known as EMBL) records are similar to those held in GenBank. They pro-

vide (in addition to an identifier), an accession code, description, keywords, organism

source and classification, literature reference information, features and the sequence, and

database cross-references. Where appropriate ENA entries are cross-referenced to other
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databases such as protein sequence databases [e.g. TrEMBL (Consortium, 2011), Uni-

ProtKB/SwissProt (Consortium, 2011)], taxonomy databases [e.g. NCBI Taxonomy (Say-

ers et al., 2011)], species-specific databases [e.g. FlyBase (Tweedie et al., 2009)] and other

specialised data collections [e.g. the Eukaryotic Promoter Database (Schmid et al., 2006),

TRANSFAC (Matys et al., 2006)], and the literature [e.g. PubMed (Sayers et al., 2011)].

Downloadable information is structured in a similar fashion to GenBank, and subsets of

records can be obtained according to taxonomic categories and sequencing approaches.

The latest release (116) of ENA was created on 02 June 2013 and contains over 309 mil-

lion sequence entries and over 615 million cross-references, of which over 38 million are

to UniProtKB/TrEMBL and more than 634,000 refer to structures in the PDB (Rose et al.,

2011). ENA contains approximately 32 million records from humans, a further 46 million

from other mammals, nearly 32 million metagenomics-based sequences, and 36 million in-

vertebrate sourced entries. The largest taxonomic category is plants, which contains 78

million nucleotide sequences. As the ENA is synchronised with the NCBI and the DNA

Data Bank of Japan, these statistics will be very similar in the corresponding databanks.

Most additions to the ENA databank are made through direct submissions from individual

researchers, groups, genome sequencing projects, and patent applications.

In the version of ENA used for populating SAAPdb (Chapter 3), the databank (release 107

from March 2011) contained over 206 million sequence entries. Of these, almost 29 million

were from humans, and nearly 28 million from environmental samples.

2.1.2 The Universal Protein Resource

UniProtKB TrEMBL and UniProtKB/Swiss-Prot

The Universal Protein Resource (UniProt) is a collaborative project involving the European

Bioinformatics Institute, the Swiss Institute of Bioinformatics and the United States Protein

Information Resource. The aim is to provide a protein sequence and functional information

resource1 (Consortium, 2011). It has been under development since 2002 and contains a

number of related resources that are created and maintained in the context of the UniProtKB

project.

The UniProt Knowledgebase (UniProtKB) is a curated protein information resource that in

cludes information about function, classification and cross references. UniProtKB is com-

posed of two parts: Swiss-Prot and TrEMBL. TrEMBL is an automatically annotated, un-

1http://www.uniprot.org/
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reviewed database of protein sequences. Swiss-Prot is a high-quality manually annotated

database of protein sequences that have been reviewed by UniProtKB scientists. The Uni-

ProtKB Archive (UniParc) is a database used to keep track of sequences and their identifiers

reflecting the history of all protein sequences stored in the UniProtKB databases.

TrEMBL is made up of all coding regions in the GenBank/ENA/DDBJ databases (TrEMBL

can be loosely thought of as translated ENA), proteins from the literature, and those that

have been submitted to UniProtKB, but not yet entered into Swiss-Prot. Automatic an-

notation uses InterPro (Hunter et al., 2009) classifications of predictive protein signatures.

Information is transferred from well-characterised entries in Swiss-Prot, to unannotated en-

tries in TrEMBL. Owing to the high volume of data that are deposited in ENA, TrEMBL se-

quences are released to the public before their entry into Swiss-Prot. This is to avoid a delay

while these sequences are processed by UniProtKB staff, and enable researchers to access

the very latest information without compromising the quality of information in Swiss-Prot.

An accession number (AC) is allocated to each sequence upon its addition to UniProtKB.

The ACs are a string of six alphanumeric characters (starting with A, P, Q or O) and are sta-

ble between database releases and are guaranteed always to refer to that particular protein

(although the sequence records may be amended). If several UniProtKB entries are merged

into one record or deleted, the ACs of all the previous entries are retained as a secondary

ACs to the new primary AC; each record has one primary AC and can also have secondary

ACs. In the example shown in Figure 2.1, the ID (see below) is P53_HUMAN the primary

AC is P04637 and the secondary ACs are: Q15086; Q15087; Q15088; etc. (the primary AC is

the first AC provided, see lines #1 and #2 in Figure 2.1). The primary AC should be cited if

an entry has multiple ACs. When working with UniProtKB/Swiss-Prot data, it is important

to ensure data integrity by always using primary ACs.

The ID “Entry Name” is another unique identifier that is part of UniProtKB records. Each

UniProtKB record is described by both an identifier ID and AC. The IDs take the format

PROTEIN_SPECIES, where PROTEIN is a string indicating what the protein is or does, and

SPECIES is a string describing the species from which the sequence has been derived. The

steadily expanding (and occasionally revised) vocabulary of species is described and made

available at http://www.uniprot.org/taxonomy/. IDs are not guaranteed to remain

the same and it is sometimes necessary to change IDs (e.g. so that related entries have

similar names, or if an entry is promoted from TrEMBL to Swiss-Prot). For example, hen

egg white lysozyme changed from LYS_CHICK to LYSC_CHICK while PROC_HUMAN

used to refer to pyroline-5-carboxylate dehydrogenase and now refers to Protein C.
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Each UniProtKB/Swiss-Prot protein is described in a separate record using start-of-line,

two-character keys to classify the fields. An example is shown in Figure 2.1. Records are

separated by a line containing only the string ‘//’ (line #35 in Figure 2.1). A more de-

tailed description of the UniProtKB/Swiss-Prot file format can be found at http://web.

expasy.org/docs/userman.html.

The DR line of UniProtKB/Swiss-Prot provides cross-references between databases. For

example P53_HUMAN is cross referenced to ENA records X02469 and CAA26306.1; PIR

records A25224 and DNHU53; RefSeq records NP_000537.3 and NM_000546.4; PDB records

1A1U and other databases entries (lines #15-18 in Figure 2.1).

In May 2011 (the time of the last SAAPdb build), Swiss-Prot (Release 2011_04) contained

over 526,000 sequence entries. Of these, more than 20,000 were human sequences, more

than 16,000 were from mice and more than 10,000 were from ‘Aribodspsis.thaliana’. The ma-

jority of Swiss-Prot sequences (62%) were from bacteria, with almost a third from eukary-

otes (32%). Most cross references were to the Gene Ontology GO ontology database (Con-

sortium, 2010), followed by InterPro (Hunter et al., 2009), ENA (Flicek et al., 2011) and Pfam

(Finn et al., 2010). There were links to a total of 128 different databases.

In June 2013, at the time of writing this thesis, the number of entries in Swiss-Prot had

increased. Swiss-Prot (Release 2013 07 of 26 April 2013) contained over 540,000 sequence

entries. The representation of sequences from humans and mice were approximately the

same (>20,000 and>16,000, respectively), but the number of entries for ‘Aribodspsis thaliana’

had increased by 20% (12,000 entries).

In May 2011, TrEMBL contained over 14 million sequences. The most frequently occurring

organism was HIV1. This had over 375,000 records listed; a legacy of the continual rese-

quencing of this intensely studied organism. ‘O.sativa japonica’ and ‘humans’ were the next

most populous contributors with over 95,000 and 85,000 records respectively. The distribu-

tion of bacteria was very similar to UniProtKB (64% of the total number of records). Eu-

karyotes constituted 27% of TrEMBL entries. At that point, TrEMBL held cross-references

to 129 other databases; most of these were to InterPro, followed by GO, ENA and Pfam.

As with Swiss-Prot, the passage of time increased the number of entries contained within

TrEMBL in 2013 to over 39 million sequences from more than 404,000 species. The most

frequently occurring organism was still HIV1, with the number of records increasing from

375,000 in 2011 to 519,000 in 2013. ‘uncultured bacterium’ and humans were the next most
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populous entries with over 185,000 and 114,000 records respectively. At this time, the occur-

rence of bacteria was slightly more than in UniProtKB (74% of the total number of records).

The contribution of eukaryotes had decreased from 27% in 2011 to 20% of TrEMBL entries

in 2013. One fewer cross-referenced database was available in 2013 compared with 2011,

but the majority were still InterPro, followed by GO, ENA and Pfam.

The UniProtKB databases can be downloaded using FTP. TrEMBL is available as data sub-

sets structured around taxonomic divisions. The entire UniProtKB database is also available

in a standard, text-based format, XML or as a FASTA sequence file.

2.1.3 The Protein Databank (PDB)

The Research Collaboratory for Structural (RCSB) PDB contains information about experi-

mentally determined structures of proteins, nucleic acids and complexes (Rose et al., 2011)

and is the largest publicly available repository for 3D data describing biological macro-

molecules (Berman et al., 2000). Three groups make up the RCSB, namely the University

of California in San Diego (UCSD), Rutgers University, and the University of Wisconsin-

Madison. The RCSB PDB is a member on the Worldwide Protein Data Bank (wwPDB)

which is an organization that maintains the archive of macromolecular structure and acts

as a deposition, data processing and distribution centres for PDB data. The wwPDB’s mis-

sion is “to maintain a single PDB archive of macromolecular structural data that is freely

and publicly available to the global community”.

The wwPDB was started in 2003 by three members: RCSB PDB, the Protein Data Bank in

Europe (PDBe) and the Protein Data Bank of Japan (PDBj). In 2006, the Biological Magnetic

Resonance Data Bank (BMRB) joined the wwPDB.

Each member’s site can accept structural data and process the data. The processed data are

sent to the ‘archive keeper’ at present a rôle fulfilled by the RCSB PDB. This ensures that

there is only one version of the data which is identical for all users. The modified database

is then made available to the other wwPDB members, each of whom makes the resulting

structure files available through their websites to the public. The member sites are more

than just mirrors of the archive keeper, because the members offer different tools on their

websites for analysing the structures in the database.



CHAPTER 2. BIOINFORMATICS RESOURCES AND METHODS 55

--------------------------------------------------------------------------
1 | ID P53_HUMAN Reviewed; 393 AA.
2 | AC P04637; Q15086; Q15087; Q15088; Q16535; Q16807; Q16808; Q16809;
3 | AC Q16810; Q16811; Q16848; Q2XN98; Q3LRW1; Q3LRW2; Q3LRW3; Q3LRW4;
4 | AC Q3LRW5; Q86UG1; Q8J016; Q99659; Q9BTM4; Q9HAQ8; Q9NP68; Q9NPJ2;
5 | AC Q9NZD0; Q9UBI2; Q9UQ61;
6 | DT 13-AUG-1987, integrated into UniProtKB/Swiss-Prot.
7 | DT 24-NOV-2009, sequence version 4.
8 | DT 31-MAY-2011, entry version 186.
9 | DE RecName: Full=Cellular tumor antigen p53;
10 | DE AltName: Full=Antigen NY-CO-13;
11 | DE AltName: Full=Phosphoprotein p53;
12 | DE AltName: Full=Tumor suppressor p53;
13 | GN Name=TP53; Synonyms=P53;
14 | OS Homo sapiens (Human).

| ...
15 | DR EMBL; X02469; CAA26306.1; -; mRNA.
16 | DR PIR; A25224; DNHU53.
17 | DR RefSeq; NP_000537.3; NM_000546.4.
18 | DR PDB; 1A1U; NMR; -; A/C=324-358.

| ...
19 | FT CHAIN 1 393 Cellular tumor antigen p53.
20 | FT /FTId=PRO_0000185703.
21 | FT DNA_BIND 102 292
22 | FT REGION 1 83 Interaction with HRMT1L2.
23 | FT SITE 120 120 Interaction with DNA.
24 | FT CROSSLNK 292 292 Glycyl lysine isopeptide (Lys-Gly)
25 | FT (interchain with G-Cter in ubiquitin).
26 | FT CROSSLNK 386 386 Glycyl lysine isopeptide (Lys-Gly)
27 | FT (interchain with G-Cter in SUMO).
28 | FT VAR_SEQ 1 132 Missing (in isoform 7, isoform 8 and
29 | FT isoform 9).
30 | FT /FTId=VSP_040833.
31 | FT VARIANT 5 5 Q -> H (in a sporadic cancer; somatic
32 | FT mutation).
33 | FT /FTId=VAR_044543.

| ...
34 | SQ SEQUENCE 393 AA; 43653 MW; AD5C149FD8106131 CRC64;

| MEEPQSDPSV EPPLSQETFS DLWKLLPENN VLSPLPSQAM DDLMLSPDDI EQWFTEDPGP
| DEAPRMPEAA PPVAPAPAAP TPAAPAPAPS WPLSSSVPSQ KTYQGSYGFR LGFLHSGTAK
| SVTCTYSPAL NKMFCQLAKT CPVQLWVDST PPPGTRVRAM AIYKQSQHMT EVVRRCPHHE
| RCSDSDGLAP PQHLIRVEGN LRVEYLDDRN TFRHSVVVPY EPPEVGSDCT TIHYNYMCNS
| SCMGGMNRRP ILTIITLEDS SGNLLGRNSF EVRVCACPGR DRRTEEENLR KKGEPHHELP
| PGSTKRALPN NTSSSPQPKK KPLDGEYFTL QIRGRERFEM FRELNEALEL KDAQAGKEPG
| GSRAHSSHLK SKKGQSTSRH KKLMFKTEGP DSD

35 | //
---------------------------------------------------------------------------

Figure 2.1: An example of a UniProtKB/Swiss-Prot record.
The above record is for [UniProtKB:P53_HUMAN/P04637], it has been edited to only include data that is rel-
evant to SAAPdb and FOSTA, i.e. ID (the identifier), AC (the accession number), DT (the date field), DE (the
description field), OS (the Organism field), DR (database cross-reference line) and FT (annotated features), and
SQ (the Sequnce field); records are terminated by a //; line numbers are given on the left for text references and
‘...’ are used to indicate skipped lines.
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PDB coordinate files contain plain text which describe the 3D coordinates of each atom.

Residues are described by a simple annotation of each constituent atom using the same

residue ID. PDB files also provide details of the method used to solve the structure, related

literature, cross-references to other resources (e.g. UniProtKB), specification of ligands, etc.

Although there is usually only one structure per file, a PDB entry can contain more than one

model in a single coordinate file mostly in the case of nuclear magnetic resonance (NMR)

entries. Files are structured into a number of distinct sections. The ‘Title’ section contains

fields such as the header, title, compound (description of the macromolecular contents of an

entry), source (organism, expression system, etc.), keywords, experimental data, submitter

information, a primary literature citation and remarks (experimental details, annotations,

comments, etc.). The ‘Primary Structure’ section contains the sequence of residues in each

chain of the macromolecule(s) (or other consecutive chemical components covalently linked

in a linear fashion to form a polymer), and a field for database cross-references (e.g. Gen-

Bank, UniProt). The ‘Heterogen’ section contains a description of non-standard residues in

the entry. The ‘Secondary Structure’ section identifies the positions of helices, sheets, and

turns found in protein and polypeptide structures. The ‘Connectivity Annotation’ section

states the existence and location of disulfide bonds and other linkages. The ‘Crystallo-

graphic and Coordinate Transformation’ section describes the geometry of the crystallo-

graphic experiment and coordinate system transformations (e.g. from the database entry to

the submitted entry, transformations expressing non-crystallographic symmetry, etc.). The

‘Coordinate’ section contains the collection of atomic coordinates and model delimiters.

Within this section, the ATOM record defines the atomic coordinates for standard amino

acids and nucleotides, and the occupancy and temperature factors for each atom. Chain IDs,

residue labels and residue sequence numbers are also given for each atom. Non-polymer or

other non-standard chemical coordinates (e.g. water molecules, ligands, etc.) are described

in a similar way in the ‘Coordinate’ section using HETATM (rather than ATOM) records.

The RCSB PDB website provides users with a wide range of content, including information

to supplement data provided in flat files. These include links to databases describing the

enzyme classification code and associated pathways [the KEGG database (Kanehisa et al.,

2010), catalytic sites as described in BioCyc (Caspi et al., 2010), ligands e.g. BindingDB

(Liu et al., 2007) DrugBank (Knox et al., 2011), etc.]. Additional annotations are provided

in PDB records from external resources such as CATH (Cuff et al., 2011), SCOP (Andreeva

et al., 2008), Pfam (Finn et al., 2010), GO (Consortium, 2010) and the Structural Biology

Knowledge-base (Gabanyi et al., 2011).
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The PDB allows users to find information using text-based keyword searching (such as

PDB identifiers, literature or UniProt IDs), chemical components, bibliographic informa-

tion, homology and browsing (i.e. tree traversal). A recently implemented navigational

feature combines searching and browsing. Initial search results can be shown as subsets of

hierarchies, which can be browsed and searched again. This allows a query to be refined

iteratively, based on new information found during the search.

In May 2011 (the time of SAAPdb build) there were over 72,000 structures in the PDB. The

vast majority (67,000) were protein structures. There were also more than 2,000 nucleic

acid structures, and over 3,000 protein/nucleic acid complexes. Most structures were from

humans (>18,800), followed by E. coli, mice, and S. cerevisiae.

At the time of writing, in November 2013, the RCSB PDB website showed that the most

structures had been solved using X-ray crystallography (more than 75,000, representing

88% of all structures). There were also more than 8,700 NMR structures and a smaller num-

ber produced by electron microscopy (approximately 500) (Rose et al., 2011).

2.1.4 The PDBSWS protocol

The PDBSWS protocol links UniProtKB to the PDB (Martin, 2005). Reliable mapping be-

tween these databases allows the transfer of UniProtKB annotations to PDB chains and

residues. SAAPdb uses the UniProtKB-to-PDB mapping in PDBSWS to map sequence

residues to their corresponding structural residues. This mapping is performed automati-

cally using cross-references from the PDB to UniProtKB at the chain level (where available)

and, for historical reasons, from UniProtKB to PDB at the whole PDB file (not chain) level

where available. PDB chains that have not been assigned a UniProtKB AC and which are

not short peptides or nucleotides are searched against UniProtKB using a brute force scan

based on the sequence from ATOM records. Although the UniProtKB and PDB databases

provide cross-references, PDBSWS provides a more complete and accurate link between

the two, encompassing the chain and residue levels. It is regularly updated, and uses a

consistent form of link, which is not the case in the native databases.

The mapping is performed in a number of stages and is stored in a PostgreSQL relational

database. These stages are as follows.

Stage 1 UniProtKB (UniProtKB/Swiss-Prot and UniProtKB/trEMBL) and the PDB data-

banks are downloaded by FTP and stored locally.
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Stage 2 UniProt data extraction. Data are extracted from the UniProt databank to obtain

IDs, sequences and modification dates. Mappings are also obtained between UniProt

IDs and ACs, between primary and secondary ACs, and mappings between ACs and

PDB IDs where available. The method relies on accurate mapping between both Uni-

ProtKB IDs and ACs, and primary and secondary ACs.

Stage 3 PDB data extraction. Data are extracted from the PDB. For each chain, a PDB ID

and the sequence is collected, and any links to UniProt IDs are extracted from the

DBREF field. If no UniProtKB AC reference exists in the DBREF field, the REMARK

999 field is parsed in an attempt to find UniProtKB AC references. Some PDB chains

are chimeras, i.e. they are composed of regions from two or more UniProt sequence

entries. These are handled correctly if they are annotated as such in DBREF records.

Stage 4 Corrections to links from the PDB. Links in the PDB to UniProt that use UniProt

IDs have the UniProt ID converted to a UniProt AC, using information previously

obtained from UniProt in stage 2. Links from the PDB to obsolete UniProt IDs, other

incorrect IDs intended to be used as links to UniProt, and deprecated UniProt acces-

sions are all identified. All of the remaining UniProt accessions that are used as links

from the PDB to UniProt, are validated to check that they are correct primary ACs.

Stage 5 Addition of cross-links from UniProt. For historical reasons PDB links to UniProt

take precedence over links from UniProt to PDB. Links from UniProt to PDB that were

not identified in stage 4 (i.e. not given in the PDB) are now collected. In cases where

PDB records have multiple chains, sequence alignments are used to check which of

the chains correspond to a UniProt sequence. The UniProtKB sequence is aligned

with each PDB chain in turn to identify which chain (or chains) are relevant. Stage

4 and 5 may yield multiple matches as a protein sequence can map to multiple PDB

structures, and to several chains within a single PDB structure.

Stage 6 Brute-force scan. A FASTA formatted databank of UniProt sequences is created.

It is scanned with the remaining unassigned PDB chains, using the FASTA sequence

database search algorithm (Pearson, 1991) to find the remaining valid cross-database

links. The PDB sequence is reconstructed from the ATOM records rather than SE-

QRES. The best match is identified and the mapping is recorded if (i) the residue

overlap is ≥30 and the identity is at least 90% (ii) the residue overlap is ≥15 and the

identity is at least 93%, or (iii) the entire chain is matched with 100% identity.
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Stage 7 All the PDB chains that were found to have links are aligned against their corre-

sponding UniProt entry (or entries, in the case of a chimera) using the ssearch33

program (Pearson and Lipman, 1988). The ssearch33 algorithm implements the

(slow but accurate) Smith Waterman sequence alignment algorithm (Pearson and

Lipman, 1988) to generate the PDB-UniProtKB residue-to-residue mappings. The re-

sulting alignment is mapped onto the PDB structure and stored.

The most recent version of PDBSWS (March, 2014) contains 260324 PDB chains. Of these,

243615 are protein chains (i.e. excluding short peptides and DNA/RNA chains). There

are 67525 cross-links obtained from the PDB, 138882 cross-links obtained from SwissProt

and 26119 cross-links obtained from the brute-force scan (i.e. an additional 12.15%). As

of March, 2014, 95.45% of PDB protein chains are successfully mapped to a UniProtKB

sequence.

PDBSWS is available on the www.bioinf.org.uk/pdbsws website. It can be queried

using PDB IDs (with or without a chain ID), UniProt accession codes and SwissProt IDs.

PDBSWS can be downloaded as a dataset at the chain level or the residue level and can be

queried using a REST interface. Mutations in PDB files with respect to the UniProt entries

can also be downloaded.

2.1.5 Databases of single amino acid polymorphisms

2.1.5.1 dbSNP

The Single Nucleotide Polymorphism Database (dbSNP) was established in 1998, and is

hosted by the NCBI in collaboration with the National Human Genome Research Institute

(NHGRI) in the United States (Sherry et al., 2001). It is a database of genetic variations, incor-

porating information about not only single-base nucleotide substitutions (SNPs), but also

short deletion and insertion polymorphisms, multinucleotide polymorphisms, microsatel-

lite markers or short tandem repeats, named variants, invariant regions of sequence and

heterozygous sequences. SNPs make up the vast majority of this database (>95%). It pro-

vides ‘neutral’ polymorphisms, mappings to protein sequences and only a few disease-

causing clinical mutations. In the analysis of SNP data, these disease-associated mutations

are removed from the SNP dataset, but retained in the disease dataset. This is based on the

assumption that the large-scale genomic scanning technology that is used to identify SNPs,

happens to have sequenced the genome of an individual carrying a disease mutation.
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Each variation submitted to dbSNP is assigned a unique ‘submitted’ SNP ID. In cases where

submitted SNPs are identical, they are compiled into one reference SNP cluster, which con-

tains data from each. dbSNP accepts information from other public variation databases

such as HapMap (Frazer et al., 2007), individual research laboratories, genome centres and

industry. In May 2011, the most recent version of dbSNP was ‘build 132’, which had been

available since September 2010. This release was based on almost 244 million submissions,

and contained over 87 million reference SNP clusters. Over 30 million of these were human

records, with the rest coming from a diverse range of organisms including M. musculus, G.

gallus, A. gambiae and O. sativa. Just over 29 million of the reference clusters were known to

reside within genes. Of the total number of submissions, over 74 million had a phenotype

annotation, and more than 35 million had a frequency provided.

The information in a dbSNP record includes the location of the variant, the flanking se-

quences around the polymorphism, and data on population diversity including variation

and frequency by population or individual genotype. Information about the submitter,

experimental conditions and the validation status of the variant is also provided. The val-

idation status describes the evidence that supports a variant. These categories of evidence

include multiple independent submissions, frequency or genotype data, a submitter confir-

mation, observation of all alleles in at least two chromosomes, genotyping by HapMap, or

that the SNP has been sequenced by the 1000 Genomes project.

dbSNP links to other types of biological databases. These databases include GenBank, vari-

ous genome databases, the 1000 Genomes project (Durbin et al., 2010), Ensembl (Flicek et al.,

2011), RefSeq (Pruitt et al., 2009), PubMed (Mouillet, 2008), OMIM (Amberger et al., 2011),

UniGene (Schuler, 1997) and dbSTS (Olson et al., 1989).

The dbSNP database can be downloaded using FTP and is available in multiple formats

including a flat file version of the database, a relational database dump, and FASTA, ASN.1

and XML formatted files.

2.1.6 OMIM and LSMDBs

Information about pathogenic deviations (PDs) in SAAPdb is obtained from a variety of

sources, of which the Online Mendelian Inheritance in Man (OMIM)4 database is the largest

contributor (Amberger et al., 2011). The Mendelian Inheritance in Man (MIM) catalogue de-

scribes human genetic disorders, and was initiated by Dr. Victor McKusick at John Hopkins

4http://www.ncbi.nlm.nih.gov/omim/
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University. It was first published as a book in 1966 (McKusick et al., 1992), which in 1998

was in its 12th edition. An online version was published in 1985 and is hosted at the NCBI.

The contents of the OMIM database is based on an examination of published literature.

The contents of peer-reviewed journals are scanned to identify relevant articles. Particular

attention is paid to disease phenotypes, genes with novel biology and genes that do not ap-

pear in OMIM. Other online genetics resources are also checked for information and articles

that may be relevant. A team of science writers and editors identify, discuss and write up

relevant articles, update existing MIM records and create new ones.

The OMIM database is focused on phenotypes and the genes associated with them. In

May 2011, it contained more than 20,000 records describing either genes or phenotypes

and over 7,000 of these contained a description of a phenotype. OMIM records may in-

clude: a detailed description of the gene or phenotype, clinical information (features, synop-

sis and management), biochemistry, inheritance patterns, map locations, pathogenesis de-

scriptions, diagnosis information, genotype/phenotype correlations, population genetics,

molecular genetics, animal models, cloning information, gene names, the gene structure,

gene functions, an evolutionary background, allelic variants, polymorphisms, cytogenetic

and citations.

Every record in OMIM is assigned a six-digit MIM identifier. The first digit represents

the method of inheritance: 1 indicates that the trait is autosomal dominant2; 2 denotes

autosomal recessive2; 3 is X-linked loci or phenotypes; 4 is Y-linked; 5 is mitochondrial; 6 or

above is autosomal3.

Six symbols can precede the six-digit MIM number:

(∗) indicates that a gene annotation may exist.

(#) indicates a descriptive entry (usually of a phenotype), which does not represent a

unique locus.

(+) indicates a gene of known sequence and a phenotype.

(%) indicates that the entry describes a confirmed Mendelian phenotype or phenotypic

locus for which the underlying molecular basis is not known.

(No symbol) indicates a description of a phenotype for which the suspected Mendelian

basis has not been clearly confirmed.

(ˆ) indicates the entry no longer exists.

2entries created before May 15, 1994
3entries created after May 15, 1994
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When the molecular basis for a phenotype is understood, allelic variants are added to the

gene entry. Each is assigned a unique four-digit number that is added to the MIM num-

ber of its parent entry, with a decimal point between the MIM number and the four-digit

number. For example, mutations in the cystic fibrosis transmembrane conductance regu-

lator gene [CFTR (MIM number 602421)] are indicated using 602421.0001 to 602421.0136.

In most cases, only certain allelic variants are included, e.g. the first mutation to be dis-

covered, distinctive phenotypes, etc. Most of the variants that are stored represent disease-

producing mutations. A few polymorphisms are also included, many of which show a

positive correlation with particular common disorders. Because not all allelic variants are

described, links to complementary resources are given, including the Human Gene Muta-

tion Database (Stenson et al., 2009), and over 1,500 locus specific mutation databases via the

Human Genome Variation Society5 (Oetting, 2011). In April 2011, over 2,500 gene entries

in OMIM contained information about disease-causing mutations. In addition to providing

links to a range of external genetics databases, the OMIM database provides links to RefSeq,

GenBank, UniGene, Pubmed, and many other resources internal to the NCBI.

However, given that the described mutations are derived from multiple sources and the

literature, it is not surprising that there are inconsistencies in the numbering of amino acids.

It is important to verify that the numbering provided by the primary datasets is correct. The

Martin group automatically maintains SAAPdb using an internal version of OMIM with

corrected numbering (this will be discussed in Chapter 3).

As genomic sequencing is becoming cheaper and more reliable, the number of pathogenic

deviation identifications is increasing exponentially. Figure 2.2 shows the increase in the

content of OMIM. In ten years, the number of disease mutations increased from ∼8000 in

1998 (McKusick, 1998) to almost 20,000 in 2008 (Amberger et al., 2009, Figure 2.2). OMIM

has over 18,000 allelic variants distributed among 2,494 genes and associated with 4,218

different disorders or susceptibilities (Amberger et al., 2011).

Although OMIM is a rich source of disease-associated information, which can be used to

carry out extensive bioinformatic analysis, the pathogenic deviation dataset from OMIM

is enhanced by the inclusion of eleven other specialised locus-specific mutation databases

(LSMDBs), mutation datasets that are produced and maintained by research groups inter-

ested in particular diseases. These resources potentially provide large quantities of high-

quality data (George et al., 2008). These specialised resources often hold detailed phenotypic

information concerning aspects such as enzymatic function or prognosis. The bioinformatic

5http://www.hgvs.org/
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analysis of these data may demonstrate effects on protein function that would otherwise be

difficult to detect. While this has not been addressed in this thesis, rather than training clas-

sifiers on binary classifications (disease causing or neutral), these methods could be trained

to predict disease severity.

Figure 2.2: (O)MIM growth since 1965.
The size of the printed MIM versions (1-12) are marked with diamonds (Amberger et al., 2009).

A brief description of the eleven LSMDBs as they were at the time of the SAAPdb build

(June 2011) is provided below. These LSMDBs were selected and integrated into SAAPdb

based on the interests of collaborating groups.

ADAbase 6

ADAbase is a mutation registry for adenosine deaminase (ADA) deficiency

(OMIM:608958) (Piirilä et al., 2006). In June 2011, it contained 72 records. It is

maintained at the University of Tampere in Finland. ADA deficiency accounts for

about half of the autosomal recessive forms of severe combined immunodeficiency

(SCID). In addition to immunological defects, most patients with ADA deficiency

have skeletal abnormalities.

6http://bioinf.uta.fi/ADAbase/
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ALSoD1db 7

Amyotrophic lateral sclerosis (ALS, also called Lou Gehrig’s disease) is a type of mo-

tor neuron disease caused by the degeneration of motor neurons (OMIM:147450). Mu-

tations in the gene encoding Cu/Zn superoxide dismutase (SOD1) have been identi-

fied in patients with a familial form of ALS. The ALS Online Database (ALSoD) was

created to store information about mutations in SOD1 (and now other ALS-related

mutations), along with ALS patient information. In May 2011, it recorded 303 mu-

tations in 74 ALS related genes (sporadic and familial) and is maintained at King’s

College London. It is a complete record of all genotype/phenotype and neutral varia-

tions and includes genetic, proteomic, and bioinformatics information associated with

the disease. It also contains detailed clinical information, neuropathology data, litera-

ture information and data analysis of Genome Wide Association Studies (GWAS).

The PD information extracted for SAAPdb was obtained from the SOD1 mutation

records in ALSoD (Abel et al., 2012; Wroe et al., 2008).

G6PDdb 8

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive trait

caused by abnormally low levels of G6PD (OMIM:305900) (Beutler et al., 1968). It

is characterised by the abnormal breakdown of red blood cells (haemolysis), usually

after exposure to certain medications, foods or infections. It affects approximately 400

million people. The G6PD Database integrates mutational and structural data from

various genetic and structural databases (Genbank, Protein Data Bank, etc.) and in-

formation from the literature. The G6PDdb resource was developed in a collaboration

with the Martin group (Kwok et al., 2002) and contained 193 records.

ZAP70base 9

Zeta-chain-associated protein kinase 70 or ZAP-70 is a 70kDa protein-tyrosine kinase.

ZAP-70 is normally expressed in T cells and natural killer cells, and is involved in T-

cell signalling. ZAP-70 deficiency (OMIM:176947) is a rare autosomal recessive form

of severe combined immunodeficiency. ZAP70base is a mutation registry for ZAP70

deficiency produced at the University of Tampere, Finland (by the same group that

maintains ADABase) (Piirilä et al., 2006). In June 2011, it contained 17 records. These

included descriptions of alleles, citations, diagnosis information, patient information

and other clinical data.

7http://alsod.iop.kcl.ac.uk/Als/index.aspx
8http://www.bioinf.org.uk/g6pd/
9http://bioinf.uta.fi/ZAP70base/index2.html
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HADB (HAMSTeRS) 10

Haemophilia A (HA) is an X-linked hereditary disease, and is the most common

form of haemophilia. HA is caused by reduced activity or the amount of factor VIII

(OMIM:306700). This protein serves as a cofactor in the coagulation cascade. De-

ficiency produces clots that take longer to coagulate and are unstable. HADB is a

Haemophilia A Mutation Database in which HADB mutations are taken from the lit-

erature and electronic submissions. HADB focuses on point mutations, insertions and

deletions. It also provides predicted splicing errors and polymorphisms. In January

2007, the Imperial College-run database contained over 1,200 mutations, which had

been collated from peer-reviewed literature and electronic submissions (Kemball-

Cook et al., 1998).

IARC TP53 11

The IARC TP53 Mutation Database is maintained by the International Agency for Re-

search on Cancer (IARC) in Lyon, France (Olivier et al., 2002; Petitjean et al., 2007).

P53 regulates the cell cycle and is a tumour suppressor protein (OMIM:191170), in

humans encoded by the TP53 gene. A mutation to P53 occurs∼50% of all human can-

cers (Greenblatt et al., 1994; Sidransky and Hollstein, 1996; Lane and Fischer, 2004).

The IARC TP53 database contains all TP53 mutations published in the literature. It

includes information about the functional impact of mutations, characteristics of tu-

mours, and demographic data about patients. The initiative provides a variety of

information, including a somatic mutation dataset, a germline mutation dataset, poly-

morphisms, two function datasets, cell-line data, P53 protein structures and a dataset

on mouse-models.

The somatic mutation information contains P53 mutations associated with human

cancers. Three types of data are provided in relation to mutations: type, prevalence,

and prognostic value. In June 2011, the latest release contained over 27,000 mutations.

Many of these are repeats of the same mutation in different patients.

The germline (or inherited) mutation information contains data on families that have

Li-Fraumeni syndrome (a rare autosomal cancer family syndrome syndrome caused

by mutations in the TP53 gene). In June 2011, it included 588 mutations affecting 584

families or individuals.

10http://hadb.org.uk/
11http://www-P53.iarc.fr/
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KinBase 12

KinBase (Manning et al., 2002) contains information about more than 3,000 protein ki-

nase genes from humans and other organisms (mouse, fly, worm, etc.). The database

is maintained by the Salk Institute in San Diego. This highly populated family of

proteins is involved in many crucial cellular processes such as signal transduction,

cell-cycle regulation and tumourigenesis. As a consequence of these rôles, kinases

have been reported to be associated with inherited developmental and metabolic dis-

orders (Lahiry et al., 2010) and also many types of cancer. Due to this association, they

are considered as potential targets for therapy (Izarzugaza et al., 2009).

The set of mutations in kinase domains was provided by collaborators (Izarzugaza et

al., 2011); a 66 KinbaseDriver (protein kinase domain) of which 26 mapped to protein

structure and 66 KinbasePassenger (protein kinase domain) of which only 14 mapped

to protein structures.

LDLR FH Database 13

Familial hypercholesterôlemia (FH) is most commonly a result of variations in the

LDLR gene, which encodes the receptor for low density lipoprotein (LDL) cholesterol

particles. About 1 in 500 people are affected by pathogenic alterations in the LDLR

peptide. These cause increased atherosclerosis and a greater risk of coronary heart

disease (Leigh et al., 2008).

In June 2011, the LDLR FH Database at University College London listed 1,741 LDLR

allelic variants (1,122 of which were unique). These had been obtained from the litera-

ture and included 1,280 DNA substitutions (73.5%), 75 insertions (4.3%), 337 deletions

(19.4%), 64 duplications (3.7%), 15 insertion/deletions (0.9%) and 2 inversions (0.1%).

OTC

Ornithine transcarbamylase (OTC) deficiency, is an X-linked disorder caused by mu-

tations in the OTC gene (ornithine carbamoyltransferase, OMIM:300461). It causes

hyperammonemia, which is an excess of ammonia in the blood (Gilbert-Dussardier

et al., 1996). Although it is a rare metabolic disorder, it is the most common inher-

ited defect in ureagenesis, affecting about 1:16000 children. The OTC dataset used in

SAAPdb (Tuchman et al., 2002; Yamaguchi et al., 2006) is produced at the University of

Minnesota, with the last major update in 2006. This contained 341 mutations, and an

additional 29 non-disease-causing mutations and polymorphisms. Enzyme activities

and clinical information are also included.

12Greenman C et al. Patterns of somatic mutation in human cancer genomes.Nature 2007, 446(7132):153-8.
13http://www.ucl.ac.uk/ldlr
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PAHdb 14

Deficiency of phenylalanine hydroxylase (PAH) enzyme function causes hyperpheny-

lalaninemia (HPA) and related forms of phenylketonuria (PKU). PAHdb is a database

of mutations in the human PAH gene, and associated phenotypes at the levels of pro-

tein, metabolites and organism. This is combined with information about associations

of mutations with populations, haplotypes and other features. PAHdb is maintained

at McGill University in Montreal (Scriver et al., 2003; Pey et al., 2007).

Mutation data were collated from both published articles and personal communica-

tions from 82 investigators from the PAH Mutation Analysis Consortium in 32 coun-

tries. In June 2013 the PAHdb held records of 567 mutations (>60% were missense).

The alleles are annotated with information such as species, locus, gene, unique iden-

tifier number, name and source of information and are flagged as either pathogenic or

polymorphic.

STAT3

‘Signal transducer and activator of transcription 3’ (STAT3), is a human transcrip-

tion factor. STAT3 is essential for the differentiation of TH17 helper T cells that have

been linked with a variety of autoimmune diseases. Loss-of-function mutations in the

STAT3 gene lead to hyperimmunoglobulin E syndrome. This syndrome is associated

with recurrent infections, and poor development of bones and teeth (Frank, 2007).

Forty-nine mutations in SwissProt entry “P40763” were collated from peer-reviewed

literature and electronic submissions and integrated into SAAPdb.

Other sources of mutation data have been considered including HGMD15 and SwissProt

Variants (SwissVar)16. However HGMD data are only available to registered users meaning

that we have not been able to reproduce their data in our database and SwissVar is not terri-

bly reliable in annotation of disease status (For example, known PDs in G6PD are annotated

as ’Natural Variants’ of unclassified disease status).

2.1.7 FOSTA

When examining sequence conservation as indicator of the effect of a mutation, it is crucial

that the sequences that are aligned have the same function. By definition, proteins that

diverge in function will undergo change in functionally critical residues.

14http://www.pahdb.mcgill.ca/
15http://www.hgmd.cf.ac.uk
16http://swissvar.expasy.org
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Functional Orthologs from Swiss-Prot Text Analysis17, FOSTA, is a relational database of

automatically generated families of annotated functionally-equivalent proteins (McMillan

and Martin, 2008). FOSTA identifies a list of homologues for a given human protein, based

on a BLAST search of the database. It then carries out text analyses of the annotations.

First this seeks to identify a match in the protein identifier part of the entry name, then

the EC number, and finally by matching synonyms at various levels of granularity from

the description (DE) field. If a non-human homologue passes any of the three filters, it is

marked as a functionally-equivalent protein, FEP, and added to the FEP family with the

human protein.

McMillan and Martin (2008) showed that Swiss-Prot functional annotation can produce ex-

cellent results; they also identified cases where FOSTA correctly assigned FEPs a question-

able functional annotation, and others where several families shared the same entry name

protein identifier. Examples of such inconsistencies can be found in the HOX proteins and

the PROC_HUMAN example in McMillan and Martin (2008). FOSTA is preferred over stan-

dard lists of orthologs when highly reliable data are required. This is because when very

distant orthologs are gathered using traditional methods, they may diverge in function (e.g.

because of mutations in functional residues).

As part of this project, the existing FOSTA code was improved by removing all ‘hard-coded’

variables (e.g. paths or user-names) into a separate Perl module. This means that run-

ning FOSTA on a new machine (or as a new user) requires no editing of the main code, all

changes being done in this single module. A Perl script was also written to look at each of

the database’s tables and give summary counts for the tables, to make it easier to compare

different FOSTA runs. Additionally, full instructions on how to run FOSTA from scratch

were written; this document has been reviewed and tested by another person within the

group to ensure its practical usefulness.

2.1.8 Databases of single amino acid polymorphisms used for prediction work

Section 1.1 showed that there are many ways to divide mutations into types and subtypes.

This thesis focuses on protein-level variations and only considers SAAPs: substitutions of

one amino acid in the protein sequence at a time. Depending on the effect on the phenotype,

SAAPs can be divided into neutral and pathogenic. The main data sources of pathogenic

mutations are described in Section 2.1.6, and dbSNP has been presented as a resource that

17http://www.bioinf.org.uk/fosta/



CHAPTER 2. BIOINFORMATICS RESOURCES AND METHODS 69

provides data on neutral or low-penetrance SAAPs in Section 2.1.5.1. These were all ac-

cessed via the SAAPdb resource described in Chapter 3.

In addition, the HumVar and HumDiv dataset V.2.1.9 was used as a resource. These

datasets were developed for evaluation of PolyPhen218. HumDiv consist of 5564 deleterious

and 7539 neutral mutations from the same set of 978 human proteins. HumVar consists of

22196 deleterious and 21119 neutral mutations in 9679 human proteins, with no restriction

on deleterious and neutral mutations coming from same proteins.

HumDiv, was compiled from all damaging alleles with known effects on molecular

function causing human Mendelian diseases, present in the UniProtKB database. These

were grouped together, with differences between human proteins and their closely related

mammalian homologs of human proteins (>= 95% sequence identity), assumed to be

non-damaging. These assumptions are questionable given the paper on (Compensated

Pathogenic Deviations) CPDs (Baresic et al., 2010). HumVar consists of all human

disease-causing mutations (except cancer mutations) or mutations resulting in loss of

activity/function from UniProtKB. Common human nsSNPs (minor allele frequency >

1%) without annotated involvement in disease, which are treated as non-damaging are

also included.

2.2 Data handling

In a large-scale automated system (such as SAAPdb) data integrity must be ensured by

appropriate and robust data handling. The system has to handle vast quantities of infor-

mation, and it must be possible quickly to retrieve and process it. This section describes

the fundamental data handling methods: relational databases (Section 2.2.1), XML (Sec-

tion 2.2.2) and an alternative XML/ASN.1-based representation of the PDB, XMAS (Sec-

tion 2.2.3).

2.2.1 PostgreSQL relational databases

The first relational database was developed by Edgar Codd at IBM Almaden Research Cen-

tre (Codd, 1970). A relational database simply stores information. It consists of tables (or

‘relations’) which describe the types of data. Tables in turn contain columns or ‘fields’ which

hold records, i.e. the actual data.

18ftp://genetics.bwh.harvard.edu/pph2/training
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The power of relational databases lies in their ability to ‘relate’ or join data held in different

tables based on a common identifier (the ‘foreign key’). This key is recorded in one table

and refers to data in other tables. This concept makes it possible to ‘normalise’ large tables

that contain many fields into smaller data structures describing individual concepts.

The first step in constructing a good relational database system is to start with a clear spec-

ification. This involves defining the problems and constraints (i.e. any issues or limitations

the system will have to handle), the objectives (what the system is going to do and how),

and the scope and boundaries (i.e. the information that will be stored). Once the speci-

fication is in place, logical, conceptual, and physical design steps follow. The database is

created in a database management system (DBMS) and datasets are loaded. Finally, the

database is tested and evaluated against the initial specification. Maintenance and evolu-

tion are important considerations for any database. These activities fix problems with the

system or implement enhancements or new requirements.

The design phase decomposes the problem into its constituent ‘entities’, ‘relationships’ and

‘attributes’ to produce a high-level model of the database structure. Entities describe dis-

tinct objects in the dataset. Combining entities using relationships creates entities that are

more abstract. Furthermore, both entities and relationships can have attributes that describe

the corresponding object. To represent high-level data models, ‘entity-relationship’ (ER)

modelling diagrams clearly define the entities and relationships in the data to be stored.

In this section, a dummy dataset is used to illustrate the main concepts concerning a rela-

tional database. The dataset describes hospital doctors, where patients can have multiple

appointments at different hospitals with different doctors or clinics. Figure 2.3 describes the

entities, relationships and attributes in this example. There are two entities: a patient and

a hospital. These entities are joined by the relationship ‘appointment’ which captures the

more abstract or ‘associative’ appointment entity. Both entities and relationships can have

attributes: a patient has a name, contact details and a MRN [Medical Record Number]; a

hospital has a name, doctors and clinics; the number of appointments booked at each hos-

pital defines an appointment. In addition, each entity is given a unique identifier (ID). This

enables each individual entity (i.e. each patient or hospital) to be uniquely identified.

If attributes have multiple values, it is useful to decompose them into two or more at-

tributes. Relationships between entities are defined with respect to their ‘cardinality’. This

describes how entities are related to each other. The cardinality may be many-to-many,

one-to-many or one-to-one.
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(a) An example entity relationship (ER) diagram.
Entities are in square-edged rectangles while attributes are in oval boxes; lines join entities and relationships to
their attributes.

Patient Contact Hospital Num

Height  K Douglas 7 Victoria Road LIONACLEIT, HS7 7ZE , 0792753672, Kather@aol.com (UCLH,Card,Dr.Laura) (CVSH,Sur,Dr.Khan) 1,1

Aban L Srour 87 Stamford Road ANGERSL, TA3 9OV, 0297364827, Aban@mail.com (UCLH,Int,Dr,Ivan) 2

Kvirin S Stekić 87 Holgate Rd, RASKELF, YO61 3KH , 0792753672, KS@yahoo.com (UCLH,Int,Dr,Ivan) 1

Joseph M Connolly 31 Emerson Road KINLOSS, 0216553743, Joseph@Cn.com (KFSHRC,Car,Dr.Moheb)(KFSHRC,Sur,Dr.Iman) 1,1

Maria M Connolly 31 Emerson Road KINLOSS, 0722336571, Maria@Cn.com (KFSHRC,Car,Dr.Moheb) 1

Hospital

ID* Name Clinic Doctor

1 KFSHRC surgical clinic Dr. Iman

2 KFSHRC cardiology clinic Dr. Moheb

3 CVSH surgical clinic Dr. Khan

4 UCLH cardiology clinic Dr. Laura

5 UCLH cardiology clinic Dr. Tom

6 UCLH IntMedicine clinic Dr. Ivan

Patient

ID* First Mid Last Address^ Contact^

1 Height K Douglas 2 1

2 Aban L Srour 4 3

3 Kvirin S Stekić 1 2

4 Joseph M Connolly 3 4

5 Maria M Connolly 3 5

Address

ID* Post Code Text Adress

1 YO61 3KH 87 Holgate Rd, RASKELF

2 HS7 7ZE 7 Victoria Road LIONACLEIT

3 IV36 7IU 31 Emerson Road KINLOSS

4 TA3 9OV 87 Stamford Road ANGERSL

Contact

ID* Phone E-mail Address^

1 0792753672 Kather@aol.com 2

2 0753672847 KS@yahoo.com 1

3 0297364827 Aban@mail.com 4

4 0216553743 Joseph@Cn.com 3

5 0722336571 Maria@Cn.com 3

Appointment

ID* Patient^ Hospital^ Number

1 1 4 1

2 1 3 1

3 2 6 2

4 3 6 1

5 4 2 2

6 4 1 1

7 5 2 1

(b) An example relational database.
The data to be represented is a list of patients appointments, shown in the top half of this diagram; these data
can be decomposed into smaller entities (Patient, Hospital, Appointment) and stored in separate tables as
shown in the bottom half of the diagram; primary keys are annotated with an asterisk (*), foreign keys are
annotated with a caret (ˆ); primary keys in the Patient, Contact, Address and Hospital tables are highlighted
with the same colours used in the Delivery table to indicate where these primary keys are used as foreign keys.

Figure 2.3: Using a patient and hospital information to illustrate database design.



CHAPTER 2. BIOINFORMATICS RESOURCES AND METHODS 72

Once the Entity-Relationship (ER) diagram is complete, the design of the database is de-

termined by the application of various rules. The most relevant rules are: (i) each entity is

represented by a table; (ii) each many-to-many relationship is represented by a table; and

(iii) any multiple attributes that have dependencies between sub-attributes should be fac-

tored out into another table. The resulting database and its relationship to the original data

are shown in Figure 2.3(b).

A fundamental concept in relational databases is the primary and foreign keys. Primary

keys are IDs that allow each entry in a table to be identified uniquely. Often they are arbi-

trary numbers applied to data as they are entered into the database. However, how these

keys are allocated is debated by database designers, some of whom argue for the use of

real data, particularly if the entry already has a unique identifier (such as SwissProt pri-

mary accession codes). Foreign keys are references to primary keys found in other tables.

In Figure 2.3(b) all primary keys are marked with an asterisk (*) and all foreign keys are

annotated with a caret (ˆ). Furthermore, all foreign keys and the data to which they refer

are highlighted with the same background colour to make it easier to identify inter-table

references. In a well-designed database the use of foreign keys improves data integrity and

facilitates administration, as changes only need to be made in one table.

Additional constraints on the contents of fields in a table can improve data integrity and

performance. For example, they can define whether a field must be unique, whether data

must exist (i.e. the field cannot be ‘null’), or the range of values the field may take. Finally,

indexing vastly improves the performance of relational databases. Indexing leads to the

generation of a secondary table that enables rapid look-up of the original data. Any field

(or combination of fields) this is frequently used should be indexed. Both FOSTA 2.1.7 and

SAAPdb (Chapter 3), make extensive use of indexes as without them, the manipulation of

very large datasets quickly becomes impractical.

Once the design is in place, the database is built, populated, and queried using structured

query language (SQL). Foreign keys are implemented to retrieve related data by ‘joining’

tables based on a common term or terms. A sample query is shown in Figure 2.4. This

requests the total number appointments booked at each hospital. This query demonstrates

the basic SELECT/FROM/WHERE SQL grammar. It also shows how GROUP BY and ORDER

BY are used to aggregate and sort data, and illustrates the use of SUM(), one of the many

built-in, standard SQL functions. PostgreSQL also allows the user to define new functions.
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Normalisation is the process of efficiently managing and organizing data in a database into

smaller data structures describing individual concepts. This involves the elimination of

redundant data matches requirements for the first normal forms (1NF) and ensuring that

only related data are stored together. The NFs in relational database theory are a series of

guidelines written to ensure that databases are normalized to ensure that data are logically

stored and provide criteria for determining a table’s degree of immunity against logical

inconsistencies and anomalies. The lowest form of normalization (1NF) requires that dupli-

cate columns are removed from the same table. The second normal form (2NF) continues to

address the problem of duplicated data and requires the creation of relationships between

tables containing subsets of data and their parent data tables. The third normal form (3NF)

matches requirements of (2NF) and must remove all columns that are not dependent on the

primary key. Additional level of normalization are sometimes used.

=> SELECT h.Name, h.Doctor, SUM(a.Number)
FROM Hospital h, Appointment a
WHERE a.Hospital = h.ID
AND h.Clinic = ’cardiology clinic’
GROUP BY h.Name
ORDER BY h.Name;

Name | Doctor | sum
----------+-----------+----
KFSHRC | Dr. Moheb | 2
UCLH | Dr. Laura | 2
UCLH | Dr. Tom | 1
(3 rows)

Figure 2.4: An example PostgreSQL query.
Two tables (Hospital aliased to h and Appointment aliased to a) are joined on a.Hospital and h.ID; the
data are constrained to those Hospital/h with Clinic (h.Clinic = ’cardiology clinic’); the aggre-
gate function SUM is calculated for each h.Name as defined by the GROUP BY h.Name clause; results are sorted
by h.Name as defined by the ORDER BY h.Name clause.

2.2.2 XML

XML (eXtensible Markup Language) is a self-descriptive standard mark-up language used

to structure, transmit and store data. XML allows the user to define a personalised set of

specific tags and document structure. A Document Type Definition (DTD), which may be

implemented in XML-DTD or in XML schema, defines a restricted grammar consisting of

elements and attributes that the user can use to define a specialised framework for the rep-

resentation and storage of their data. The DTD can be declared inline (in an XML document)
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or be provided as an external reference. XML data are stored in plain text format, which is

independent of any particular software or hardware. Consequently, it is much easier for

different applications to share data. When data are represented in a consistent XML format,

the same parser can extract specific data required for processing, database population, etc.

Figure 2.5 is an example of an XML file that illustrates its hierarchical structure. The ‘mu-

tation’ element contains two instance of the element ‘protein_data’ and ‘amino_acid’ which

followed by multiple item’s that contain further subelements (‘aa_label’, ‘wildtype’, etc.).

Figure 2.6 shows how the corresponding DTD defines such a framework.

<?xml version=’1.0’?>
<!DOCTYPE lsdb SYSTEM ’definition/lsdb_xml.dtd’>

<lsdb name=’OMIM’ url=’http://www.bioinf.org.uk/omim/omim_sprot.csv’>

<mutation id=’100650’ supplementary_id=’0001’ arbitrary_id=’0’ number_of_records=’1’>
<protein_data ac=’P05091’>
<amino_acid aa_label=’504’ wildtype=’E’ mutant=’K’ valid=’t’>504</amino_acid>
</protein_data>
</mutation>

<mutation id=’100690’ supplementary_id=’0001’ arbitrary_id=’0’ number_of_records=’1’>
<protein_data ac=’P02708’>
<amino_acid aa_label=’262’ wildtype=’N’ mutant=’K’ valid=’t’>262</amino_acid>
</protein_data>
</mutation>

<mutation id=’100690’ supplementary_id=’0002’ arbitrary_id=’0’ number_of_records=’1’>
<protein_data ac=’P02708’>
<amino_acid aa_label=’201’ wildtype=’V’ mutant=’M’ valid=’t’>201</amino_acid>
</protein_data>
</mutation>

<mutation id=’100690’ supplementary_id=’0003’ arbitrary_id=’0’ number_of_records=’1’>
<protein_data ac=’P02708’>
<amino_acid aa_label=’299’ wildtype=’T’ mutant=’I’ valid=’t’>299</amino_acid>
</protein_data>
</mutation>

<mutation id=’100690’ supplementary_id=’0004’ arbitrary_id=’0’ number_of_records=’1’>
<protein_data ac=’P02708’>
<amino_acid aa_label=’198’ wildtype=’G’ mutant=’S’ valid=’t’>198</amino_acid>
</protein_data>
</mutation>

</lsdb>

Figure 2.5: An example of XML, from storing mutation data.
See Figure 2.6 for the corresponding DTD.
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<!ELEMENT lsdb ( mutation+ ) >
<!ATTLIST lsdb name CDATA #REQUIRED >
<!ATTLIST lsdb url CDATA #REQUIRED >

<!ELEMENT mutation ( dna_data?, protein_data, occurrence?, patient_data*, references? ) >
<!ATTLIST mutation id CDATA #REQUIRED >
<!ATTLIST mutation supplementary_id CDATA #IMPLIED >
<!ATTLIST mutation arbitrary_id CDATA #REQUIRED >
<!ATTLIST mutation number_of_records CDATA #REQUIRED >

<!ELEMENT dna_data ( gene?, dna_base?, codon? ) >
<!ELEMENT gene ( #PCDATA ) >
<!ELEMENT dna_base ( #PCDATA ) >
<!ATTLIST dna_base wildtype CDATA #REQUIRED >
<!ATTLIST dna_base mutant CDATA #IMPLIED >
<!ELEMENT codon ( #PCDATA ) >
<!ATTLIST codon wildtype CDATA #REQUIRED >
<!ATTLIST codon mutant CDATA #IMPLIED >

<!ELEMENT protein_data ( amino_acid ) >
<!ATTLIST protein_data ac NMTOKEN #REQUIRED >
<!ELEMENT amino_acid ( #PCDATA ) >
<!ATTLIST amino_acid aa_label CDATA #REQUIRED >
<!ATTLIST amino_acid wildtype CDATA #REQUIRED >
<!ATTLIST amino_acid mutant CDATA #REQUIRED >
<!ATTLIST amino_acid valid (t|f|?) #REQUIRED >

<!ELEMENT occurrence ( prevalence_text?, prevalence_count?, prevalence_percentage? ) >
<!ELEMENT prevalence_text ( #PCDATA ) >
<!ELEMENT prevalence_count ( #PCDATA ) >
<!ELEMENT prevalence_percentage ( #PCDATA ) >

<!ELEMENT patient_data ( age?, sex?, race?, external_factors?, phenotype? ) >
<!ELEMENT age ( #PCDATA ) >
<!ELEMENT sex ( #PCDATA ) >
<!ELEMENT race ( #PCDATA ) >
<!ELEMENT external_factors ( #PCDATA ) >
<!ATTLIST external_factors details ( f|t ) #IMPLIED >

<!ELEMENT phenotype (disease_name?, enzyme_activity?,
disease_severity?, disease_class?, disease_onset?, prognosis?,
delta_delta_gee?, melting_point?)>
<!ATTLIST phenotype mendelian ( dominant|recessive|partial|non ) #IMPLIED >
<!ELEMENT disease_name ( #PCDATA ) >
<!ELEMENT enzyme_activity ( #PCDATA ) >
<!ATTLIST enzyme_activity numeric ( 0|1|2|3|4|5 ) #IMPLIED >
<!ATTLIST enzyme_activity percentage CDATA #IMPLIED >
<!ELEMENT delta_delta_gee ( #PCDATA ) >
<!ELEMENT melting_point ( #PCDATA ) >
<!ELEMENT disease_severity ( #PCDATA ) >
<!ATTLIST disease_severity numeric ( 0|1|2|3|4 ) #IMPLIED >
<!ELEMENT disease_class ( #PCDATA ) >
<!ELEMENT disease_onset ( #PCDATA ) >
<!ATTLIST disease_onset numeric ( 1|2|3|4 ) #IMPLIED >
<!ATTLIST disease_onset age CDATA #IMPLIED >
<!ELEMENT prognosis ( #PCDATA ) >

<!ELEMENT references ( citation+ ) >
<!ELEMENT citation ( #PCDATA ) >
<!ATTLIST citation year CDATA #REQUIRED >

Figure 2.6: An example of DTD from storing mutation data.
This DTD specifies the format for storing mutation data: which elements with which attributes can exists, what
the relationship between elements is, and whether data is required or may be omitted.
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2.2.3 An alternative format for the PDB: XMAS

XMAS files represent PDB data using a hybrid XML/ASN.1 format (XMAS comes from the

first two letters of XML and ASN.1 and stands for eXtensible Markup with Abstract Syntax).

The XMAS format was developed by Dr Andrew Martin while working at Inpharmatica to

overcome the problem of PDB files, which do not provide a standard format for adding

information (e.g. accessibility, H-bonding, secondary structure assignments etc.). PDB files

require a large amount of data cleaning and contain a lot of implicit information (e.g. H-

bonding, sequence alignment between SEQRES and ATOM records), that is not explicitly

stated and must be calculated for each individual PDB structure.

XMAS files are automatically generated for all new or updated PDB structures and are used

extensively in SAAPdb. This is because it is essential to have a standardised format, which

can be easily parsed by our structural analysis system. These files must contain all the

required PDB data and the results of other calculations. When necessary, XMAS-formatted

structures can be easily generated for additional structures using proprietary software.

The conversion from PDB to XMAS format is as follows. Note that, once converted to XMAS

format, the following steps can be preformed in any order as the format is self-describing

annotating the columns in which the additional data are stored.

1- PDB data: Convert raw PDB data to XMAS format, preforming various data clean-up.

2- Solvent accessibility: Calculate and add atom and residue solvent accessibility statistics

using Lee and Richards’ (1971) method.

3- Secondary structure: Calculate and add secondary structure assignments for each

residue using Kabsch and Sander’s (1983) method.

4- Hydrogen bonds: Identify and add any hydrogen bonds in the structure (i.e. protein-

protein, protein-ligand and ligand-ligand hydrogen bonds) using the simple Baker

and Hubbard (1984) criteria for defining a hydrogen bond.

In addition, the hydrogen bond calculation program identifies and annotates non-bonds

and pseudo-hydrogen bonds and annotates them. Non-bonds are non-consecutive residue

atom pairs 2.7-3.35Å apart that are not covalently or hydrogen bonded, for example, elec-

trostatic interactions and Van der Waals contacts. Pseudo-hydrogen bonds are atom pairs

that satisfy the constraints described in Baker and Hubbard (1984) for hydrogen bonding

but one or both atoms do not form strict hydrogen bonds, for example, they are metal ions.
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2.3 Machine learning

2.3.1 Introduction

Machine learning is a sub-division of artificial intelligence and aims to train computers to

adapt to certain responses and initiate actions (Zhang and Rajapakse, 2009). Machine learn-

ing has applications that range from search engines, natural language processing, bioinfor-

matics, medical diagnosis and chemoinformatics to stock market analysis, game-theory and

computer vision.

The field of machine learning has grown rapidly, requiring the development of powerful

learning algorithms for diverse applications. Machine learning has been a key technique

for data mining; the discovery of previously unknown properties in data, which has led

to the creation of sophisticated database interfaces. According to Witten and Frank (2005),

data mining has three purposes: to understand, explain (in human-readable terms) or pre-

dict data features. Machine learning approaches have been used effectively to solve many

technological problems and greatly increase the knowledge-acquisition process (Frasconi

et al., 2003).

While data are accumulating at a faster rate than ever, data storage is becoming cheaper and

more accessible. This has made it possible for the field of knowledge acquisition to expand,

to collect data on various naturally-occurring processes and other aspects of human activity.

However, vast quantities of data are not useful in their own right, they must be interpreted

and learned from to be of any use. Currently, our ability to analyse such large data sets

lags behind the rate of data accumulation (Witten and Frank, 2005). Machine learning

addresses exactly this issue, allowing the identification of structure in unstructured data

either automatically or semi-automatically.

Machine learning is founded on the idea of instances. Typically, each instance has a unique

identifier, supplemented by a set of measurable attributes (also termed features). Attributes

are assumed to contribute new knowledge to the description of the concept. Each attribute

is assigned a value, which can take two forms: it is termed numerical if it can be expressed

on a numerical scale; or categorical if it can be defined by a finite set of mutually exclusive

categories. These categories can be numerical, but not continuous (for example, binary

attributes with possible outcomes of 0 or 1), or a non-numeric description (e.g. helix, strand,

coil). These are termed nominal attributes.
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2.3.2 Machine learning approaches

Machine learning deals with programs that improve or adapt their performance over

time and can be achieved in several ways. The two approaches (learning scenarios)

to machine learning that are most frequently applied are termed ‘supervised’ and

‘unsupervised’ (Zhang and Rajapakse, 2009).

In a supervised learning approach, a program performs a function (e.g. classification) af-

ter training on a data set where inputs (attributes and class values) and desired outputs

are provided. This is followed by thorough testing of its accuracy and efficiency on an in-

dependent dataset of instances where the attribute values are known, but the class value

is not known. As such, the program is fed examples (input attributes) and must predict

the output attribute of every next instance based on pre-defined criteria before the answer

is revealed by a ‘teacher’. Thus, supervised approaches are often also referred to as dis-

crimination or prediction classifications. If the output is categorical, the process is called

classification and the attribute predicted by the model is termed the class attribute. All of

the models described in chapter 6 and chapter 7are based on categorical outputs. If the out-

come is continuous rather than categorical, and the model can be formalised as a numerical

function of input variables, it is called a regression model.

In unsupervised learning, the program must determine certain regularities or properties of

the instance in the absence of a teacher. Thus, unsupervised learning focuses on relation-

ships between attributes, rather than trying to predict outcomes. In contrast with super-

vised learning, there is no test dataset, the class labels of the data are unknown, and the

output of the model is trains instances that are grouped according to a similarity measure.

The main types of unsupervised learning methods are association learning and clustering.

Association rules-mining finds associations or a structure among attributes in large sets of

data items. Association rules are an essential data-mining tool for extracting knowledge

from data, made useful by the good scalability characteristics of the algorithms employed.

Clustering on the other hand, aims to generate groups (clusters) of instances without nec-

essarily identifying the underlying structure or associations of attributes within a cluster.

Clustering is one of the most utilised data mining techniques and is useful when it is neces-

sary to train a classifier with a small number of samples if the labelling of a large collection

of samples is costly.
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There are several other types of machine learning approaches. These include semi-

supervised learning (learning based on a mixture of labelled and unlabelled instances) and

reinforcement learning (where the inputs come from an unpredictable environment, not

a training set, and positive feedback is given after a short sequence of learning steps). A

description of these methods is outside the scope of this thesis but are described in detail

by Mitchell (1997) or Alpaydin (2009).

This thesis uses binary classifications (values can only be 1 or 0) to predict the presence

or absence of a single feature. In this case, the feature of a pathogenic deviation (PD) can

either exist or not exist for a given instance (i.e., is/is not a PD). The work presented in this

thesis led to the construction of two mutation pathogenicity/phenotype classifiers, which

are described in detail in chapter 6 and chapter 7. This thesis uses two forms of machine

learning (neural network and random forest) which are described below.

2.3.3 Neural networks

There are two ways to understand neural networks. The first is the traditional biological

concept associated with the neural system. The second describes interconnected artificial

networks that are built according to the principles of biological networks.

The multilayer perceptron model is an example of an artificial neural network model that

can carry out concept classification tasks. It is a feed-forward network (i.e. nodes are con-

nected in a non-circular fashion) that builds the class prediction function by training the

network on a back propagation algorithm. It minimises learning errors by adjusting the

weight of the connections between the network’s nodes (Rumelhart et al., 1986). The model

consists of input, output and one or more intermediate layers and explains the flow of data

from the input to the output layer. The model can be applied to various pattern ranges for

classification, prediction, recognition, and approximation.

A minimum representation of the network consists of three layers of interconnected nodes

(also termed neurons or perceptrons) with weighted connections. Figure 2.7 shows the ar-

chitecture of the model, which is divided into the input layer (one neuron for every attribute

and in the case of a neural network, these are exclusively numerical), the (usually single)

hidden layer, which consists of a user-defined number of hidden nodes, and the output

layer, which has a node for every class category. One of the drawbacks of the models is

that the data structures they learn, although efficient at prediction, cannot always be easily

translated into human-readable terms. While it is useful as a ‘black box’ prediction model

it is not trivial to visualise (unlike rule-based trees).
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In mathematical terms, a multilayer perceptron is a function that maps input values to the

output class value. Every node transforms input based on a non-linear activation function

(Equation 2.1). The model iteratively learns the weights that minimise the error rate on the

given instances (the training set). The aim is to reach a global (rather than a local) minimum

error rate.

O = f(
∑

IiWi) (2.1)

Where I is an input, W is a weight learned during training, and f() is the evaluation func-

tion.

Local minima are a problem that can be avoided through the introduction of ‘momentum’.

This is a small amount of random noise introduced into the system in each epoch (training

step). Finding the appropriate ratio between the learning rate and momentum is the key to

optimising the model and achieving a good level of both generalisation and specialisation.

The stopping conditions for training are specified by the user, either by defining the number

of epochs, or when the error rate has not changed for the last n epochs. Although in theory

there is no limit to the number of iterations (this allows the model to sample error space

around the minimum) in practice the process is usually stopped soon after the learning rate

reaches a plateau. This is to avoid over-fitting the model to the training data (especially

when the training set is small), a process that is also known as ‘early stopping’.

Figure 2.7: Multilayer perceptron schema.
Nodes are organised into three layers: input, hidden, and output layer. The weights on the connec-
tions between the nodes are optimised. Figure obtained from http://en.wikipedia.org/wiki/
File:Artificial_neural_network.svg under Creative Commons license.
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2.3.4 Random forests

The classification of datasets with multiple attributes can be problematic. Typically,

a method must be applied to reduce the number of dimensions, as most models do

not perform optimally when highly interdependent or irrelevant attributes are mixed

with those that are informative. Attribute optimisation is resource-intensive and the

standard way to handle it is to use decision trees. In a decision tree algorithm, each

iteration evaluates all possible splits of all attributes in order to determine the condition

that maximises information gain (Witten and Frank, 2005). This recursive procedure is

repeated for every node created by the split, until there is no further information gain or

the maximum tree size is reached.

Although single decision trees can perform robustly on high-dimension data, they are often

inaccurate when trained on a small dataset and various authors have suggested an obvious

improvement. This consists of constructing a set of T trees (usually termed a forest) rather

than a single tree. Results generally outperform the single decision tree method (Svetnik

et al., 2003) as the final classification is a combination of the predictions made by each tree

(often simply a majority vote). The random forest has been shown to be the most efficient

method for learning a solution to a problem and can also be used to identify interactions

between variables (Pavlov, 2000). In this case, it learns by ‘bagging’ a decision tree that

has not been modified or pruned and randomly identifies features in every split, which are

used in the construction of a group of decision trees with controlled variation. The random

forest has become a common data-exploration method that represents the combination of

individual learning decision trees.

Advantages and disadvantages

The random forest method builds an accurate learning algorithm; consequently the classi-

fier is also accurate. Moreover, it performs efficiently on very large databases and it can

handle a large number of input variables with no deletion. It is easy to estimate missing

data, and is accurate even if there is a lot of missing data. It provides an estimate of variable

types that can be used in the classification and it can provide an internal indiscriminate

bound on the generalization error as the forest is built. It provides effective methods for

error balancing in unbalanced data sets. The forest can compute prototypes, which makes

the relationship between classification and variables easy to identify. The ability to compute

proximity between pairs of cases makes it easy to cluster and locate outliers.
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Algorithm

A random forest builds a user-specified number of trees (T). Each tree is trained and eval-

uated on a bootstrapped sample of the initial dataset (i.e. a sample ni ≤ n of the data

with replacement gives us (1 − 1/e)n of the original data (∼63%)), while the remainder of

the data makes up the ‘out-of-bag’ dataset. The number of trees is limited by the available

computational power; in practice, the more trees a model can produce, the better the per-

formance. Moreover, as the Law of Large Numbers (Breiman, 2001) established that there

is an upper bound for the generalisation error, adding trees to the random forest does not

lead to over-fitting.

When the decision tree is built, node splits are based on a randomly-chosen subset of mtry

attributes19 (sometimes referred to as the random tree algorithm). In this respect, the ran-

dom forest resembles the bagging algorithm (Breiman, 1996). A split is based on all p at-

tributes, with a clear improvement in performance when mtry < p. The tree continues to be

built until there are no further information-gaining splits and no pruning. Finally, the model

is applied to the set of out-of-bag instances and performance is recorded as the ‘out-of-bag’

(OOB) error (i.e. the ∼37% not in each bootstrap set).

According to Breiman (2001), a low mtry suggests low correlation between trees (i.e each

tree explores a different region of feature space). At the same time, each tree provides less

information as it covers a narrower range of attributes in each split. Increasingmtry leads to

more similar trees, but each tree provides a more accurate prediction. Consequently, opti-

mum performance results from optimizing the value of T and mtry (1 ≤ mtry ≤ p) (Svetnik

et al., 2003).

It is only in extreme cases that the optimal number of trees in a random forest depends

on the number of predictors. Despite the official description of the algorithm, which states

that the random forest does not overfit and the number of trees is unimportant, at least

one author (Segal, 2004) has demonstrated that it could over-fit noisy datasets. There are

various methods to obtain the optimal number of trees. In this thesis a simple approach of

trying a range of T and mtry was used.

19mtry stands for the number of randomly chosen attributes in every split; T is the number of trees
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Performance

Svetnik et al. (2003) suggest that random forests have several advantages over single deci-

sion trees:

(i) Every tree-split uses a subset of parameters, which significantly reduces the time needed

to build the tree;

(ii) There is no need for time-consuming cross-validation, which is avoided by bootstrap-

ping and evaluating the method on the OOB dataset (usually 1/3 (∼ 37%) of the train-

ing dataset). It performs significantly better (in terms of speed) than bagging and

some decision trees; and

(iii) Tree-building is simplified by omitting pruning.

Not only are random forests resource-efficient when run on large datasets with many at-

tributes, they perform as well as boosting (Meyer et al., 2003) and decision forests (Tong

et al., 2003) and can outperform bagging. Finally, when used as an ‘off-the shelf’ method

with only two parameters, the method is simple to implement. In this case, the number of

attributes tested during tree-building and the number of trees can be set as high as comput-

ing resources permit.

The method also provides a measure of the importance of each training attribute. Once the

tree is created, the misclassification rate for an attribute in the OOB set can be calculated by

randomising the attribute’s values (Breiman, 2001). The difference between the misclassifi-

cation rate and the OOB error gives the raw importance of the attribute.

2.3.5 Data sampling

In data sampling, the overall dataset (known attribute and class values) is divided into

training and test datasets. However, this has to be done with care. If too many data points

are used for training, the model may be excellent, but the test dataset might not be repre-

sentative, giving a misleading impression of poor performance. In the opposite case, while

the model may not be robust owing to the lack of training data, testing will be very thor-

ough. The optimal balance is achieved by iteratively using all instances for both training

and testing in a process called cross-validation. Data are divided into N (usually 3, 5 or 10)

non-overlapping equal subsets. N models are built, each time using a different fold (itera-

tion) for testing, and all other folds are merged for training. Cross-validation is the average

of the scores from all iteration.
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An extreme example of cross-validation is the leave-one-out process (also known as jack-

knifing). In this case, the number of iterations (folds) is equal to the number of data points.

In each step all but one of the instances are used for model building and tested on one data

point. The drawback of this procedure is that it is very resource intensive, and therefore it

only makes sense to use it on a very small sample taken from a small dataset used to build

something like a specific disease predictor (Chapter 7).

Both cross-validation and leave-one-out validation are examples of data sampling without

replacement. This means that once an instance sampled from the pool of instances, it is

removed, and cannot be sampled again. In contrast, data sampling with replacement, also

called bootstrapping, always leaves the instance in the original pool and simply copies it

to the test dataset. In this way, each sampled instance is chosen from the original N in-

stances, which allows repeated sampling of the same instance. Sampling with replacement

is performed M times on the dataset of N instances included in the test set. To use a simple

example, sampling without replacement would be like dividing a group of children into

two football teams, whereas sampling with replacement would be like drawing the names

of children winning a prize from a hat, and then returning the name back into the hat, so

the same child can win more than once.

The other important classification issue is the ratio of data points in each of the classes.

This ratio has to be maintained throughout all partitions of training and testing datasets, in

order to avoid creating unbalanced models. For example, if random data partitioning ends

up with all instances with one class value in the test set, and only the other class value in

the training set, the model will simply predict the latter class value in 100% of cases.

Finally, when the sample is small, the model should perform equally well on the entire pop-

ulation, even if some of the patterns present in the overall population are not present in the

training data. Although performance is measured during training, it is more important that

the model is a good predictor of future data. If the classifier is over-fitted, it will perform

misleadingly well in training, but will perform poorly on slightly different instances.

2.3.6 Missing data

It is often the case that the values for the attributes of some data points are not known. For

example, an error could have occurred in the measuring process (e.g. an instrument mal-

function), or it did not make sense to record the measurement for a certain data point (e.g.

a patient’s condition was too severe to perform an expensive test which would have not
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helped in their treatment). In these cases, it is usually not possible to repeat the measure-

ment, and modelling must be carried out with missing values.

There are three main strategies for handling missing data: (i) removing a data point, (ii) cre-

ating a new category (if the feature is nominal) or, (iii) inputting the value from data points

with known values for that attribute. More details of these three strategies can be found in

Witten and Frank (2005) or Saar-Tsechansky and Provost (2007). Removing the data point

makes sense if the dataset that remains is not so small that it seriously affects the model’s

performance. For example, Chapter 6 shows that the training dataset was big enough to

use this procedure. In the second case in Chapter 7 (when the missing attribute is nominal),

a new attribute category (‘missing value’) was created. This can work in cases where signif-

icant bias is not introduced by equating all instances with the missing value. Finally, there

are several ways to predict the most likely value for the instance. For a review of missing

data imputation, see for example Jerez et al. (2010).

2.3.7 Model evaluation

The aim of classification is to use known data to build a model that is able to sort new in-

stances into the correct class. Here, we use the example of the binary classification of a data

point. By definition, the test instance has a known true class value (positive or negative),

and a predicted class value (again, positive or negative). The four possible combinations of

these values are shown in Table 2.1. An instance with a positive class value can correctly be

classified as positive (a true positive, TP), or wrongly as negative (a false negative, FN). On

the other hand, an instance with a negative class value can correctly be classified as negative

(a true negative, TN), or be wrongly labelled as positive (a false positive, FP).

Predicted class
Positive Negative

Actual class
Positive TP FN

Negative FP TN

Table 2.1: Outcomes of a two-class prediction, also termed a confusion matrix.
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The ‘success’ of the classification, or how ‘correct’ it is, is relative and depends on the pur-

pose of the model. For example, when used as a diagnostic tool, it is very important not to

misclassify a positive as a negative (identifying true positives and avoiding false negatives).

In the case of the prediction of the structural effects of mutations on protein stability (pre-

sented in Chapter 6), it is important that true positives are identified, however, it is accept-

able for a (small) proportion of true positives to be missed. This shows that there are var-

ious ways to measure model performance. The terms accuracy, precision, sensitivity, and

specificity detailed below are all useful factors on which to measure model performance.

Table 2.2 defines a number of measures used to assess binary classification predictions and

lists the range of values each measure can take.

Accuracy is also termed the ‘overall success rate’ and measures the proportion of cor-

rectly predicted cases compared to all cases. This is in contrast to the error rate, defined

as 1−accuracy.

Precision indicates how many instances predicted to be positive really are. In other words,

it reflects how likely it is that the model will record a false positive.

Sensitivity indicates the fraction of actual positives identified. It is crucial to avoid low

sensitivity when using models for medical research as missing an existing disease could

have fatal consequences.

Specificity has the same meaning for true negatives as sensitivity does for true positives.

The F-measure is the harmonic mean between precision and sensitivity: it is usually calcu-

lated from the equally weighted contribution of the two. While it is a more general measure

of accuracy than the first four measures, it does not take account of true negatives. Therefore

a more appropriate general performance indicator is the Matthews correlation coefficient

(MCC). This shows how well the predicted class correlates with the actual class (-1 indicates

an inverse correlation, 0 shows no correlation, 1 indicates a positive correlation). The MCC

is the only metric that combines all four measures from Table 2.1 into a single value.

Model performance is generally improved by higher values of precision and accuracy and

lower error rates. However, when the model is optimised, a performance trade-off usually

has to be made between sensitivity and error rates. This is achieved by experimenting

with various attribute combinations and adjusting the model parameters until the desired

correctness is achieved.
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There is one more performance measure available in the case where a classifier ranks the

outcome, or assigns probabilities or confidence values. This is the receiver operating charac-

teristic (ROC) curve, and the corresponding area under the curve (AUC). If the true positive

rate is plotted against the false positive rate, the learned model can be compared with the

performance of a random model, i.e. a predictor that randomly outputs a class value, re-

gardless of the input value. As shown in Figure 2.8, a random model has AUC = 0.50 (the

area under curve ‘A’). A perfect predictor with a zero error rate would have AUC = 1.00

(curve ‘D’ is closest to this ideal scenario), with a true positive rate of 1 for all false positive

values. However, researchers such as Hand have expressed doubts about comparing classi-

fiers on the basis of the AUC, as each ROC curve is the result of a different misclassification

metric (2009). Therefore a mixture of performance characteristics should be used to eval-

uate a model and particular attention should be paid to any suboptimal model behaviours

that must be tolerated when it is applied in practice.

For models such as neural networks that have numerical outputs (unlike categorical classi-

fiers such as Random Forests), three more performance measures can be applied: root mean

square error (RMSE), and mean absolute error (MAE).

Root mean square error (also called the mean square error) is the square root of the vari-

ance of residuals. The difference between the expected and observed value for each data

point is squared, averaged and a square root is calculated.

Mean absolute error is the averaged sum of absolute errors, which are calculated as the

absolute difference between the predicted and observed class value for a data point.

2.3.8 Benchmarking

The assessment of data sampling and evaluation strategies must focus on the future perfor-

mance of the model based on training and testing on a limited set of instances. Benchmark-

ing assumes that testing is independent and transparent. Usually several similar models

are tested on a new dataset. Although in theory benchmarking is seen as essential (par-

ticularly when the performance of one method is tested against another) it is rare that it

happens in practice. This is because it requires a great deal of effort, computing time, and

most importantly, a dataset that is both appropriate to the task and has not yet been used.
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Figure 2.8: Receiver operating characteristic curve.
A is a random model, B, C and D show increasing improvement over random prediction. Figure
obtained from (Kabari and Nwachukwu, 2012), with minor modifications.

2.4 Statistics and data representation

This section describes the basic statistical concepts and tests used in this thesis. It begins

by outlining log ratios, as a way to compare datasets graphically (rather than statistically).

The χ2 and Fisher’s exact test are used to test categorical data for differences in frequency

distributions (usually two datasets are tested for the presence or absence of a single feature).

A t-test is applied to two populations where features can be measured on a continuous scale;

it tests the significance of the difference in the means of the two samples.

2.4.1 Log ratios

Log ratios compare the observed prevalence of a feature with its expected prevalence, as

shown in Equation 2.2. A value of 0 indicates that the observed and expected values are the

same. For a logn (i.e. log to n), a value of 1 indicates that the observed value is n times n1

what is expected, a value of 2 indicates that the observed value is n2 times what is expected,

etc. Similarly, a value of -1 indicates that the observed value is 1/n what is expected, etc.
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logratio = log2

(
observed

expected

)
(2.2)

Log ratios are not a statistical test (from which a p-value can be derived). Rather they are

a form of descriptive statistics that represent the difference between an observed value and

an expected value.

2.4.2 χ2 test

The Chi-squared test (χ2 test) (Mood et al., 1974) is a goodness of fit test. This nonpara-

metric test is used on nominal, categorical data and compares the frequency distribution

of a sample to a theoretical distribution. It can also be used as a test of independence to

compare two samples. In this case the null hypothesis is that data are drawn from the same

frequency distribution. Data are divided into n datasets, and k outcome categories with

two constraints. First, outcome categories must be mutually exclusive and second, the fre-

quency probabilities for a given dataset, over all categories must sum to 1. On the basis of

this definition, the test has (n− 1) (k − 1) degrees of freedom and is calculated as follows:

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
other end (2.3)

Where Oi is the observed count and Ei is the expected count.

The χ2 test assumes that the sampled data conform to the χ2 distribution, which is a special

case of the gamma distribution. However, this assumption introduces significant errors

when expected counts of five or less appear in a 2× 2 contingency table: it increases the χ2

value and consequently erroneously decreases the p-value. This problem can be partially

overcome by the introduction of the ‘Yates correction’ for continuity (Yates, 1934). This

involves subtracting 0.5 from the difference between the observed and expected value in

order to increase the p-value, but the procedure can result in an over-correction. Fisher’s

exact test (described in Section 2.4.3) is the only way completely to overcome assumptions

about the distribution of the tested data, but cannot be applied to large datasets.

Where data consist of nominal counts, the χ2 test (Mood et al., 1974) can be used to indicate

whether there is a difference between two datasets. It should be noted that where this thesis

reports χ2 results with percentages, raw counts were used in the χ2 test. Equation 2.3 shows
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how χ2 statistic is calculated. Although expected values are not always available, they can

be estimated from observed data. Wherever possible, this thesis uses known, expected

values, rather than estimated values. In other words expected values are calculated from

known data rather than estimated from observed data.

Throughout this thesis, the χ2 test is Yates-corrected in cases where it is carried out on a

2× 2 contingency table.

2.4.3 Fisher’s exact test

The χ2 test becomes unreliable where the contingency table is sparsely populated (i.e.

where any cell has value of ≤ 5) and where counts are unevenly distributed. On the other

hand, the theory behind Fisher’s exact test makes it possible to make a robust comparison

of datasets of different sizes and can be used to analyse contingency tables with empty

cells (Fisher, 1935).

Fisher’s exact test (Fisher, 1935) is used instead of a χ2 test when counts≤ 5 or when empty

fields occur in a 2 × 2 contingency table. This test provides an exact p-value, and removes

the difference between the sampling and theoretical χ2 distribution for small datasets. The

fisher.test provided in R was used with default parameters.

For the example, labelling the counts as shown in Table 2.3 gives the p-value:

p =
(xA + xB)!(yA + yB)!(xA + yA)!(xB + yB)!

N !xA!xB!yA!yB!
(2.4)

Table 2.3: Fisher’s exact test.

A B
Set X xA xB xA + xB
Set Y yA yB yA + yB

xA + yA xB + yB N

A significant limitation of Fisher’s exact test is calculation complexity. Large datasets mean

that it soon becomes unfeasible to calculate the p-value.
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2.4.4 T-test

T-test is a statistical test that measure the significance of the difference in the means of two

normally-distributed populations. Although t-tests are often assumed to be synonymous

with Student’s t-test, in strict terms, Student’s t-test assumes that the variances of the two

populations are equal. However, Markowski and Markowski (1990) have shown that if two

samples are roughly the same size, Student’s t-test will still yield accurate results, regardless

of differences in the variance between samples. Finally, if the two populations differ in

terms of both variance and the size of the dataset, Welch’s t-test can be used (Welch, 1947).

This calculates the t-statistic (based on the null hypothesis that the means of the two samples

are equal) as follows:

t =
X̄1 − X̄2√
s21
N1

+ s22
N2

(2.5)

Where X̄ is the mean of the sample, s2 is the sample variance and N is the number of data

points. In this case, the degrees of freedom cannot be calculated and must be approximated

using the Welch-Satterthwaite equation (Equation 28 in Welch (1947)). This approximation

of the degrees of freedom is based on the linear combination of the degrees of freedom from

each of the sample’s variances, which is not directly linked to sample size. The t.test

implemented in the R language was used, which by default is equivalent to the two-sided

Welch’s t-test.

2.4.5 R

The R20 statistic and data representation system is a powerful programming language and

environment for statistical computing and graphics. It is licensed under the GNU license

and provides a wide variety of statistical (linear and nonlinear modelling, classical statis-

tical tests, time-series analysis, classification, clustering, etc.) and graphical techniques.

Many support packages are also available to end users.

Throughout this thesis, R was used in combination with some additional extra packages,

e.g. gplots (Gregory et al., 2010) and plotrix (Jim et al., 2009) to create statistical plots, and

HeatMaps matrix.

20http://www.r-project.org (R Development Core Team, 2008)
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2.4.6 PyMOL

PyMOL (Schrödinger, LLC, 2010) is a molecular graphics program21. It provides effective

visualisation of protein and ligand interactions and can be used to create figures via pro-

gramming scripts that can be saved in a text file. Throughout this thesis, the PyMOL pro-

gram was used to create protein structure figures.

2.5 WEKA

Waikato Environment for Knowledge Analysis (WEKA)22 is a machine learning / data min-

ing software package developed in Java. The main features of the WEKA software are

numerous data processing tools, learning algorithms and evaluation methods such as clas-

sification and regression, clustering, association rules mining, feature selection algorithms

and data visualization techniques.

The software is associated with an extensive Graphical User Interface (GUI) consisting of

four major WEKA applications: (i) Explorer (provides an environment to explore the data),

(ii) Experimenter (provides a platform to carry out experiments and statistical tests / analy-

sis among various learning algorithms), (iii) KnowledgeFlow (almost has the same function

as the Explorer but with a drag-and-drop interface in addition), and (iv) Simple CLI (a sim-

ple command-line interface that supports direct execution of WEKA commands). The GUI

is the starting point to launch any of the WEKA applications and related tools.

While working with WEKA, the first task is the presentation of data to the software,

which is the primary step for data investigation. This step is known as the pre-processing

of data, and may be carried out under the Explorer option. In addition, the other

tasks are Pre-process (selection of data file), Classify (training/testing of data for

classification/regression algorithms), Cluster (data clustering), Associate (discovery of

association rules), Select attributes (significant features selection in the data), and Visualize

(data visualization in a 1D/2D shape).

WEKA works with flat text files (rectangular table format) that include its own “.arff” (An-

drew’s Ridiculous File Format), CSV format and C4.5 file formats. A URL or SQL database

can also be used as a source for reading data into WEKA.

21http://pymol.org
22http://www.cs.waikato.ac.nz/ml/weka/index.html
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WEKA contains numerous pre-processing tools known as “filters”. These filters are widely

used for discretization, normalization, transforming, attribute selection, and attribute merg-

ing, etc. ‘Classifiers’ are the actual models used for prediction in WEKA. The learning algo-

rithms used for building such models are decision trees, support vector machines, Bayes’

nets etc. Bagging, boosting, stacking, error-correcting output codes and many more are

termed as Meta-classifiers.

In a dataset, some features are more important than others. WEKA can use attribute selec-

tion mechanism searches to identify those attributes/features, which are more significant

and vital for accurate prediction. WEKA has the capability to visualize the data with any

number of attributes. To evaluate the performance of different learning algorithms used for

classification, prediction and regression problems, exhaustive experimentation is often the

best choice. WEKA provides various evaluation options such as cross-validation, learning

curve etc.

2.6 Available computational tools to predict damaging mutations

Single nucleotide polymorphisms (SNPs) account for the majority of genetic variation in

the human population (Wang et al., 1998). Much of this variation is benign, especially when

mutations are synonymous. However, the majority of monogenic (single gene) diseases

are mediated by single, non-synonymous base changes (Human Gene Mutation Database

(HGMD)). The availability of large-scale, high-throughput SNP genotyping is rapidly in-

creasing the amount of available SNP data. Interpretation of these data in terms of relevance

to human disease states requires the modelling of associations between SNP genotypes and

resultant phenotypes. Many research groups have developed different predictors for eval-

uation of the disease-causing potential of DNA sequence alterations.

Many different tools currently exist that predict whether a mutation that changes an

amino acid within a protein is likely to increase disease susceptibility or is considered

benign. Such tools include MutationAssessor, PolyPhen (1 and 2), SIFT, Condel, FATHMM,

V2alignGVGD, Bongo, CanPredict, LS-SNP/PDB, MAPP, nsSNP Analyzer, Panther,

Parepro, PhD-SNP, PMut, SNAP, SNPs3D, topoSNP, and others. Below, some of the most

common tools are described followed by a summary table 2.4 .
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2.6.1 MutationAssessor

MutationAssessor23 is an online tool for the assessment of evolutionary conservation of

amino-acid residues in a protein family. It uses a multiple sequence alignment (MSA) to

calculate a functional impact score using the conservation of the region in relation to pro-

tein homologues (Castellana and Mazza, 2013). This tool classifies its output into two

categories, ‘Neutral’ or ‘Damaging’ (Reva et al., 2011). The inputs to MutationAssessor are

Uniprot and Refseq protein sequences IDs, which allows users to input mutated sequences.

The server then defines the boundaries of the given domain together with the mutated in-

put sequence. It then builds an MSA using Uniprot sequences or those already present in

its database, and attempts to distinguish between functional and non-functional mutations

in the conserved regions.

MutationAssessor uses numerical estimates to assess the functional impact of a mutation.

The estimate is based on a statistical model that displays the similarity of the given se-

quence to a family of related proteins. The model also makes the assumption that impor-

tant residues are conserved in the region, which is generally the case in biologically essential

genes throughout evolutionary history (Reva et al., 2011). All non-viable mutations are dis-

carded from the analysis. The numerical estimate of functional impact is calculated from

the difference in the entropy caused by the occurrence of a particular mutation compared

with the entropy of the native structure. This is described using the equation below that

calculates a specificity score (S) (Reva et al., 2011):

∆Sci (α→ β) = −lnni(β) + 1
ni(α)

(2.6)

Where ni(β) is the number of residues of type β in an alignment column i; ni(α) is the

number of residues of type α in an alignment column i.

A combinatorial score, called the Functional Impact Score (FIS), which assesses the impact

of changing an amino acid of type α to type β at a position i, is given by Equation 2.7, ∆Si

correspond to evolutionarily selected specificity residues, i.e. residue distributions con-

strained at the level of one or more subfamilies.

23http://mutationassessor.org/
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xi (α→ β) = [∆Sci (α, β) + ∆Ssi (α, β)]/2 (2.7)

Where ∆Sci is the family conservation score. ∆Ssi is the specificity score that quantify the

entropy difference resulting from a mutation that affects conserved residue patterns in pro-

tein subfamilies.

The validity of the FIS score was tested using the various ‘disease-associated’ and ‘common

polymorphism’ mutants present in the Uniprot database as a test set (Reva et al., 2011). The

evolutionary conservation score is used to distinguish between 19,179 disease-associated

and 35,608 polymorphic mutants, thus making it possible to study the impact of mutations.

Figure 2.9: The Functional Impact Score and its stability to separate pathogenic and poly-
morphic variants. (A) Normalized smoothed distributions of the values of the functional
impact score as computed for 19179 known ‘disease-associated’ and 35608 ‘common poly-
morphism’ variants and mutations annotated in UniProt. (B) The cumulative distributions
of the score values computed for disease-associated and polymorphic variants using the
same data as in (A) (Reva et al., 2011).

Figure 2.9 B shows that there is a separation (79%) between the two variant classes at a FIS

score of approximately 1.9. Around 79% of disease-associated mutants scored higher than

this level, and around 79% of all polymorphic mutants scored lower. Further testing of the

FIS score was carried out using TP53 mutation information contained in the IARC TP53

database. This resulted in a FIS score that was higher for both mutations that result in ‘loss

of function’ and in cases where there was a ‘gain of function’ (Reva et al., 2011).
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2.6.2 PolyPhen-2 (Polymorphism Phenotyping)

PolyPhen-224 is available as a standalone and web-based tool for the prediction of the phe-

notypic consequences of mutation (Adzhubei et al., 2010). Using naïve Bayesian classifi-

cation, the tool makes use of sequence and structural conservation to model the position

of an amino acid substitution. It then calculates the nature of the substitution and assigns

it as ‘benign’ (0 ≤ p ≤ 0.2), ‘possibly damaging’ (0.2 < p ≤ 0.85) or ‘probably damaging’

(0.85 < p ≤ 1) depending on the probability intervals obtained (Castellana and Mazza,

2013).

PolyPhen-2 utilizes an algorithm that automatically selects the appropriate features from

eight sequence-based and three structure-based options (Adzhubei et al., 2010). The tool

first performs a multiple sequence alignment (MSA) against proteins homologous to the

query sequence. Homologous sequences are selected for multiple sequence alignment us-

ing a clustering algorithm (Camacho et al., 2009), amino acid sequences are aligned us-

ing a multiple alignment program MAFFT (Katoh et al., 2002) and then refined using

Leon (Thompson et al., 2004). The human alleles forming a pattern of amino-acid replace-

ments are compared to see how distant the deviant is from the wild-type.

The tool then builds a profile matrix using the Position-Specific Independent Counts soft-

ware (PSIC) (Sunyaev et al., 1999), which in turn provides profile scores, which are logarith-

mic ratios of the amino acid at that particular position (Sunyaev et al., 1999). The difference

in the profile score between the wild and the deviant-type is then calculated. Positive val-

ues of high magnitude suggest that the particular amino acid substitution at that position

is rarely observed and unlikely to be stable (conserved). PolyPhen-2 then checks for the

structural stability of the mutation by conducting a BLAST search on the query against the

PDB database. This mapping allows the tool to determine if the substitution in question

obliterates a hydrophobic site, alters electrostatic interactions, or influences other structural

and interactive components (Adzhubei et al., 2010).

The HumVar and HumDiv datasets were used to train the naïve Bayesian classification

used by PolyPhen-2. The HumDiv dataset used contained sequence information on 3,155

alleles with damaging effects on molecular functions, along with 6,321 differences between

human-origin proteins and their related non-damaging homologues (Adzhubei et al., 2010).

All mutation data listed in HumDiv were retrieved from UniProtKB. Mutations were con-

sidered damaging if their annotations contained keywords (“lethal”, “complete loss of func-
24http://genetics.bwh.harvard.edu/pph2/
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tion”, “causes”, “abolishes”, “no detectable activity”, “impairs”, etc.) implying a causal

mutation-phenotype relationship. The version of HumVar used contained 13,032 human

disease-causing mutations, along with 8,946 human non-synonymous nsSNPs (nsSNPs).

nsSNPs were treated as non-damaging and were compiled from differences in orthologous

protein sequences belonging to closely related mammalian species.

When applying a 20% false positive rate (FPR), PolyPhen-2 showed a true positive rate of

approximately 92% on HumDiv and 73% on HumVar, respectively (Sunyaev et al., 1999).

It is likely that the predictive power of HumVar was lower because of the assumption that

the nsSNPs were non-damaging and the fact that HumDiv is more selective in its criteria.

PolyPhen-2 uses a 5% / 10% FPR for the HumDiv model and a 10% / 20% FPR for the

HumVar model as the limits for its classification into ‘benign’, ‘possibly damaging’ and

‘probably damaging’ categories (Adzhubei et al., 2010). As such, mutations with FPRs at

(or below) the lowest FPR value are predicted to be ‘probably damaging’; mutations with

posterior probabilities related to FPRs at (or below) the higher FPR value are predicted to

be ‘possibly damaging’; and mutations with estimated FPRs above the second FPR value

are classified as ‘benign’ (Sunyaev et al., 1999).

2.6.3 The SIFT predictor

The Sorting Intolerant From Tolerant (SIFT)25 tool is a sequence-based homology algorithm

that relies on the evolutionary tendency of conserved amino acid positions to be intoler-

ant to substitutions. Thus, this tool does not require structural information (Kumar et

al., 2009; Castellana and Mazza, 2013). Using sequence alignment, the query mutation is

aligned with orthologous sequences. The tool then creates a score matrix for each position

in the alignment and predicts if the variant is damaging or not (Figure 2.10). The score

for each possible amino acid substitution is converted to a normalized probability that the

substitution would be evolutionarily tolerated (the SIFT score) (Ng and Henikoff, 2003). A

score of 0 is considered to be highly damaging, where a score of 1 is neutral. If a score is

greater than 0.05, the substitution at the position will be tolerated (Kumar et al., 2009).

To estimate the effect of the substitution, SIFT takes into account the position of the substi-

tution and the nature of the amino acid substituted. The method assumes that functionally

and chemically important amino acids are conserved and any substitution with an unre-

lated amino acid will result in a ‘loss of function’ (Ng and Henikoff, 2002).

25http://sift.jcvi.org/
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SIFT aligns the input sequence with related protein sequences using Position Specific Iter-

ated (PSI) BLAST and calculates the probability of each amino acid occurring at a given

position, with respect to the most frequent amino acids tolerated (Ng and Henikoff, 2001).

The tool then scans each position of the sequence for the probability of occurrence for each

of the 20 amino acids. SIFT then builds a probability matrix of the probability of each amino

acid at a particular position. Based on the SIFT score, the tool then predicts if the occurrence

of a particular amino acid at the given position affects function. A Shannon’s entropy con-

servation value for each position is obtained, which ranges from 0 (the occurrence of all 20

amino acids) to 4.32 (one amino acid) (Ng and Henikoff, 2001).

The SIFT tool was tested using three human variant datasets: (i) annotated substitutions in-

volved in diseases according to SWISS-PROT/TrEMBL; (ii) nsSNPs detected in individuals

in studies by the Whitehead Institute; and (iii) putative nsSNPs found in dbSNP (Ng and

Henikoff, 2002).

Using the SWISS-PROT/TrEMBL dataset, SIFT predicted that 69% of substitutions would

be damaging and this was found to be the lower bound of prediction accuracy (Kumar et

al., 2009). In the dataset obtained from the Whitehead Institute, only 19% of mutations were

found to be damaging. This demonstrates that the tool can discriminate between neutral

and damaging mutations (Kumar et al., 2009). In the third dataset obtained from dbSNP,

25% of mutations were detected as damaging. However, when false positives were ac-

counted for, this value was reduced to 19% (Kumar et al., 2009). SIFT thus predicted changes

in amino acids at positions within conserved regions that might influence the function of

the protein itself and result in a disease (Ng and Henikoff, 2002). SIFT returned 3,084 (53%)

of the 5,780 nsSNPs present in the dbSNP dataset, and predicted that 757 of these would af-

fect protein function. This demonstrates that the accuracy of the SIFT tool depends entirely

on the availability of homologous sequences for alignment and the alignment accuracy (Ng

and Henikoff, 2001).

2.6.4 Condel

The Condel26 method (González-Pérez and López-Bigas, 2011) combines the output of five

predictive tools for the detection and characterisation of missense SNPs. The tools that

Condel combines into a single classification are Log R Pfam E-value (Clifford et al., 2004),

MAPP (Binkley et al., 2010; Stone and Sidow, 2005), MutationAssessor (Reva et al., 2011),

26http://bg.upf.edu/condel/home/
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Figure 2.10: The SIFT algorithm uses a sequence query to find the probability of a structural
effect owing to a substitution at a particular location using a PSI-BLAST (Kumar et al., 2009).
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Polyphen-2 (PPH2) (Adzhubei et al., 2010), and SIFT (Kumar et al., 2009; Ng and Henikoff,

2003). Using a weighted average of the normalized score (WAS), mutations are classified as

deleterious or neutral. The WAS weights are calculated using a complementary cumulative

distribution of the probabilities of the scores output by each method (González-Pérez and

López-Bigas, 2011). The output produced by Condel is superior to that produced by the

individual tools, since it combines all data and reports the most likely score.

The Condel authors ran each of the five tools on the HumVar and HumDiv datasets. A

complementary cumulative distribution was constructed from the scores for pathogenic

and neutral mutations produced by each tool. An internal score, which indicates the prob-

ability of an amino acid substitution at a given sequence position is also calculated for each

tool. The WAS is calculated as (González-Pérez and López-Bigas, 2011):

WAS =
∑

i Si ∗Wi∑
iWi

Wi = 1− Pni if Ci = 1;

Wi = 1− Ppi if Ci = 0.
(2.8)

Where Ci is a binary term that takes the value 1 if the i-th tool classifies the mutation as

deleterious and 0 otherwise; Si is the normalized score (normalized the internal scores of

MAPP, LogR-Pfam, and MutationAssessor to values between 0 and 1 and took the com-

plement of the SIFT probability as the normalized score of this tool); Pni and Ppi are the

probabilities of finding a neutral or deleterious mutation, respectively with a score greater

than Si in the given dataset, obtained from the complementary cumulative distribution of

the scores produced by the i-th tool.

For a given deleterious mutation, the weight is directly proportional to the score and, for a

predicted neutral mutation, the weight decreases with the score.

The WAS method was used to test the recurrence of cancer mutations using four disjointed

datasets with increasing recurrence. Mutations were obtained from the Catalogue of So-

matic Mutations in Cancer mutation (COSMIC) database (Forbes et al., 2011). The frequency

of recurrence subsets were categorized as: (i) mutations that only appeared in a single sam-

ple, (ii) mutations that recurred in >24 samples, (iii) mutations that recurred in >59 sam-

ples, (iv) and those appearing in>10 samples (González-Pérez and López-Bigas, 2011). Two

WAS values were obtained using a complementary cumulative distribution of deleterious

and neutral mutations in the HumVar dataset. Mutations that recurred in >10 samples had
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an average WAS of 0.706, while neutral variations from HumVar had an average WAS score

of 0.236 (González-Pérez and López-Bigas, 2011). The WAS method was then tested to de-

termine if there was a relationship between the WAS score and the biological activity of the

altered protein owing to the missense mutation.

Figure 2.11 illustrates the receiver operating characteristics (ROC) curves of the five indi-

vidual tools and four integrated scores calculated from the aforementioned dataset. The

weight average score clearly outperforms the five individual methods in the task of classi-

fying mutations as deleterious or neutral.

Figure 2.11: ROC curve of the five individual methods and four integrated scores
(González-Pérez and López-Bigas, 2011).

2.6.5 FATHMM

Functional Analysis Through Hidden Markov Models (FATHMM)27 makes use of position-

specific information obtained from an MSA of homologous sequences, to find the functional

consequences of amino acid substitutions in mutant proteins (Shihab et al., 2013). The MSA

is used to build a Hidden Markov Model (HMM) profile. The tool, which is available as a

27http://fathmm.biocompute.org.uk/
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web-based tool and as a standalone tool uses ‘pathogenicity weights’ to predict potential

deleterious functional effects. These weights are derived from the relative frequencies of

amino acid substitutions associated with disease or neutral outcomes in conserved regions

of protein structures (Shihab et al., 2013).

The FATHMM tool first searches the UniRef90 database (Apweiler et al., 2004) for homol-

ogous protein sequences to construct an initial HMM representing the MSA of the homol-

ogous sequences (Shihab et al., 2013). When the amino acid substitution reaches a ‘match’

state in the HMM, the relevant protein domain information is extracted from the Pfam28

and SUPERFAMILY29.

UNWEIGHTED = ln
Pm/(1.0− Pm)
Pw/(1.0− Pw)

(2.9)

Where Pw and Pm represent the underlying probabilities for the wild-type and mutant

amino acid residues, respectively, and the pathogenicity weights, Wd and Wn, represent

the relative frequencies of disease-associated and functionally neutral amino acid substi-

tutions (AASs) mapping onto the relevant HMM, respectively. The pathogenicity weights

also include a pseudo-count of 1.0 to avoid a zero divisible term.

A reduction in the probability of an amino acid occurring at a particular location indicates

a negative influence on protein function. Conversely, an increase indicates a positive sub-

stitution whereby function is improved. Intuitively, large reductions are assumed to have

greater impact than smaller reductions (Shihab et al., 2013). The impact is calculated using

the formula below, where w is the wild-type and m represents the mutant probability.

WEIGHTED = ln
(1.0− Pw)(Wn + 1.0)
(1.0− Pm)(Wd + 1.0)

(2.10)

FATHMM was tested using five on-line datasets; the Human Gene Mutation Database,

UniProt, VariBench, SwissVar, and a dataset from a review by Hicks et al. (2011). Using

the formulation above, substitutions were predicted to be neutral if a score of zero was ob-

served, detrimental if a negative score was observed, and favourable if a positive score was

observed.

28http://pfam.sanger.ac.uk/
29http://supfam.cs.bris.ac.uk/SUPERFAMILY/
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To distinguish between disease-associated and functionally-neutral amino acid substitu-

tions, the distribution of the SwissVar dataset was plotted (Figure 2.12). This method

showed that the majority of disease-associated substitutions (80%) fell below the thresh-

old, and majority of neutral substitutions (>80%) fell above the threshold. Further testing

with a ‘blind’ dataset is needed to decrease any observation bias in the predictions (Shihab

et al., 2013). One limitation of FATHMM is that it is restricted to predicting the effect of

substitutions made in the conserved regions of protein sequences, which are present in the

Pfam and SUPERFAMILY databases.

Figure 2.12: Disease-associated (shaded region) and functionally neutral (un-shaded re-
gion) amino acid substitutions in the SwissVar dataset using un-weighted and weighted
methods (A and B, respectively). A prediction thresholds were calculated at which both
specificity and sensitivity were maximized (-3.0 and -1.5, respectively) (Shihab et al., 2013).

2.6.6 Other Methods

MutationTester30 integrates information from several diverse biomedical databases and

uses established analysis tools. Analyses comprise evolutionary conservation, splice-site

changes, loss of important protein features and changes that might alter mRNA transcrip-

tion rates or stability. Test results are then evaluated by a naïve Bayes classifier, which

predicts the disease potential. This system is rapid, with a typical query completed in less

than 0.3 seconds. Depending on the nature of the alteration, MutationTester chooses be-

tween three different prediction models. These are aimed at silent-synonymous or intronic

30http://www.mutationtaster.org/
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alterations, at alterations changing a single amino acid, or at alterations causing complex

changes in the amino acid sequence. To train the Bayes classifier, a dataset of common poly-

morphisms and known disease-causing mutations was generated using common databases

and the literature. The classifier was cross-validated five times, using all three prediction

models (Schwarz et al., 2010).

LS-SNP/PDB31 is a newer web-based source for genome-wide annotation of human nsS-

NPs. LS-SNP/PDB builds on the existing LS-SNP annotated database, which compre-

hensively maps nsSNPs onto protein sequences (Karchin et al., 2005). The updated LS-

SNP/PDB features fully updated pipeline software with built-in automated build and up-

date functions, and utilizes protein graphics rendered with UCSF Chimera for molecular vi-

sualization. Like its parent program, LS-SNP/PDB annotates all human SNPs that produce

an amino acid change in a protein structure in the PDB. The local structural environment,

putative binding interactions, and evolutionary conservation are all used in the annotation

function (Ryan et al., 2009). SNPs can be searched for by using IDs for genes or proteins of

interest, or the genomic region (Chen et al., 2009).

Bongo32 (Bonds ON Graph) is a structure-based approach used to predict both local and

global structural effects of nsSNPs. The program uses graph theoretical measures to capture

differences in residue-residue interaction networks and to identify residues that are critical

for maintaining structural stability. Substituted residues are modelled and the differences

in the interaction network are used to define the consequences of single point mutations.

Bongo needs a precise protein structure as a starting point for this analysis. Results indi-

cate that structural changes resulting from nsSNPs of key residues are closely related to

pathological disease states (Cheng et al., 2008).

AlignGVGD33 is a web-based program that combines biophysical characteristics of amino

acids with protein MSAs to predict where substitutions are so-called ‘enriched deleterious’

or ‘enriched neutral’. The method uses a combination of Grantham Variation (GV), which

measures the amount of evolutionary variation at a specific position in an alignment, and

Grantham Deviation (GD) which measures the biochemical difference between the wild-

type amino acid and the variant (Hicks et al., 2011). The algorithm is very reliant on the

quality of the MSAs and list of substitutions that it requires for prediction of mutation ef-

fect (Tavtigian et al., 2006; Mathe et al., 2006). The developers of this program suggest

that alignments should not be restricted to orthologs, but should also include paralogs to
31http://ls-snp.icm.jhu.edu/ls-snp-pdb/
32http://www.bongo.cl.cam.ac.uk/Bongo/
33http://agvgd.iarc.fr/index.php
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account for the phenomenon of functional diversification and increase the accuracy of the

algorithms (Tavtigian et al., 2008).

Parepro34 (Prediction of amino acid replacement probability) is based on a support vector

machine (SVM), which is employed to reduce the noise generated from large datasets. As

an input, Parepro requires the protein sequence and other protein sequences homologous

to it (Tian et al., 2007). Parepro predicts whether genomic nsSNPs have either deleterious

or neutral effects, using evolutionary information and properties from the AAindex to de-

termine the differences between the wild-type and mutated amino acid. The predictive tool

was trained using the two datasets from the PhD-SNP server (see below). The efficacy of

Parepro to predict amino acid variants depends on the number of homologous sequences

available, but lack of structural information can be at least partially compensated for by

inclusion of 50 different amino acid properties in the attribute list.

PhD-SNP35 (Predictor of human Deleterious Single Nucleotide Polymorphisms) is based

on a combination of SVM-based learning models. As an input, it requires either the protein

sequence or the associated Swiss-Prot code, and the position of the mutation. Three slightly

different algorithms are available to use. The ‘sequence-based’ algorithm is the first SVM

that classifies mutations as disease-related or neutral, using information regarding residue

type and sequence environment. The ‘profile-based’ algorithm classifies mutations based

on a vector of two elements derived from a sequence profile. Finally, the ‘hybrid method’

combines aspects of these algorithms (Capriotti et al., 2006).

nsSNPAnalyzer36 is system used to capture the relationship between nsSNPs associated

with disease and disease-causing genes. This system requires the input of protein sequences

in FASTA format and the provision of SNP data. In addition, the user can provide their own

PDB file and chain, allowing the analysis of novel data. The method also uses a Random

Forest (Section 2.3.4) to predict the phenotypic effect of nsSNPs. nsSNPAnalyzer calculates

three types of information for the assessment of mutation effect. One type of information

describes the structural environment of the SNP, and includes solvent accessibility, environ-

mental polarity, and secondary structure. the second is the normalized probability of the

substitution in the MSA. Finally, the similarity and/or dissimilarity between the original

amino acid and mutated amino acid is calculated using a Blosum matrix (Bao et al., 2005).

34http://www.mobioinfor.cn/parepro/
35http://snps.biofold.org/phd-snp/phd-snp.html
36http://snpanalyzer.uthsc.edu/
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MAPP37 (Multivariate Analysis of Protein Polymorphism) like AlignGVGD combines se-

quence alignment with amino acid physicochemical characteristics to estimate substitution

effects. The difference is that MAPP calculates the physicochemical centroid of each po-

sition and the variance between each of the 20 amino acids and that centroid. The input

required for MAPPP is an alignment of the protein sequences and a tree describing the

distances between the sequences in the alignment. As an output, the user receives a multi-

column table describing the physicochemical characteristics of each position, a listing of

neutral and deleterious amino acids, and the MAPP impact score. The score is a continuous

variable, for all 20 amino acids at each position (Stone and Sidow, 2005).

Panther38 (Protein analysis through evolutionary relationships) estimates the likelihood of

a particular nsSNP in an exon causing a functional change on a protein by calculating a sub-

stitution position-specific evolutionary conservation score (subPSEC). The subPSEC score is

a negative logarithm of the probability ratio of wild-type and mutant amino acids at a given

position. Values of zero indicate mutations that are neutral whereas those of -10 are more

likely to be deleterious. The user is required to input a protein sequence and information

about the substitution. subPSEC scores of various values have been shown to correlated

with the degree of functional impairment of the mutant protein (Thomas et al., 2003).

SNAP39 (screening for non-acceptable polymorphisms) is another neural network-based

method, which utilizes protein information derived in silico. As input it needs a protein

sequence only, and returns the output via email. This system benefits from functional

and structural annotations, if available. SNAP uses information about residue conser-

vation within sequence families, predicted aspects of protein structure (secondary struc-

ture, solvent accessibility), and other relevant information such as biochemical proper-

ties (Bromberg and Rost, 2007).

topoSNP40 is an on-line resource that produces a topographic and interactive visualization

of disease and non-disease associated nsSNPs. The method displays geometric location

information using the alpha shape method from computational geometry (Stitziel et al.,

2004). Geometric locations of SNP structural sites are classified into categories of geometric

locations: surface pocket or internal void; a convex region or a shallow depressed region;

or buried completely in the interior. A relative entropy calculation using a HMM is used to

assess the conservation score (Stitziel et al., 2004).

37http://mendel.stanford.edu/SidowLab/downloads/MAPP/index.html
38http://www.pantherdb.org/tools/
39https://rostlab.org/services/snap/
40http://gila.bioengr.uic.edu/snp/toposnp/
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CanPredict41 is a computational tool for predicting cancer-associated mutations. Input data

are either a protein AC or a protein sequence together with the mutation(s) to be tested. The

impact of each change is measured using two methods: SIFT (as previously described) and

the Pfam-based LogR.E-value metric. A third method, the Gene Ontology Similarity Score

(GOSS), provides an indication of whether the gene resembles other known cancer-causing

genes. Scores from these three algorithms are analysed using the Random Forest method

(Section 2.3.4) which predicts whether a change is likely to be cancer-associated (Kaminker

et al., 2007).

PMut42 combines sequence alignment/position-specific scoring matrices (PSSMs)

with structural factors to characterize missense substitutions. To accomplish this, the

classifier uses a feed-forward neural network using alignment alone or with structural

information. The neural network used in the analysis was trained with a large database of

disease-associated mutations (obtained from Swiss-Prot) and neutral mutations (observed

to be tolerated in human proteins with >95% sequence identity). As input, PMut needs the

protein sequence or its Swiss-Prot/trEMBL code. As output, the user receives a confidence

index and a binary prediction of ‘neutral’ vs. ‘pathological’, represented by pathogenicity

index. It is also possible for the user to obtain intermediate information (alignments and

Blast (Altschul et al., 1997) and PHD outputs (Rost and Sander, 1993)) used by PMut while

generating a prediction. In addition, if the protein structure is available the PMut server

can visually display the mutation site within the protein structure using colour-coding to

trace the pathogenicity associated with the mutation. This 3D visualisation is obtained as a

Rasmol script, for use with Rasmol or the Chime web-browser plug-in (Ferrer-Costa et al.,

2005).

SNPs3D43 is an on-line tool that assigns molecular functional effects of nsSNPs based on

structure and sequence analysis using an SVM based algorithm. The tool was trained using

a set of disease-causing mutations and a control set of non-disease causing mutations. In

jack-knifed testing to asses multivariate data for outliers, the tool identified 74% of disease

mutations, with a false positive rate of 15%. This tool relies on the hypothesis that loss of

protein structure is a major causative factor in monogenic disease. The SNPs3D website

makes the results of the analysis available via the website or gives the option of download.

The system can be queried using SNP IDs, protein sequence, or genomic sequence ID (Yue

et al., 2006).

41http://www.rbvi.ucsf.edu/Outreach/genentech.html
42http://mmb2.pcb.ub.es:8080/PMut/
43http://www.snps3d.org/
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2.7 Summary

In summary, this chapter has provided detail on the structure and information contained

within the primary information sources used to build SAAPdp, and how they have changed

since the time of the database-build. Examples of how to store, manage, and interpret these

data have also been given, with an emphasis on maintaining data integrity and consis-

tency. Different approaches to machine learning were discussed, all with the common aim

of knowledge attainment from large datasets that are yet to be fully characterized. A va-

riety of tools for the assessment of mutation-effect were also presented, each using differ-

ent methodology to predict the outcome of missense mutations. These were presented to

demonstrate the vast array of techniques that can be employed to analyse SNP data and to

set the scene for the development of SAAPpred.



Chapter 3

Single Amino Acid Polymorphism

Database (SAAPdb)

In this thesis the database of single amino acid polymorphisms (SAAPs) that

have been mapped to structure and subsequently analysed to provide hypothe-

ses as to their effect(s), on protein structure was rebuilt and exploited. The re-

source, named SAAPdb, is a database of disease-causing and neutral mutations,

which have been analysed to assess what effect, if any, they may have on pro-

tein structure and therefore function. The hypothesis is that disease mutations

will more often affect protein structure, thus introducing a deleterious pheno-

type. SAAPdb attempts to identify the structural effect and therefore ‘explain’

the mutation. The development of a conservative, comprehensive structural

analysis pipeline employing several well established data resources, data han-

dling methods and data analysis methods with which to analyse SAAPs has

been one of the main aims of the SAAPdb project. In this chapter, the suite of

analyses with which SAAPdb assesses each mutation is described to provide the

context for later chapters.

Much of the work described in this chapter was developed by previous

members of the group who are identified in each section. My involvement

is also indicated. My major contributions have been: (i) to fix a number of

bugs in code to populate the database, (ii) to improve portability of the code

by removing hard-coded paths and moving them to configuration file; (iii) to

update the resource by adding a new database; (iv) to perform some analysis of

the data in SAAPdb.

111



CHAPTER 3. SAAPDB 112

3.1 Introduction

SAAPdb began as a restricted study of mutations in P53 (Martin et al., 2002) and

G6PD (Kwok et al., 2002) in which seven structural effects were considered. As the project

progressed, other databases of SAAPs were combined and several additional structural

analyses were included in the analysis pipeline.

To analyse and visualise mutations and their local structural effects, a new system was in-

troduced by Hurst et al., (2009): the Single Amino Acid Polymorphism Database (SAAPdb).

This is a PostgreSQL relational database of SAAPs (an alteration of a single amino acid in a

protein sequence, as a result of a missense mutation) providing a range of likely structural

effects of SAAPs on structures of human proteins, based on mappings of the mutations to

structural data. Andrew Martin’s group have developed SAAPdb and its web-server with

two main functions: (i) to provide a website that can clearly and effectively display the

location of mutated residues within solved protein structures and (ii) to keep a fully auto-

mated and up-to-date structural analysis of the mutations that can be accessed through the

website1 (Hurst et al., 2009).

The system begins by gathering data on single nucleotide polymorphisms (SNPs) from db-

SNP and maps the data onto the genes to determine whether each mutation is in an exon

and, if so, whether it causes a missense mutation in the protein (Cavallo and Martin, 2005).

Once this has been determined, the location of the mutation within the protein sequence

can be established. Disease-related mutation data, or ‘pathogenic deviations’ (PDs), from

OMIM as well as several locus-specific mutation databases (LSMDBs) are provided at the

protein mutation level. Once the mapping of a mutation to a protein sequence has been

achieved, if a structure exists in the Protein Databank (PDB) for the protein, the mutant is

mapped onto the protein structure and then followed by an automated structural analysis

(the SAAPdb analysis pipeline is discussed in Section 3.7). This tests whether the mutant

residues will have any local structural effects that may disrupt protein folding, binding,

function or stability and therefore may be related to a harmful phenotype.

3.2 Mutation Data in SAAPdb

The raw data on which SAAPdb is based describes two kinds of genomic variation and

mutation, classified according to their reported pathogenicity. One type of genomic varia-

1http://www.bioinf.org.uk/saap/db/
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tion is caused by SNPs, which are assumed to have a negligible effect on protein function,

and considered to be neutral. Some SNPs may have a small negative (or positive) effect on

human phenotype, but until this is identified, we consider them to be neutral mutations.

The second kind of genomic variation are the PDs. These are associated with disease and

are therefore thought to have a deleterious effect on protein structure and function. In cases

where the same mutation can be found in both datasets (PDs and SNPs) the mutation is

removed from the SNP dataset. Section 3.3 discusses the occurrence of PD/SNP overlap in

more detail.

Databases used in this thesis to populate the latest version of SAAPdb (released on March,

2011) are shown in Table 3.1. SNPs extracted from dbSNP are all non-synonymous (mis-

sense) mutations arising in the coding regions (exons) of the human genome. Mutation

data are stored with mappings to sequence data using dbSNP, and to structural data where

structures are available. Mappings of PDs are retrieved where available, and then added,

verified and/or corrected by an algorithm developed by Martin (2005).

3.2.0.1 SNPs

The term ‘Single Nucleotide Polymorphism’ (SNP) (Consortium, 2005), is frequently used

to pertain to a mutation of any frequency. However, if strictly defined, SNPs are allelic vari-

ants where the least common allele occurs in at least 1% of a normal population. According

to Wang (2006), a SNP occurs approximately once every 100-300 bases in the genome, in-

troducing a subtle phenotypic variation without causing serious and damaging phenotypic

change. However, the reported frequency of SNPs varies as a result of sequencing different

fragments of the human genome (Collins et al., 1998; Taillon-Miller et al., 1998; Sherry et al.,

2001). Based on the latest dbSNP data, a conservative estimate of SNP frequency is that one

occurs every 300-500 base pairs (David, 2005). These mutations are unequally distributed

over different regions of the human genome and between exons and introns (Nickerson et

al., 1998). Fluctuations in the frequency or locations of SNPs are not relevant for this project

and have not been considered further.

The largest publicly available SNP database is dbSNP (Wheeler et al., 2007)2. Where rele-

vant, this database provides mapping to the specific residue in a human protein, as well as

native and mutated nucleotide and amino acid type. The latest available release of dbSNP

at the time of writing (Build 139, Oct 25 2013) includes over 505 million SNP submissions,

over 28 million reference SNPs and over 3 million validated SNPs.

2Data available at http://www.ncbi.nlm.nih.gov/projects/SNP/
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3.2.0.2 Pathogenic Deviations (PDs)

Pathogenic Deviations (PDs) occur with much lower frequency than SNPs and generally

create a loss-of-function mutation with a serious adverse effect on phenotype. The term

‘pathogenic deviation’ is used for any single base change noted to cause a disease.

The PD dataset currently available in SAAPdb is derived mostly from the Online Mendelian

Inheritance in Man (OMIM) database3 (McKusick, 2000). OMIM contains data on a broad

spectrum of pathological conditions and protein families. However, it is only a sample

of known mutations and is probably biased owing to the specific interests of the scien-

tific community in certain diseases/proteins. Smaller Locus-Specific Mutation DataBases

(LSMDBs), are the second group of PD databases. They generally contain data on a sin-

gle protein or disease, and are maintained by different research groups. The PD dataset is

currently augmented by a selection of LSMDBs as described in Section 2.1.6.

Table 3.1 shows the updated OMIM and LSMDBs incorporated into SAAPdb. The PAHdb

and STAT3 mutation data are new data sources integrated into SAAPdb for the first time in

this thesis.

There are two main problems with publicly available PD data. The first is the diversity

of formats of these data; the second is the absence of pathogenicity levels. The latter re-

sults in difficulty in comparing the effects on protein structure with the phenotype of the

individual. Hurst et al. (2009) have discussed the reliability of these sources stating that

over 500 LSMDBs are recorded on the Human Genome Variation Society’s website, while

SAAPdb only includes around 2% of these data. The SAAPdb system has been designed

and implemented to facilitate the integration of additional locus-specific data in a simple

and straightforward manner; by parsing source data into an XML format that is then loaded

into the database.

3.3 SNP/PD overlap

The size of the datasets currently used in SAAPdb and the overlap between them is dis-

played in Table 3.3. As the central and largest PD resource, as would be expected, OMIM

has at least some overlap with all of the other PD datasets. OMIM is at least fourteen times

larger than the next largest, the somatic P53 dataset. Within the LSMDBs, the only overlap

that exists is between the germline and somatic P53 datasets.

3http://www.ncbi.nlm.nih.gov/omim/
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Table 3.2: Breakdown of the number of mutations in SAAPdb and their mapping to struc-
ture. In some cases, several hundred structures are available (e.g. haemoglobin, carbonic
anhydrase, porthrombin, transthyretin, insulin, CDK2, lysozyme) and, on average there are
approximately two copies of each chain in each PDB file.

Number of Mutations PDs SNPs
Mapped to UniProtKB/Swiss-Prot 13,059 48,452
Mapped to PDB 6,527 17,915
Total mapped (to multiple PDBs) 202,566 33,369
Total mapped (to multiple Chains) 405,497 45,699

Encouragingly, very few mutations are simultaneously described as disease-associated and

neutral. So far, only six mutations have been identified in PD data and also present in db-

SNP. Half of these are common to the dbSNP and OMIM datasets and the other half are

common to the dbSNP and P53 somatic datasets. When updating SAAPdb, these muta-

tions are removed from the SNP dataset, but retained in the disease dataset, based on the

assumption that the large-scale genomic scanning technology by which the SNPs are iden-

tified happens to have sequenced the genome of an individual with a pathological disease.

One important caveat is that the unique complexity of cancer (where multiple mutations

are acquired over a short period of time) introduces uncertainty regarding the potential

pathogenicity of those mutations found in both the somatic P53 dataset and the dbSNP

dataset. Some mutations may simply be ‘passenger’ mutations that have little or no

pathogenic effect, having ‘hitchhiked’ into the cancer cell by virtue of being coincident

with a deleterious mutation (Greenman et al., 2006). However, none of the three SNPs

also described in the P53 somatic dataset are mapped to protein structure and they are

therefore not analysed in this research.

3.4 Additional resources

Since collection of SNP and PD data is only one function of SAAPdb, several additional re-

sources are required to process these data to determine their likely effects on protein struc-

ture and function. UniProtKB (Section 2.1.2) is required to map gene names to proteins

and identify annotated functional residues; ENA and Genbank (Section 2.1.1) are required

to map genomic data to protein sequences where mappings are unreliable or absent; and

PDBSWS (Section 2.1.4) is used to map protein sequences to protein structures. The func-

tions of each of these resources are discussed more fully in their respective sections.



CHAPTER 3. SAAPDB 117

Table 3.3: Data overlap in SAAPdb.
Numbers describe how many mutations are common to the two corresponding datasets; the emboldened iden-
tity numbers (i.e. where a dataset is compared with itself) show how many mutations are described by that
dataset in total; the SNP dataset (dbSNP) is separated from the other PD datasets using a double ruled line;
dataset names are self-explanatory (apart from ‘P53-G’ which represents the Germline IARC P53 Database and
‘P53-S’ which represents the ‘Somatic IARC P53 Database’), and are further described in Section 3.2.0.2.

ADABase 38

G6PD 0 103

HAMSTeRS 0 0 526

P53-G 0 0 0 94

P53-S 0 0 0 89 1396

OMIM 19 44 135 23 27 7119

OTC 0 0 0 0 0 12 148

SOD1db 0 0 0 0 0 27 0 96

ZAP70 0 0 0 0 0 1 0 0 5

dbSNP 0 0 0 0 3 3 0 0 0 34081
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• IARC P53 Database - Somatic/dbSNP : 3 mutations are common
1. LSDB row ID = 16263 / SNP id = rs11540654
2. LSDB row ID = 3610 / SNP id = rs35163653
3. LSDB row ID = 12753 / SNP id = rs1800371

• OMIM/dbSNP : 3 mutations are common
1. LSDB row ID = 19737 / SNP id = rs154001
2. LSDB row ID = 25610 / SNP id = rs13312740
3. LSDB row ID = 22441 / SNP id = rs12530380
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3.5 Materials and Methods

Two main stages of data processing are employed: (1) importing the SAAP data (PDs or

SNPs) and (2) analysing the imported data using the SAAPdb structural analysis pipeline.

This processing structure naturally leads to a three-part data division, which applies to data

storage and data processing: (1) SNP data; (2) PD data and (3) pipeline data. These three

are described in the following sections.

As described above, several other people have contributed to the design, development and

maintenance of SAAPdb, including Jacob Hurst, Lisa McMillan, James Allen, Craig Porter

and Antonio Cavallo. Where appropriate, the contribution of each individual has been

indicated in italics and marked with a ‘.’ symbol under the section heading.

3.6 The database

3.6.1 Populating reference tables

Three tables in SAAPdb are populated from UniProtKB: Swiss-Prot TrEMBL, gene name

map and accession map databases. These tables contain sequence data, mappings between

gene names and protein identities and a mapping between secondary and primary acces-

sion numbers respectively. UniProtKB is mirrored locally. Before data processing begins,

another copy of the UniProtKB mirror is cached locally to ensure that the same version of

UniProtKB is used in all relevant SAAPdb analyses (i.e. mirroring does not update the data

during processing).

SAAPdb uses PDBSWS (Martin, 2005) to map those mutations identified in UniProtKB

sequences to structures described by the PDB. The mappings are obtained from http:

//www.bioinf.org.uk/pdbsws/pdbsws_res.txt This file is parsed to populate the

sprot2pdb table.

3.6.2 Importing the dbSNP data

. This method was developed by Lisa McMillan.

The Entrez Programming Utilities (or eUtils)4 a set of seven server-side programs, are used

to provide a stable interface into the Entrez query and database system at the National Cen-
4http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
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tre for Biotechnology Information (NCBI) and to obtain the most recent dbSNP data. XML

records of ‘valid’, non-synonymous, human SNPs are retrieved. ‘Valid’ SNPs are defined as

those annotated with validation strings “by frequency”, “by 2hit 2allele” or “by hapmap”.

All records retrieved are then combined into one XML file and parsed to populate the snp

and snp2annotated tables with dbSNP data.

3.6.3 Mapping the SNPs to protein structure

. This method was developed by Jacob Hurst.

The sprot2pdb table is used to map all UniProtKB records in the snp2annotated table

to protein structures. The resulting mappings are described in the saap table.

3.6.4 Importing the PDs

The task of mapping and processing the PD data is in some ways more straightforward than

that of SNP data. There are less PD data, allowing processing to be sequential. Furthermore,

protein sequence mappings are usually provided, avoiding computationally demanding

mapping procedures. Instead, the challenges arise when accommodating the different file

formats of the source databases. In the following sections, the methods by which the PD

data are imported are described.

3.6.4.1 The data-specific wrapper

. These methods were developed by James Allen and Nouf Alnumair.

As mentioned above, PD data are amalgamated from different sources using a variety of file

formats. Thus, to permit easy integration of all the data into SAAPdb, it is necessary to rep-

resent all the data in the same format. To do this, an XML format has been developed within

the Martin group to represent mutation data and therefore process each dataset identically.

An extract from an example record is shown in Figure 3.1. This approach requires that each

dataset be accommodated by a dataset-specific ‘wrapper’ which converts the original data

into the XML format. This process and the retrieval of the raw data files themselves, are the

only manual steps required to import the PD data.
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3.6.4.2 Verifying protein sequence numbering

. This method was developed by Andrew Martin.

The numbering of amino acids provided by the primary datasets must first be verified

for correctness. Though OMIM and LSMDBs are curated resources for disease mutation

data, the described mutations maybe derived from multiple sources and from the litera-

ture. Thus, it is not surprising that there are sometimes inconsistencies in the numbering of

amino acids that must be corrected.

A version of OMIM with corrected amino acid numbering is currently automatically main-

tained by the Martin group. Figure 3.2 shows how the verified OMIM map is derived for

each disease dataset. First, a partial sequence is constructed from the native residues de-

scribed in OMIM (Figure 3.2a). This partial sequence is then compared with the protein

sequence named by OMIM, by sliding it along in increments of one residue and storing

the number of residue matches for each comparison (Figure 3.2b). The alignment that best

matches the named protein sequence is used to calculate an offset value describing how the

OMIM numbering should be corrected. In the example given, the offset value is -3 (Fig-

ure 3.2c). The offset-rule is then applied to these ‘matching’ residues to correct their num-

bering. If any mutations remain unmatched that would match the sequence with an offset

of 0 (e.g., the A20L mutation in the example, highlighted in blue in Figure 3.2c), these data

are assigned an offset of 0, and flagged as ‘probably correct’. In these cases, it is assumed

that sequences were submitted to OMIM in a separate batch where correct UniProtKB num-

bering was used. Some mutations may remain unmapped after these stages. A completed

corrected dataset is shown in Figure 3.2d.

Of 2438 OMIM mutations from 221 OMIM entries available in March 2012 (11.3% of all

cross-linked-to UniProtKB/Swiss-Prot OMIM entries), 24.1% required an offset to be ap-

plied to correct the sequence numbering. These corrected OMIM data are publicly available

at: http://www.bioinf.org.uk/omim/.

Corrections to amino acid sequence numbering are also applied to LSMDB datasets in an

attempt to maximise the amount of correct data extracted.
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<lsdb name=’DatabaseABC’ url=’http://DatabaseABC.com’>

<mutation id=’001’ supplementary_id=’456’ arbitrary_id=’1’ number_of_records=’6’>

<dna_data>
<gene>ABC</gene>
<dna_base wildtype=’T’ mutant=’G’>1</dna_base>
<codon wildtype=’ATT’ mutant=’AGT’>1</codon>
</dna_data>

<protein_data ac=’P00123’>
<amino_acid aa_label=’1’ wildtype=’I’ mutant=’S’ valid=’t’>1</amino_acid>
</protein_data>

<occurrence>
<prevalence_text>High</prevalence_text>
<prevalence_count>1000</prevalence_count>
<prevalence_percentage>10</prevalence_percentage>
</occurrence>

<patient_data>
<age>12</age>
<sex>M</sex>
<race>UK</race>
<phenotype mendelian=’dominant’>
<disease_name>ABC Deficiency</disease_name>
<disease_class>4</disease_class>
<disease_severity numeric=’2’>Moderate</disease_severity>
<disease_onset numeric=’2’ age=’10’>Childhood</disease_onset>
<enzyme_activity numeric=’3’ percentage=’6’>Severely-decreased
</enzyme_activity>
<delta_delta_gee>-0.95</delta_delta_gee>
<melting_point>40</melting_point>
<prognosis>10 years</prognosis>
</phenotype>
<external_factors details=’1’>Radiation exposure</external_factors>
</patient_data>

<references>
<citation year=’2006’>Author, A. N. (2006)</citation>
</references>

</mutation>

...

</lsdb>

Figure 3.1: A sample of the XML format
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 −−−−− −−−−− −−− −−−−−−− S     A         P       K            A            

(c)     5   10   15   20   25   30
    |    |    |    |    |    |
ADNASHPNTAASASVNYMYAPIRIEFLHKMAP

matches = 4/5

offset = −3

 −−−−− −−−−− −−− −−−−−−− S     A     A   P       K
 −−−−− −−−−− −−− −−−−−−− S     A         P       K            A            

S     A     A   P       K −−−−− −−−−− −−− −−−−−−− 

S     A         P       K −−−−− −−−−− −−− −−−−−−−             A            
      A                   S           A   P       K −−−−− −−−−− −−− −−−−−−− 

(b) ADNASHPNTAASASVNYMYAPIRIEFLHKMAP

matches = 1/5

matches = 0/5

matches = 0/5

matches = 1/5

matches = 1/5

(a)

    S−−−−−A−−−−−A−−−P−−−−−−−K

S 8 −> T
A14 −> R
P24 −> L
K32 −> S
A20 −> L

S 5 −> T
A11 −> R
P21 −> L
K29 −> S
A20 −> L

(d)

Figure 3.2: (a): a partial sequence is reconstructed from the native residues described in the OMIM
record; (b): this partial sequence is slid along the sequence to which it is mapped in OMIM and
the number of matches for each position is recorded (matches are shown in green, mismatches are
shown in red); (c): the best matching position is used to calculate the offset (note that the A20 record
(shown in blue) could be correct with an offset of 0 (i.e. the OMIM annotation is correct) as an
alanine does exist at position 20); (d): the offset is applied to the ‘matched’ original mutations (i.e.
the residues found to match in (c)) to generate a corrected numbering and all ‘probably correct’
mutations (those matched using an offset of 0) are also included in the dataset (again, the ‘probably
correct’ A20 example is highlighted in blue). (Adapted from Lisa McMillan’s PhD thesis) (McMillan,
2009).
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3.6.4.3 Pushing the data into the database

. These methods were developed by James Allen, Lisa McMillan and Nouf Alnumair.

The complete work-flow by which PD data are entered into the SAAPdb is illustrated in

Figure 3.3. This includes the data-specific ‘wrapper’ function highlighted in red. Whilst

the wrapper code to convert the raw data into XML format is only written once for each

dataset, it is not uncommon for updates to require a wrapper re-write. The pseudocode for

the wrapper scripts is shown in Figure 3.4.

The system will attempt to identify the correct AC in cases where the mutation is not already

mapped to a UniProtKB/Swiss-Prot sequence. SAAPdb does this by constructing a partial

native sequence by combining the wild-type residues from the data and representing all

other residues with an ‘X’. This partial sequence is then used to search the most recent

version of UniProtKB/Swiss-Prot using ssearch34 (Pearson and Lipman, 1988). The

raw data are updated accordingly so that the time consuming sequence search need not be

repeated. This step is highlighted in green in Figure 3.3.

Each XML file generated for each dataset is then converted to SQL statements via an XSLT

specification (see Section 2.2.2) and all SQL is executed in the database. This populates the

database tables: lsdb, lsdb_references, lsdb_info and lsdb_info_ref_link (see

Figure 3.5) with the appropriate data.

Finally, the imported and verified PDs are mapped to protein structures and the

lsdb_saap table populated with the mappings (this step requires that the data described

in Section 3.6.1 be present in the database). To do this, the UniProtKB/Swiss-Prot accession

numbers to which the disease mutations are mapped are updated to their corresponding

primary accession number. Primary accession numbers are obtained from PDBSWS. Then,

the lsdb_saap table is populated with the appropriate sequence and structural data.

Figure 3.3 describes the complete data flow for a single dataset. In reality, processing pro-

gresses through the data representations, rather than through each dataset, however, this

has been presented for simplicity. Usually, all XML processing is executed, all SQL is gener-

ated by applying the XSLT schema to each XML file in turn, and finally all SQL is executed.

SQL statements updating the AC numbers and the structural mappings are executed only

once all sequence data are in the database.
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Pre−processing
required?

Pre−processing,
e.g., tweaking data format

elsewhere?
provided

AC number

Does a wrapper
script exist?

Create XML

Create SQL

Valid
numbering?

Execute SQL

Write wrapper function Library functions

Error
in data?

Determine cause
of duplicates

protein structures
Map LSDBs to

Record duplicate

with
Determine AC number

ssearch

AC number
in data?

Yes

No

START

No

Yes Yes

No

Yes

Duplicates?
Yes

No

Yes

No

Correct residue numbers
No

Yes

No

FINISH

Fasta library

SQL processing

XML processing

Figure 3.3: Importing an LSMDB dataset.
In general terms, the work flow is as follows: a wrapper script converts the raw data into valid XML, this
XML is translated to appropriate SQL using XSLT; the single manual intervention step, where the data wrapper
is written, is highlighted in red; should no AC be provided for the dataset, the AC number is determined
using ssearch (highlighted in green, for details, see text). This diagram describes the PD data flow for a single
LSMDB dataset, from original data format to XML (via wrapper), to SQL (via XSLT); in reality, all datasets are
processed simultaneously, that is, all raw data-XML processing is done, then all XML-SQL processing. XML
and SQL processing are separated by a dotted blue line.
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(a) wrapper inputs
• data_folder : the folder containing the raw data

• xml_folder : the folder containing the xml
If these are not provided, the default values if ‘../data’ and ‘../xml’ respectively are used.

(b) wrapper process

1. parse the lsdb_info.txt file to find the dbname, dburl, sprotac, rawdatafile

2. open rawdatafile using cvs.reader() and the appropriate delimiter

3. check whether a corresponding XML file already exists (if so, exit cleanly without doing
anything)

4. identify the sprotac using lsdb_utils.get_ac_number() unless sprotac has
been extracted from lsdb_info.txt

5. for each entry in rawdatafile:
(a) if no mutation_id exists:

i. increment an arbitrary mutation ID counter
(b) define an appropriate UI
(c) extract all the relevant information
(d) increment the count for this particular mutation using the UI
(e) record the basic mutation data using the UI
(f) record the numbering (res_num, aa_wildtype) using the UI

6. verify the numbering using lsdb_utils.validate_numbering():
(a) retrieve the sequence of sprotac from the UniProtKB website
(b) identify all possible offsets for each unverified res_num/aa_wildtype pair
(c) identify the most commonly found offset (most_common_offset)
(d) if all res_num/aa_wildtype pairs are offset by most_common_offset:

i. correct all values of res_num by most_common_offset
ii. mark all res_num/aa_wildtype pairs as fully validated (‘t’)

(e) else:
i. if ≥ 50% of the res_num/aa_wildtype pairs have an offset of 0:

A. Mark these res_num/aa_wildtype pairs as fully validated (‘t’)
ii. else if ≥ 2 of the res_num/aa_wildtype pairs have an offset of 0:

A. Mark these res_num/aa_wildtype pairs as probable (‘?’)
(f) if there are more res_num/aa_wildtype pairs to validate:

i. repeatedly calculate offsets as described above until everything is proba-
ble or fully validated, or there are only a small number left

7. write the XML file using the validated data

Figure 3.4: The PD data wrapper: pseudocode
UI = unique identifier; the thresholds that define what is fully, probably or not validated (in processes #(6(e)i)-
#(6(f)i)) can be set in lsdb_utils.correct_residue_number(); process at line #6a retrieves the sequence
from http://us.expasy.org/uniprot/.
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3.7 The analysis pipeline

. These methods were originally developed by Jacob Hurst and have been extended by Lisa McMillan

and Nouf Alnumair.

The purpose of the pipeline is to assess the likely structural effects of the mutation, utilis-

ing known structural constraints, interactions and bonding rules. Once the SNP and PD

data are mapped to protein structures (i.e. once the saap and lsdb saap tables have been

populated), pipeline processing can begin. Eight of the analyses require additional data

to be present in the database: hydrogen bonding (Section 3.7.2.1), clash (Section 3.7.2.4),

void (Section 3.7.2.5), mutations to binding residues, UniProtKB/Swiss-Prot features (Sec-

tion 3.7.2.12), sequence conservation (ImPACT) (Section 3.7.2.13), interface (Section 3.7.2.14)

and disulphide geometry (Section 3.7.2.7) analyses. Detailed information regarding these

analyses, what data are required and how they are derived is available in the respective

sections below.

Figure 3.6 illustrates how the pipeline is run and how the data are coordinated. In this

figure, the four phases of processing are delineated using dashed lines. Each of the phases

are further broken down into a number of sequential processing steps. In step 1 of phase

(A), the data from the saap and lsdb_saap tables are imported into the mutanalysis

table. In step 2, the structural analysis table is populated with data extracted and calculated

from the relevant PDB files (including torsion angle data; accessibility statistics; secondary

structure, and interface and functional flags). In step 3, the link between the mutanalysis

and structural_analysis tables is created.

In phase (B), all the necessary pre-processing is carried out for the eight analyses requiring

additional data described above. These form step 4, hydrogen bonding; step 5, clash; step

6, void; step 7, interface; step 8, sequence conservation/ImPACT; step 9, MMDB; step 10,

UniProtKB features; and step 11, disulphide geometry analyses. Of these, clash, void, inter-

face and ImPACT (steps 5-8) require considerable preprocessing and as such are distributed

across the local 20-core grid. Results of all eight analyses are written to the specialist, cor-

respondingly named tables (see Figure 3.5). The mutanalysis table is also updated with

the results of the clash pre-processing step and therefore carries out the clash analysis. In

Figure 3.6, all processing that is distributed is highlighted in grey.
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[3] Check linking

[12] Glycine analysis

[13] Proline analysis

[14] Interface analysis

[15] Functional analysis

[16] Hbond analysis

[17] Void analysis

[18] Surface/phobic analysis

[19] Core/philic analysis

[20] Cisproline analysis

[21] Buried charge analysis

[22] Uniprot/FT analysis

[23] MMDBBIND analysis

[24] PQS analysis

[25] SSGEOM analysis

[26] ImPACT analysis

Table containing the
results of the structural
analysis of the SAAPs

[1] Import SAAPs

Update each SAAP:
is it explained?

Create summaries
for each SAAP

Fill summary tables
with 0 values for
unexplained SAAPs

[27]

[28]

[29]

PDB files

MMDBBIND

PDB

PQS

UniprotKB

FOSTA

[4] Hbond preprocessing

[11] SSGEOM preprocessing

[10] Uniprot/FT preprocessing

[9] MMDBBIND preprocessing

[2]

[5] Clash preprocessing

(includes clash analysis)

[7] PQS preprocessing

[8] ImPACT preprocessing

[6] Void preprocessing **

Table containing
structural data about
the residues in the
PDB structures

Table summarising the results
for the SNP SAAPs

Table summarising the results
for the disease−causing SAAPs

Specialised tables:

(ii) MMDBBIND
(iii) PQS
(iv) Uniprot/FT
(v) ImPACT scores
(vi) SSGEOM

(i) voids

Table linking the
SAAPs to the results
of their structural
analysis

Extract structural
information **

Figure 3.6: Pushing the SAAPs through the structural analysis pipeline.
Square boxes indicate data processing, boxes with rounded corners represent database tables and arrows in-
dicate information flow. In processing stage (A), steps [1-3] populate the database with all disease-associated
SAAPs and structural information about all PDB structures. In processing stage (B), steps [4-11] generate mu-
tant structures and carry out essential pre-processing for the hydrogen bonding, clash, void, MMDBBIND,
Swiss-Prot/FT, Interface, ImPACT and SSGEOM analyses. In processing stage (C), steps [12-26] carry out the
structural analyses. In the final processing stage (D), steps [27-29] generate summary information for each
SAAP. Cached data are highlighted with ∗∗ and all distributed grid processing is highlighted with a grey back-
ground. (Adapted from Lisa McMillan’s PhD thesis (McMillan, 2009)).
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The two most time consuming processing steps in the whole process are step [2] in phase

(A) - extracting information from the PDB structures, and step [6] in phase (B) - calculating

the void data. To avoid unnecessary and time-consuming repeated processing, these data

are cached (in a ‘cloned’ table) before each run of SAAPdb. In the current implementation

of SAAPdb, these tables are named voids_cache and structural_analysis_cache

(these are shown in grey in Figure 3.6). Data from the cached tables are imported if re-

quested, while the original tables are recreated. Processing can then proceed as normal.

Once all additional data are imported into SAAPdb, the remaining analyses can be imple-

mented as SQL queries. These are carried out in phase (C) (steps [12-26]). The results

of these analyses are used to update the appropriate columns in the mutanalysis ta-

ble. The purpose of phase (D) is to summarise the results. The first step of phase (D)

[step 27] is to annotate each mutation described in the mutanalysis table with an in-

dicator of whether it is predicted to have a structural effect or not. This prediction is

based on the results of steps [5,12-26]. In step [28], the disease_mutation_summary and

saap_mutation_summary tables are populated. These tables summarise the structural

analysis results for each sequence mutation of all mapped structures, as described in either

saap or lsdb_saap. Finally, any blank entries in the disease_mutation_summary and

saap_mutation_summary tables are replaced by zeros (step [29]).

3.7.1 Generating mutant structures

For the void and clash analyses it is necessary to generate a mutant structure. The Mut-

Model program used to model the mutant residue into the native structure using the ‘min-

imum pertubation protocol’ (MPP) (Shih et al., 1985; Snow and Amzel, 1986). MutModel is

improved and its performance analyzed and evaluated as part of this thesis and therefore

described in details in Chapter 4 - Section 4.3.

3.7.2 Existing analyses

The analyses described in this section have been previously published in Martin et

al. (2002), Cuff and Martin (2004) and Cuff et al. (2006). These analyses have been used

elsewhere to explain disease mutations in disease-specific datasets, including P53 (Martin

et al., 2002) and G6PD (Kwok et al., 2002). Here, the existing analyses are described briefly

in the context of how they are integrated into the analysis pipeline, as described in Hurst et

al. (2009).
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3.7.2.1 Disrupting native hydrogen bonding

Hydrogen bonding is critical to maintaining the native protein secondary and tertiary struc-

tures. Cuff et al. (2006) used a grid-based approach to analyse the occurrence and ge-

ometry of hydrogen bonds in the PDB for each hydrogen bonding donor and acceptor

residue pair. It is then possible to compare hypothetical mutant structures with the ob-

served hydrogen bonding residue profiles to assess whether a hydrogen bond is possible

or not using the program checkhbond. This program is available for use over the web at

http://www.bioinf.org.uk/hbond/.

Each mutation must be analysed by checkhbond, but the algorithm is designed to be

fast and requires only the native structure. The ‘pseudo-energy’ score generated by

checkhbond is extracted and stored in the SAAPdb database. The pseudo-energy score

uses data on the likelihood that a hydrogen bond exists between two given residues for a

given geometry and approximates the energy for the interaction. A score of 0 implies that

it is very unlikely that a hydrogen bond is formed. Mutations that break hydrogen bonds

(i.e. those with a pseudo-energy score of 0) are identified between backbone/side-chain

and side-chain/side-chain donor and acceptor atoms. At present, this processing is done

sequentially by one machine although this strategy is suitable for distributed processing.

(a) Native 2j1w:B (b) Mutant Y236D 2j1w:B

Figure 3.7: Breaking hydrogen bonds.
PDB ID 2j1w, chain B. The hydrogen bond that exists between the Y236 and T253 is not maintained in the
mutant Y236D structure shown on the right (see Section 3.7.2.1). Residues 236 and 253 are highlighted in blue
in both structures.
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An example is shown in Figure 3.7: the native tyrosine residue at position 236 of human

P53 forms a hydrogen bond with the threonine residue at position 253; these residues are

highlighted in blue in Figure 3.7a. This hydrogen bond is broken in the Y236D mutant

structure in Figure 3.7b, as the introduced aspartic acid side-chain is too distant to accept

the hydrogen donor atom from T253. Note also that this hydrogen bond is buried, and

therefore could be critical to the scaffold of interactions that stabilise the protein structure.

In addition to breaking the hydrogen bond, this mutation is found to cause a de-stabilising

internal void.

3.7.2.2 Mutations to proline

Proline exhibits particular spatial constraints owing to the nature of its side-chain. The

cyclic nature of the proline side-chain limits the backbone conformations that the residue

can adopt. It is therefore likely that introducing a proline where the torsion angles are

unfavourable will distort the protein structure or inhibit folding entirely. X→P5 mutations

likely to effect the backbone conformation were identified in SAAPdb out-with the region:

−70.0◦ ≤ φ ≤ −50.0◦ and (−70.0◦ ≤ ψ ≤ −50.0◦ or 110.0◦ ≤ ψ ≤ 130.0◦). In Figure 3.8, this

area is marked in pink.

As part of the work in this thesis, this ‘Boolean’ method with simple boundaries for allowed

conformations has been replaced with a new method introducing an energy evaluation (see

Chapter 5).

3.7.2.3 Mutations from glycine

Glycine is the opposite of proline in that is has no side-chain (The R group is a lone hy-

drogen) and so can adopt backbone conformations that other amino acids cannot. Re-

placing a glycine with another amino acid, where the torsion angles are unfavourable,

will affect protein structure. G→X mutations that occur out-with the region ( − 180.0◦ ≤

φ ≤ − 30.0◦/60.0◦ ≤ ψ ≤ 180.0◦) or (−155.0◦ ≤ φ ≤ −15.0◦/ − 90.0◦ ≤ ψ ≤ 60.0◦) or

(−180.0◦ ≤ φ ≤ −45.0◦/−180.0◦ ≤ ψ ≤ −120.0◦) or (30.0◦ ≤ φ ≤ 90.0◦/20.0◦ ≤ ψ ≤ 105.0◦)

were identified by SAAPdb. In Figure 3.8, this area is coloured yellow.

Again as part of the work in this thesis, this ‘Boolean’ method using simple boundaries

for allowed conformations has been replaced with a new method introducing an energy

evaluation (see Chapter 5).

5X is any non-proline amino acid.
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Figure 3.8: Allowed regions for proline and glycine.
The pink areas mark the restricted conformation for proline residues, the hatched grey areas mark the regions
for non-proline, non-glycine residues, and the yellow colour marks the rest of the conformational space, pri-
marily occupied by glycine residues.
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3.7.2.4 Mutations that cause steric clashes

Many amino acid substitutions will result in steric clashes. For example, it may not be pos-

sible to accommodate a larger mutant residue in the native structure without disrupting the

fold, and therefore potentially the function. The MutModel program calculates the number

of steric clashes caused by introducing a mutant residue in a protein structure (Section 4.3).

Residues that cannot insert into the native structure without clashing with three or more

other atoms are identified. The model uses the simple assumption that two residues clash

if any atomic centres are within 2.50Å of each other.

A P53 mutant is shown in Figure 3.9. Here, the native glycine residue at position 279 is

mutated to tryptophan, the largest amino acid. When modelling the mutant residue into

the native structure (using MPP (Shih et al., 1985; Snow and Amzel, 1986), see Section 4.3),

the best orientation of the mutant sidechain clashes with 27 other native atoms. Figure 3.9a

shows that the native glycine fits neatly inside the structure, while the tryptophan residue

in Figure 3.9b protrudes out of the structure, inhibiting the formation of the native fold,

thus inducing for the disease phenotype.

As part of work in this thesis, this simple ‘Boolean’ method counting the number of clashes,

has been replaced with a new method using a modified MutModel program which intro-

duces a full evaluation of van dar Waals and torsion energy (see Chapter 4).

(a) Native 2ata:A (b) Mutant G279W 2ata:A

Figure 3.9: Residues found to clash with other existing residues.
PDB ID 2ata, chain A (shown in grey). The mutation G279W is described in the P53 somatic mutation dataset.
The native and mutant structures are shown above, on the left and right respectively. The modelled tryptophan
mutant residue clashes with 27 other atoms, and cannot be accommodated in the native structure.
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3.7.2.5 Introducing a void in the core

Large to small residue mutations may create a void in the structure. A void is defined as

a cavity within a protein structure that is not accessible to bulk solvent. Voids are both

enthalpically and entropically unfavourable, thus potentially having an effect on protein

stability. The AVP software is used to identify and measure the size of internal voids in pro-

tein structures (Cuff and Martin, 2004). AVP allows independent probe sizes for definition

of solvent and voids with default probe radii of 1.4Å and 0.5Å used respectively.

To obtain these data, all mutant structures must first be pre-processed using MutModel.

AVP is run on each individual structure with a compute time dependent on the size of the

protein chain being analysed. This can vary from a few seconds to several minutes.

While the analysis of voids is unchanged in the work described in this thesis, changes to

the MutModel program enhance the positioning of side-chains and, therefore, assessment

of voids (see Chapter 4).

For example, the mutation F42S in the human haemoglobin Beta chain [Uni-

ProtKB:P68871/HBB_HUMAN] is reported to be associated with cyanosis, moderate

reticulocytosis and mild anaemia (Stabler et al., 1994). The void analysis shows that

this mutation introduces a void (see Figure 3.10b), likely to lead to some collapse of the

structure in this region.

(a) Native 1qsh:D (b) Mutant F42S 1qsh:D

Figure 3.10: Creating a void or crevice.
PDB ID 1qsh, chain D. Replacing the native phenylalanine residue at position 42 with a serine residue (as shown
on the right) creates an internal void (for details, see Section 3.7.2.5) which may destabilise the protein. Residue
42 is highlighted in magenta and the haem ligand is highlighted in blue. This mutation is also explained by
affecting the interface analysis (i.e. affecting binding to the haem ligand).
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3.7.2.6 Mutations to binding residues

As a refinement to ‘interface’ residues, mutations to residues that form hydrogen bonds,

(as described by Baker and Hubbard (1984)), and non-bonded interaction with a ligand

or another protein chain are identified by parsing the XMAS formatted PDB files. These

will be a subset of the ‘interface’ residues identified from a change in solvent accessibility.

‘Non-bonds are’ formed between non-consecutive, inter-residue atoms that do not meet the

criteria of Baker and Hubbard (1984) and whose centres are within 2.7-3.35Å of each other.

As such, non-bonds include Van der Waals forces and electrostatic interactions.

The tumour suppressor protein P53 [UniProtKB:P04637/P53_HUMAN] is mutated in half

of human cancers (Greenblatt et al., 1994; Sidransky and Hollstein, 1996; Lane and Fischer,

2004). Chain B of the P53 structure (PDB ID 1tsr (Cho et al., 1994)) is shown in complex

with DNA in Figure 3.11 in grey; residues identified as ‘functional’ by all of the binding,

interface and UniProtKB/Swiss-Prot FT analyses are highlighted in blue (these residues are

also identified as highly conserved by ImPACT). These functional residues are clustered

around the DNA-binding site.

MMDBBIND (Salama et al., 2001)6 was used in previous builds of SAAPdb and early stages

of this thesis. It has not been updated since 2010, and the amount of interfaces deposited

in it is fairly small compared with similar databases and, for that reason, this category is

considered obsolete and removed from the SAAP analysis.

3.7.2.7 Disrupting disulphide bonding

Disulphide bonds are covalent cross-links that form between cysteine residues in polypep-

tides and help to stabilise protein structure (Figure 3.12). Mutations that remove disulphide

bonding cysteines may alter protein stability and therefore compromise native protein func-

tion.

As with the incorporation of binding residue data into the pipeline, a Perl script identifies

potential disulphide bonding cysteine residues in PDB files. First, all cysteine residues are

identified. Secondly, each pair of cysteine residues is assessed to determine if they are in-

volved in a disulphide bond. To form a disulphide bond, residues must satisfy the following

criteria (Hazes and Dijkstra, 1988) as shown in Figure 3.12.

6MMDBBIND is an assimilation of the three-dimensional structure information described by Entrez’s
MMDB database (Wang et al., 2007) and the mmCIF PDB chemical component dictionary (Feng et al., 2003),
and is part of the larger BIND database (Bader et al., 2001)
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Figure 3.11: Binding residues in P53.
PDB ID 1tsr, chain B (in grey and blue) in complex with DNA. Binding residues, as defined by the binding
(see Section 3.7.2.6), interface (see Section 3.7.2.14), ImPACT (high conservation) and UniProtKB/Swiss-Prot FT
analyses (see Section 3.7.2.12) are highlighted in blue.

• Sγ1–Sγ2 bond length should be ≤2.50Å

• Cβ1–Sγ1–Sγ2 and Cβ2–Sγ2–Sγ1 bond angles should be 104◦ ± 10%

Standard trigonometry calculations and methods from the Perl Math::Trig module are

used to calculate distances and angles from PDB coordinates. Each protein structure de-

scribed in SAAPdb is analysed to identify potential disulphide bonding cysteine residues

using isolated PDB chains. Interchain disulphide bonding is identified based on the in-

terface analysis. All candidate sulphur atoms from cysteine residues are extracted from the

PDB file and assessed as candidates using the method described above. The script then gen-

erates the corresponding SQL to record disulphide bonding cysteine residues in SAAPdb.

Multiple occupancy cysteines are processed as any other cysteine; that is, the atoms for

each alternative conformation are grouped together and each alternative conformation is

considered as a potential disulphide bonding cysteine.

The example in Figure 3.13 shows a broken disulphide bond in super-oxide dismutase,

identified both by the UniProtKB/Swiss-Prot FT analysis and the geometric disulphide

analysis of the PDB files.
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Figure 3.12: A disulphide bond between C6 and C127 of lysozyme (7lyz), showing SSd,
SSa1 and SSa2

(a) Native 1hl5:I (b) Mutant C146R 1hl5:I

Figure 3.13: Disrupting disulphide bonding.
PDB ID 1hl5, chain I. A disulphide bond exists between C57 and C146 in chain I of 1hl5, see native structure on
the left and is identified by the SSGEOM analysis (see Section 3.7.2.7). This disulphide bond is also described
as UniProtKB/Swiss-Prot features (Section 3.7.2.12, identified by ImPACT and identified by the clash analysis
(see Section 3.7.2.4). A mutation replacing C146 with an arginine (see mutant structure on the right), with the
mutant arginine highlighted in red.
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3.7.2.8 Mutations to cis-prolines

Owing to the partial double bond character of the peptide bond between the carboxylate

carbon and the amine nitrogen, rotation around this bond is restricted. Energetically, this

favours conformations where the Cα, O, C, N’, H’, Cα’ atoms exist in the same plane. Atoms

may be arranged in the trans conformation where ω ' 180◦ or the cis conformation where

ω ' 0◦. The vast majority of peptide bonds are found in the trans conformation because

the proximity of Cα and Cα’ makes the cis conformation less stable. However, peptide

bonds between any residue and proline (Xaa-Pro) more readily adopt the cis conformation

than other peptide bonds (Xaa-nonPro). The cis conformation is more than 1000 times less

stable than the trans conformation in Xaa-nonPro peptide bonds, while the cis conformation

is only four times less stable than the alternative trans conformation in Xaa-Pro peptide

bonds (Branden and Tooze, 1999). Approximately 5-6.5% of Xaa-Pro bonds are cis, and

0.03-0.05% of Xaa-nonPro are cis (Jabs et al., 1999; Stewart et al., 1990).

3.7.2.9 Introducing a charge shift in the core

Charged residues are often functional in protein structures as they introduce electrostatic

interactions within the protein and between protein and substrate (Torshin and Harrison,

2001). Arginine and lysine, and to a lesser extent histidine, are positively charged residues

that often form salt bridges with negatively charged groups. Conversely, aspartic acid and

glutamic acid are negatively charged residues that can form salt bridges with positively

charged groups. In the protein core, these almost invariably occur as pairs of oppositely

charged residues (Torshin and Harrison, 2001). Removing or introducing a charged residue

from or into the protein core may therefore destablize or disrupt protein conformation and

cause a deleterious phenotype.

Charged residues at the surface of a protein are solvated and therefore do not need to occur

as charge pairs. Rather than having a large structural rôle, a charged residue on the surface

may interact with other molecules and therefore be critical to protein function. However,

these residues should be identified by the binding analyses, which have been described

previously. Since charged amino acids at the core are more structurally important, the fol-

lowing section outlines how mutations affecting these are incorporated into the pipeline.

Incorporation of data regarding charged amino acid mutations does not require any addi-

tional processing; all required data are parsed from the XMAS files (see Section 2.2.3). A
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Table 3.4: Charge shift values for mutations between charged and neutral residues.
Mutations between residues that are identically charged do not generate a charge shift, mutations between
oppositely charged residues generate a charge shift of ±2, mutations between charged and neutral residues
generate a charge shift of ±1. Negative scores indicate a movement towards a more negative charge, positive
scores indicate a movement towards a more positive charge.

Native charge Mutant charge Charge shift
positive negative -2
positive neutral -1
positive positive 0
neutral neutral 0
negative negative 0
negative neutral 1
negative positive 2

PostgreSQL function calculates the ‘charge shift’ occurring as a result of a mutation. Ta-

ble 3.4 shows the charge shift values for mutations between all possible pairs of charged

and neutral amino acids. With this PostgreSQL function, it is possible to implement this

analysis as a single SQL query, where mutations with a non-zero charge shift occurring in

the core (where the relative, monomer accessibility statistic is ≤ 5%) are easily identified as

introducing a buried, unsatisfied charge.

3.7.2.10 Introducing hydrophobic residues on the protein surface

Hydrophobic residues tend to be concentrated in the protein core, away from the solvent-

interacting surface (Branden and Tooze, 1999). Replacing a hydrophilic residue with a

hydrophobic one (phenylalanine, isoleucine, leucine, methionine, valine and tryptophan)

at the surface could result in protein aggregation or misfolding as well as destabilizing the

protein and therefore a deleterious phenotype (for example, the E6V mutation that causes

sickle-cell anaemia (Moo-Penn et al., 1977)).

All data required to identify the hydrophobic mutations on the surface, i.e. native/mutant

amino acids and accessibility statistics are recorded in the XMAS file which is parsed to

populate the structural analysis database table. The analysis can therefore be performed by

a single SQL query. Mutations from a hydrophilic residue to a hydrophobic residue where

the relative surface accessibility in the monomer state is > 5% are identified.

An example of introducing a hydrophobic residue on the surface of the protein is shown

in Figure 3.14. The mutation seen here is the E6V mutation that causes sickle cell anaemia,
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(a) Native 1hbb:D (b) Mutant E6V 1hbb:D

Figure 3.14: Introducing hydrophobic residues on the surface.
PDB ID 1hbb, chain D. A mutation from glutamic acid to valine at residue 6 introduces a ‘sticky’ hydrophobic
residue on the surface of 1hbb. Residue 6 is highlighted in magenta and the haem ligand is highlighted in red.
This is the mutation that causes sickle cell anaemia.

where the ‘sticky’ hydrophobic patch owing to the mutant valine residue causes aggrega-

tion and subsequent deformation of erythrocytes.

3.7.2.11 Introducing hydrophilic residues in the protein core

The vast majority of buried hydrogen bonding capable side-chains do actually participate in

hydrogen bonding. Thus replacing a buried hydrophobic residue with a buried hydrophilic

residue is likely to destabilise the native protein structure (McDonald and Thornton, 1994).

The information required to identify the introduction of a hydrophilic residue in the pro-

tein core already exists in SAAPdb and no additional processing is required. As such, the

analysis can be implemented as a single SQL query identifying mutations from any hy-

drophobic residue to any hydrophilic residue where the relative accessibility of the residue

in the monomer is ≤ 5%.

Figure 3.15 shows the crystal structure of human haemoglobin (PDB ID 1rly). Here, the

mutation V54D introduces a buried, hydrophilic charge by replacing a hydrophobic valine

residue with the negatively charged hydrophilic aspartic acid.
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(a) Native 1r1y:D (b) Mutant V54D 1r1y:D

Figure 3.15: Introducing a buried, unsatisfied charge.
PDB ID 1rly, chain D. The buried charge analysis identifies the V54D mutation in 1r1y as replacing a neutral
valine residue in (a) with a negatively charged aspartic acid in (b), thus introducing a buried unsatisfied charge.
Residue 54 is highlighted in magenta and the haem ligand is highlighted in blue. The mutation also introduces
a hydrophilic residue in the core.
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3.7.2.12 UniProtKB/Swiss-Prot features

UniProtKB/Swiss-Prot annotates sequences to describe the function(s) of the protein, any

post-translational modifications, domains and sites, structural conformations, associated

diseases and sequence conflicts. The database uses a controlled vocabulary and the feature

table (FT) to annotate regions of interest in protein sequences. A small number of these

annotations are manual, however many more are transferred ‘by similarity’ from another

annotated protein. Many of the annotations provide insight into the residues critical for

function or stability and thus indicate which mutations are likely to have adverse effects.

The UniProtKB/Swiss-Prot flat-file data are parsed and residues annotated with FT (fea-

ture) tags are identified. As the aim is to explain the effects of mutations, a subset of fea-

tures that have the potential to affect protein stability or function are relevant. These are

described in Table 3.5.

In UniProtKB/Swiss-Prot, the FT tag annotations can describe the start and end of con-

tiguous regions of annotation, or they can describe two non-adjacent residues (see third

‘Numbering scheme’ column of Table 3.5). When the start and end number are the same,

a single residue is being described. When parsing the UniProtKB/Swiss-Prot data, the two

numbering schemes are dealt with accordingly, annotating all residues between the start

and end of contiguous feature regions with the corresponding feature. FT tag numbering

that includes the non-digit characters ?, < or > is unreliable and these data are not ex-

tracted. All feature residues that have been extracted are then stored in the database. To

date (22-Jan-2014), 192 776 118 residues are annotated in 225, 339 UniProtKB/Swiss-Prot

records. The PDBSWS mapping (Martin, 2005) that is imported into SAAPdb allows these

annotations to be mapped to PDB files.

The mapping process used to populate SAAPdb requires that all mutations are mapped

initially to a residue in a UniProtKB/Swiss-Prot record. With the relevant data extracted

from the UniProtKB/Swiss-Prot data file and stored in the database, this analysis can be

implemented by a simple PostgreSQL query.

Upon closer inspection, some feature annotations appear to be unreliable. Figure 3.16

shows the structure of human P53 (PDB ID 1tsr) in complex with DNA (highlighted in

red). Residues near DNA (within 10Å ) are shown in yellow. The corresponding protein

record ([UniProtKB: P04637P53_HUMAN]) describes residues 102-292 as DNA-binding.

These residues are shown in dark blue and yellow in Figure 3.16, having been mapped onto
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Table 3.5: UniProtKB/Swiss-Prot feature annotations used to identify functional residues
in SAAPdb. Feature tag: the UniProtKB/Swiss-Prot FT tag; Description: a description of the feature; Num-
bering scheme: what the UniProtKB/Swiss-Prot FT numberings describe - a contiguous region or a pair of
non-adjacent residues.

Feature tag Description Numbering scheme
ACT_SITE Residues involved in enzymatic activity contiguous
BINDING A ligand or substrate binding site contiguous
CA_BIND Residues involved in calcium binding contiguous
DNA_BIND A DNA binding site contiguous
NP_BIND A nucleotide phosphate-binding region contiguous
METAL A metal binding site contiguous
LIPID Residues binding to a lipid substrate contiguous
CARBOHYD A glycosylation site contiguous
MOD_RES A site of PTM contiguous
MOTIF A short sequence motif of biological interest contiguous
DISULFID Location of a disulphide bond non-adjacent
CROSSLNK Crosslinks formed after PTMs non-adjacent

Figure 3.16: An example of coarse-grained UniProtKB/Swiss-Prot FT annotation.
The figure shows the structure of Human P53, PDB ID 1tsr; the DNA to which P53 binds is shown in red with
the protein chains shown in blue and grey; the yellow residues indicate those within 10Å of the DNA; the
blue residues are those annotated as DNA_BINDing by UniProtKB/Swiss-Prot; even using the very generous
distance threshold of 10Å, the UniProtKB/Swiss-ProtDNA_BINDing annotation is very coarse-grained.
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the protein structure using PDBSWS (see Section 2.1.4), and comprise most of the protein

chain. It is clear from this example that the UniProtKB/Swiss-Prot functional annotation is

too coarse-grained having annotated the whole domain and consequently many residues

remote from the DNA (i.e. distant by > 10Å) are annotated as DNA_BINDing.

3.7.2.13 Mutating conserved residues

The presence of highly conserved amino acid residues at analogous position in protein se-

quences indicates that those residues are likely to be critical for function. Where it is not

possible to identify the structural effect of a disease mutation, functionality may be inferred

from sequence conservation. Comparing the same protein in different species will highlight

which residues are conserved and therefore likely to be critical to protein function and/or

stability.

Recognition of the importance of this phenomenon led to the development of a novel

method (ImPACT) for identifying highly conserved residues, which accounts for species

diversity and protein-global conservation patterns (McMillan, 2009).

Using the UniProtKB accession number, all functionally equivalent proteins (FEPs) i.e. or-

thologous annotated in SwissProt having the same function in UniProtKB/Swiss-Prot are

identified using FOSTA (McMillan and Martin, 2008). A multiple sequence alignment

(MSA) is generated by aligning the FEPs using MUSCLE (Edgar, 2004).

Each protein can be processed independently, allowing ImPACT analyses to be distributed

across the local 20-core grid. For each MSA, the ImPACT threshold (McMillan, 2009), target

protein and size (i.e. number of sequences) is recorded, and for each residue in each MSA,

the position (with respect to the target protein), the species similarity conservation score

and whether or not this exceeds the ImPACT threshold for the MSA is recorded.

The original ImPACT code by Lisa McMillan has been corrected and modified, and full

instructions on how to update ImPACT’s species, similarity matrix have also been written

as a part of this thesis.

3.7.2.14 Mutations at the interface

The interface can be any regions between PDB chains, or between chains and ligands.

Residues at these interface sites are critical in forming biologically relevant multimers.

Thus, mutating these residues is likely to disrupt the native structure and may be dele-
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terious. Interface residues are identified by a > 10% ∆ASA (accessible surface area) in the

monomer state as opposed to the multimer state. The ASA is calculated using a local imple-

mentation of the Lee and Richards algorithm (Lee and Richards, 1971) and obtained from

the XMAS files.

Figure 3.17 shows the structure of human super-oxide dismutase [Uni-

ProtKB:P00441/SODC_HUMAN], (PDB ID 2c9s (Strange et al., 2006). Mutations

to super-oxide dismutase have been associated with amyotrophic lateral sclerosis or motor

neurone disease (Aguirre et al., 1999). Chain A is shown in blue, chain F is shown in red.

Residues identified by the interface analyses are shown in darker blue and red respectively,

with their Van der Waals surface indicated with dots. This illustrates interface residues at

both the interchain interface and ligand binding sites.

Figure 3.17: Residues identified at the interface.
PDB ID 2c9s, chains A (in blue and light blue, on the left) and F (in red and pink, on the right); ligands are shown
in spacefill using the CPK colour scheme. Residues identified by the interface analyses (see Section 3.7.2.14) are
shown in darker blue and red, with Van der Waals volumes indicated. Note that these analyses also identify
residues near ligand binding sites, as well as residues at the chain interface.

The assembly of multiple tertiary protein structures into biologically relevant multimers is

described as the quaternary structure. Residues at the quaternary interface will be critical to

the native protein fold. The ‘interface’ and ‘binding’ analyses (Sections 3.7.2.14 and 3.7.2.6

respectively) attempt to identify mutations at the quaternary interface. However, this anal-

ysis is based on crystallographic unit cells from PDB files. These can have artificial crystal

contacts or missing biologically relevant contacts (Janin, 1997).

The PDB provides comprehensive tertiary structures of proteins, yet it is often misleading

in terms of quaternary structure information. The asymmetric unit (ASU) is the smallest
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unique unit in a protein crystal structure to which symmetry operations can be applied;

however, it is not indicative of the biological unit, i.e. the quaternary structure of the pro-

tein as found in vivo. Although PDB files sometimes specify the biological units (BUs) pro-

vided by the researchers (in headers), this information is scarce and often experimentally

unverified.

Henrick and Thornton (1998) developed the Protein Quaternary Structure7 (PQS) server,

an automated system that builds BUs from ASUs provided in PDB files. PQS was used

in previous builds of SAAPdb and early stages of this thesis, given the discontinuation of

PQS in 2010 it was replaced with, Protein Interfaces, Surfaces and Assemblies (PISA)8, de-

veloped by Krissinel and Henrick (2007) one of the most widely used automated tool for

the prediction of quaternary structure which outperformed PQS. Based on thermodynamic

stability calculations, PISA automatically detects macromolecular assemblies in PDB en-

tries and predicts different BUs from PQS for 23% of structures, often resulting in a smaller

assembly than PQS.

Figure 3.18b shows the complete hypothetical quaternary structure of the human poliovirus

capsid protein (PDB ID 2plv) with the original PDB structure shown in Figure 3.18a. Al-

though some of the binding contacts will be recognised by the binding and interface anal-

yses, many will be lost (compare Figures 3.18a and 3.18b with respect to the number of

interface surfaces).

3.8 Summary of SAAPdb rebuilding

3.8.1 SAAPdb legacy and update

The last full update of SAAPdb before the current one was in January 2008. Inconsisten-

cies between data-sets were identified during an initial analysis at the outset of this project.

To remedy these inconsistencies, a rebuild of SAAPdb and other support databases (i.e.

the database of functionally equivalent proteins from SwissProt (FOSTA), and the sequence

conservation scoring method that uses a species similarity matrix (ImPACT)) was necessary.

This was a labour intensive task requiring substantial testing and rewriting of all the code

involved in data collection, database creation, and some structural analysis. Full documen-

tation on the update process were also written.

7http://www.ebi.ac.uk/pdbe/pqs/
8http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html
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Table 3.6: SAAPdb categories.
The horizontal line separates structural categories from the sequence-based one.

Category Effect of mutation
PQSa Affecting residues in the interface with a different protein chain or ligand

identified from a PQS file (and therefore more likely to reflect biologically
relevant interactions) by a change in solvent-accessibility – PQS replaced
with PISA in later stages.

bindingb Affecting residues involved in specific binding interactions (a hydrogen
bond, salt bridge, or packing interaction) with a different protein chain or
ligand.

MMDBb Affecting residues in contact with a ligand, according to the MMDB
database.

sprotFTb Residues annotated in SwissProt Feature records as having a functional sig-
nificance.

prolinec Mutations to proline where the backbone angles are restrictive.
glycinec Mutations from glycine where the backbone angles are restrictive.
clashc Causing a clash between atomic radii of the neighbouring residues.
cisprolinec Mutations from a cis-proline.
hbondingd Causing the disruption of hydrogen bonds between residues.
voidd Causing an internal void ≥275Å3 to open in the protein owing to the sub-

stitution with a smaller residue.
corephilicd Introducing a hydrophilic residue in the protein core.
surfacephobicd Introducing a hydrophobic residue on the protein surface.
buriedcharged Introducing an unsatisfied charge in the protein core owing to the substitu-

tion with, or of, a charged residue.
SSgeometryd Causing the disruption of a disulphide bridge.
struc_explained Explained by any of the categories listed above.
highconse Affecting residue with highly conserved sequence, according to Im-

PACT (McMillan, 2009)
explained Explained by any of the categories listed above.

aInterface-damaging; bFunctionally-impairing; cFolding (fold-preventing); dInstability (destabiliz-
ing); eSequence conservation.
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(a) The PDB structure of Human poliovirus
capsid protein

(b) The hypothetical assembly of Human
poliovirus capsid proteins

Figure 3.18: Quaternary structure information from PISA.
(a) shows the PDB representation (PDB ID 2plv) of the Human poliovirus capsid protein which has four chains.
The biologically relevant structure, as assembled by PISA is shown in (b).

The legacy system inherited for this project suffered from several weaknesses in its design.

These included different software components coded in different programming languages

(written by different people at different stages of the development of SAAPdb); untested

and malfunctioning computer code, identification of errors and subsequent fixing (debug-

ging); software component version incompatibilities; and inadequate documentation of the

system.

There has been considerable effort to improve the code for updating SAAPdb. A summary

of the datasets comparing the old and new builds of the database was shown in Table 3.1.

3.8.2 Updated SAAPdb data analysis

The SAAPdb web-server contains fourteen structural analyses and one sequence-based

analysis (Martin et al. (2002), Cuff and Martin (2004)), shown in Table 3.6, all aiming to

show how SAAPs are likely to affect protein structure: in particular interfaces with other

proteins, functional sites, folding and stability of the mutated protein. Each analysis is im-

plemented as a separate SQL, Perl script or C program and will output a positive (‘likely to

affect’) or negative (‘likely not to affect’) result for every SAAP in every category. Therefore

the SAAPdb result for a mutation can be viewed as a vector of binary or Boolean values (1
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for
√

and 0 for ×), as shown in Figure 3.19.

Only mutations mapped to solved protein structures can be assessed, therefore it is not pos-

sible to analyse all known mutations. Of the amino acid mutations in OMIM, approximately

65% can be mapped to structure. In addition, approximately 32% of ‘valid’ SNPs from db-

SNP that result in an amino acid change, map to structure. Consequently, the coverage of

the analysis is currently somewhat limited. However, clinically relevant proteins tend to

be key targets for structural studies, so it is expected that these statistics will improve in

the future. In addition some proteins have several resolved structures. In these cases, the

effects of the mutations in all available structures are analyzed.

After the task of rebuilding SAAPdb was completed, analysis of the data in SAAPdb shows

local structural effects for PDs more often than for SNPs, which are significantly under-

represented in all categories except ‘surphacephobic’, ‘corephillic’ and ‘cisproline’ muta-

tions that are more common in SNPs than in PDs. Figure 3.20 shows a comparison of struc-

tural effects seen for SNPs and PDs between the previous SAAPdb build (Hurst et al., 2009)

and the current one. In the previous dataset only ‘surfacephobic’ mutations were more

common in SNPs (Figure 3.20). Another notable finding is that structural effects observed

for PDs tend to be more ‘severe’ than those seen for SNPs.

In summary, the number of SNPs in the database has risen by 41% and the number of PDs

by 36%. This has been aided by the inclusion of two new sources of mutation data. Other

sources of mutation data have been considered including HGMD and SwissProt Variants

(SwissVar). However, HGMD data are only available to registered users meaning that the

data have not been reproduced in our database. In addition, the annotation of disease status

in SwissVar is not very reliable. For example, known PDs in G6PD are annotated as ‘Natural

Variants’ of ‘Unclassified’ disease status. Other LSMBDs can be easily added (Claustres

et al., 2002), but as explained below, the SAAPdap pipeline version of the system is now

implemented to allow users to analyse novel mutations. SAAPdap is now regarded as our

primary resource.

3.8.3 The future of SAAPdb and

The Single Amino Acid Polymorphism Data Analysis Pipeline (SAAPdap)

SAAPdb was designed to be a regularly updated pre-calculated resource. However, the

database has proved very difficult to maintain and changes in licensing of OMIM data mean



CHAPTER 3. SAAPDB 150

Figure 3.19: Structural effects assigned by SAAPdb to a PD in human UDP-galactose 4-
epimerase.
SAAPdb http://bioinf.org.uk/saap/db/ was queried for accession number Q14376 and
N43S was chosen as a representative pathogenic mutation. The mutation is mapped to several
residues in different protein structures (only the top three are shown here). The analysis summarised
in a vector shows that this mutation is located in a binding and interface site residue, and it carries
a functional identifier.

that OMIM may no longer be able to be used as the primary source of PDs. In addition, with

the increasing routine use of high- throughput sequencing methods to detect mutations, the

analysis of mutations is increasingly undertaken by individuals.

Consequently the value of SAAPdb has diminished and SAAPdap (Single Amino Acid

Polymorphism Data Analysis Pipeline) has been implemented as a replacement. SAAP-

dap is a complete re-write of the SAAPdb pipeline by Andrew Martin using JavaScript

Object Notation (JSON) for data storage. JSON is a text-based, publicly available language

designed for human-readable data interchange. JSON uses two structures, an ordered list

of values, (an array or sequence) and a collection of values or pairs (an object or associative

array).
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(a) Previous SAAPdb build

(b) Current SAAPdb build

Figure 3.20: Profiling SAAPs with respect to local structural effects.
Table 3.6 explains the individual effects meaning (pqs, bind, mmdb,pro, gly, clash,cisprohbond, void,
corephilic, surfacephobic„buriedcharge, ssgeom, highcons). ANY BINDING: the mutation is positive for
bind and/or mmdb; ANY FOLDING: the mutation is positive for pro, gly, clash and/or cis-pro; ANY IN-
STABILITY: the mutation is positive for hbond, void, corephilic, surfacephobic, buriedcharge and/or ssgeom;
EXPLAINED: the mutation is explained by at least one of the above analyses. Different ‘classes’ of local struc-
tural effect (i.e. interface, functional, folding, instability and conservation) are separated by pale grey vertical
lines. Yellow and red bars denote results for PDs in (a) and (b) plot respectively, grey bars denote results for
SNPs. Precise percentages are given above the corresponding bar. Statistically significant results are denoted
with red stars (two where p < 0.01 and one where p < 0.05).
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While it is no longer being updated, SAAPdb remains the most extensive database of SAAPs

and their structural effects. A large and expanding body of literature exists in the field of

protein structure-function analysis in relation to disease phenotypes. SAAPdb contributes

to the current understanding of disease-causing mutations and ultimately the treatment of

the resulting pathological conditions.

SAAPdap uses a plugin architecture, making use of new non-Boolean analyses (described

in Chapters 4 and 5). While SAAPdap still indicates whether a mutation is likely to have

a detrimental effect on structure using cut-off values, continuous values are also provided

for each of the analyses. Results from the SAAPdap pipeline are presented as shown in

Figure 3.21a. Results are summarized at the top where the effects on each structure to which

the mutation maps are shown. Below, the analyses of structural effects on each structure are

presented and these can then be expanded to provide more detail on the analyses as shown

in Figure 3.21b. Analysis descriptions are much more comprehensive than was the case in

SAAPdb to make the results easier to understand.

A web interface has been implemented by Andrew Martin to allow users to enter mutations

for analysis. Because some of the analyses (especially the analysis of voids) is quite time

consuming (taking several minutes), the web interface makes use of AJAX (Asynchronous

JavaScript And XML) to update the user with the progress of the analysis. The submission

page is available at http://www.bioinf.org.uk/saap/dap/.

3.8.4 Single Amino Acid Polymorphism prediction tool

(SAAPpred)

SAAPdb data and SAAPdap analysis are used in this thesis to train machine learning meth-

ods to predict whether a novel SAAP will disrupt the native protein structure and induce a

disease phenotype in a tool known as Single Amino Acid Polymorphism prediction (SAAP-

pred) (see Chapter 6).
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(a)

(b)

Figure 3.21: Results pages from the new SAAPdap pipeline. (a) Summary and brief struc-
tural reports — hovering over any of the titles brings up a box to explain the meaning of
the effect; (b) Expanded view of full structural analysis.



Chapter 4

Improvements to Clash and Void

Analysis
∗ Some of the work in this chapter has been published (Al-Numair NS, Martin ACR.

2013. The SAAP pipeline and database: tools to analyze the impact and predict the

pathogenicity of mutations. BMC Genomics 14.3:1-11).

In the original version of SAAPdb, all assignments of structural effects are

Boolean, that is, any mutation either does, or does not, have a given effect. While

Boolean assignment is appropriate in some cases (for example, a residue either

is, or is not, annotated as a feature in UniProtKB/Swiss-Prot), in other cases, it

relies on some cut-off (for example, energy, void volume, hydrophobicity dif-

ference) as described previously (Hurst et al., 2009; Cuff et al., 2006; Cuff and

Martin, 2004; Martin et al., 2002).

In earlier work done as part of a Master’s degree, I showed that assigning

a mutation as either having or not having a structural effect is very sensitive to

precise structural details (Al-Numair, 2010) (see also Section 4.2). For example,

where multiple structures are available for the same protein, one structure may

indicate that a mutation has a value just below a cut-off while another structure

has a value just above. This will result in conflicting assessments of whether a

mutation is damaging or not. In this chapter and Chapter 5, real-number scores

or pseudo-energies are now implemented for each appropriate structural effect.

In particular, the analysis of clash and void is enhanced in this Chapter, while

pseudo-energies are defined for analysis of from-glycine and to proline muta-

tion in Chapter 5.

154
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4.1 Introduction

This section introduces the definition of clash and void occurring in protein structures and

the analysis used in the SAAP analysis to assess their effects.

4.1.1 Mutations that cause steric clashes

When mutations cause steric clashes in a structure owing to a larger mutant residue than

in the native structure, this will disrupt or prevent correct protein folding and therefore

affect the function of the protein (Martin et al., 2002). Figure 4.1 shows an example of

a small to large residue mutation, Gly122→Arg, in the human triosephosphate isomerase

dimer structure, PDB ID 1WYI (Kitatani et al., 2006). This mutation is known to increase

thermo-sensitivity of the human protein (Mande et al., 1994).

Originally, SAAPdb used very simple, fixed thresholds for defining potentially damaging

effects. Both SAAPdb and SAAPdap use the MutModel program (Martin et al., 2002) to

calculate the steric clashes caused by introducing a mutant residue in a protein structure. In

SAAPdb, a damaging clash was defined as any side-chain that has at least 3 van der Waals

overlaps (of any degree) with a distance between atom centres less than 2.5Å (Martin et al.,

2002). However, using such a static threshold does not differentiate between two atoms that

are slightly overlapping and two atoms that are largely occupying the same space. Using

a more informative van der Waals energy calculation would refine the clash analysis and

would be expected to improve predictive ability.

Figure 4.1: A mutation causing steric clashes and potentially affecting folding residue.
A) The position of Gly122→Arg is shown on the human triosephosphate isomerase dimer structure,
PDB ID 1WYI. This mutation causes a clash and introduces a buried charge, and is know to increase
the thermo-sensitivity of the human protein. B) Detailed view of the native Gly122 and Trp90 with
which it interacts. C) The Gly122→Arg mutation causes atoms to clash, as indicated by the arrow
(modelled structure).
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4.1.2 Introducing a void in the core

Mutations that replace a large buried amino acid with a smaller one may introduce a void

in the protein core. A void is defined as a cavity within a protein structure that is not

accessible to bulk solvent. While a void introduces no physical barriers to correct folding, a

void reduces the stability of the correctly folded form below that of unfolded or misfolded

states (Hurst et al., 2009). Figure 4.2 shows an example of a large to small residue mutation

introducing a Phe173→Leu void mutation in glucose-6-phosphate dehydrogenase. In this

instance, the void mutation causes neonatal jaundice.

The void calculation method (Cuff and Martin, 2004) calculates the volume of voids, as-

suming that no movements occur in the protein structure. The AVP software (Another Void

Program) is used to identify and measure the size of internal voids in protein structures.

AVP allows independent probe radii (default 1.4Å and 0.5Å ) for definition of solvent and

voids respectively. Obtaining these data requires significant processing: all mutant struc-

tures must be generated using the MutModel program before AVP is run on each individual

structure. The compute time for each structure is dependent on the size of the protein chain

being analysed and can vary from a few seconds to several minutes.

Figure 4.2: A mutation which increase the size of a void.
A) The Phe173→ Leu mutation is shown on the human glucose 6 phosphate dehydrogenase struc-
ture, PDB ID 2BH9. This mutation creates a void and causes neonatal jaundice. B) The native struc-
ture shows a void (‘void2’ introduced by a set of dark blue spheres) near Phe172. c) After mutation
of Phe172 → Leu, the void ‘void2’ is enlarged to an extent judged to be destabilizing using the
threshold described by Cuff and Martin, (2004). The additional void volume is indicated by the
small dark blue spheres in ‘void2’ highlighted with the arrow.

In SAAPdb, a mutation is considered to be a damaging when it causes the creation of voids

of volume > 275Å3. As above, it is likely that movements of side-chains and backbone

will occur to fill the void (at least partially). This static threshold was selected based on an
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analysis of PDB structures that showed that the largest void in 80% of protein structures is

< 275Å3 (Cuff and Martin, 2004). However, it is likely that the threshold for deleterious

void creation is dependent on the protein structure, its size and stability, its environment,

and its resistance to destabilising voids. Considering each protein structure individually

and calculating the native structure of voids based on its properties may aid estimation of

the maximum void size that may be tolerated. SAAPdb maintains the same threshold for

indicating a likely-damaging mutation, but additional void information (top 10 void sizes)

is used for prediction in Chapter 6.

4.2 Analysis of sensitivity to structural details

This analysis began as part of a Master’s degree (Al-Numair, 2010) and was updated as

part of this research using the latest SAAPdb version (described in Chapter 3).

All mutation data analysed in this section were obtained from the SAAPdb PostgreSQL

database using Structured Query Language (SQL) queries. The analyses were implemented

using several Perl scripts. First, a Perl script used in the examination of the gathered data

was written to determine the number of structures to which each mutation maps. This was

used for SNPs and PDs1 across all available mutations imported from SAAPdb, across all

proteins. Another Perl script was written for counting mutations classified as unfavourable

and mapped to at least 2 structures. The same script was used to calculate the fraction of

structures in which a mutation was classified as unfavourable out of the total number of

structures to which it maps.

F =
nu
N

(4.1)

Where nu is the total number of structures in which the mutation is classified as

unfavourable and N is the total number of mapped structures.

For example, if the number of structures to which a mutation maps is equal to 10 and the

number in which a mutation is classified as unfavourable is 5, then F = 0.5. The same script

analysed the mutations classified as unfavourable for each individual SAAP analysis type

where at least one structure classified as unfavourable.

1As in Chapter 3, the SAAPdb terminology is used here - SNPs are believed to be phenotypically neutral
while PDs are known to cause disease.
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A further enhancement to the program above was to provide an option (-nat) to include

no mutant structures, but only native structures from the PDB. To determine whether varia-

tion in structural classification frequencies resulted from poor resolution structures, a -res

option was added to extract the resolution using getresol, an external program (ACRM,

unpublished). The PDB entries were restricted either into high resolution (≤ 2.0Å when

-res=H) or low resolution (> 2.0Å when -res=L).

The Analysis of sensitivity to structural details was performed on all 17 SAAP analysis types

shown in Table 3.6, where one or more mutations are classified as unfavourable and suggest

how SAAPs might affect protein structure. In the previous work (Al-Numair, 2010), all

structures (mutant and native) were investigated. After updating the program, the analysis

repeated on native structures with high resolution to analyse the effects of mutations but

not using mutant structures for this purpose.

4.2.1 Clash and void analysis

The distribution of fraction of structures in which SNPs and PDs are classified as causing

clashes or voids (using the fixed cutoff) was plotted in Figures 4.3 and 4.4 respectively. If

these measures were accurate predictors of pathogenicity, independent of precise structural

details, one would expect to see the SNP mutation having a peak only at F = 0 (since one

would expect these mutations not to have a significant effect on protein structure) while

PD mutations would have a peak at F = 1. This is clearly not the case. SNPs causing

clashes (Figures 4.3a) show a broad distribution, but surprisingly clearly skewed towards F

= 1. This suggests that either the fixed cutoff for clashes is incorrect (classifying too many

clashes as damaging) or that the use of a fixed cutoff is misleading or both.

An opposite surprising result is seen for PDs both causing clash and void (Figure 4.3b

and 4.4b) where the distribution is skewed toward F = 0 instead of the expected F = 1.

PDs causing clashes and SNPs causing voids show a much more even, broad distribution.

All four graphs show a peak around F = 0.5 (probably this is due to an artefact due to a

larger amount of entries with just 2 structures) and cases where 0.5≤ F≤ 0.95 are likely to be

instances where the clashes or voids have values very close to the cutoff and consequently

a given mutation in some structures is classified as likely to be damaging while in other

structures it is not classified as having any damaging effect. This reinforces the conclusion

that a fixed cutoff is very sensitive to precise structure details.
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(a) SNP

(b) PD

Figure 4.3: Boolean clash analysis
(a) The original Boolean clash method tested on 59 SNP mutations using native structures. (b) The
original Boolean clash method tested on 453 PD mutations using native structure. A fraction of F =
0 represents no mutations classified as unfavourable, whereas F = 1 represents mutations classified
as unfavourable. In (a) and (b), each bar less than the next bar label (e.g. Bar 0.25 is 0.25 ≤ F < 0.3
and bar 0.95 is 0.95≤ F < 1), the bar labelled with one represents the fraction of structures where all
are classified unfavourable.
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(a) SNP

(b) PD

Figure 4.4: Boolean void analysis
(a) The original Boolean void method tested on 164 SNP mutations using native structures. (b) The
original Boolean void method tested on 1211 PD mutations using native structure. A fraction of
F = 0 represents no mutations classified as unfavourable, whereas F = 1 represents all mutations
classified as unfavourable. In (a) and (b), each bar less than the next bar label (e.g. Bar 0.25 is 0.25 ≤
F < 0.3 and bar 0.95 is 0.95 ≤ F < 1), the bar labelled with one represents the fraction of structures
where all are classified unfavourable.
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4.3 The MutModel program

MutModel is a program written originally by Dr. Andrew Martin, which performs side-

chain replacements using the minimum perturbation protocol (MPP) (Shih et al., 1985).

During this calculation, side-chains are replaced and then spun around their Chi1 and

Chi2 torsion angles to find the position that makes a minimal number of bad contacts (or

‘clashes’). For the void and clash analyses described in this chapter it is necessary to gener-

ate a mutant structure. MutModel implements MPP to model a mutant residue into a native

structure as follows:

1. The Maximum overlap protocol (MOP) (Snow and Amzel, 1986) is used to replace the

side-chain, inheriting torsion angles from the native residue where possible;

2. Neighbouring residues within 8Å of the residue are identified;

3. The side-chain is rotated around χ1 (Figure 4.5a) and χ2 (Figure 4.5b) torsion angles

recording whether a bad contact is made or not (a bad contact is defined as two atom

centres within 2.50Å of each other);

4. If the MOP conformation makes ≤ 1 bad contacts, this conformation is accepted;

5. If a structural rotamer conformation (i.e. staggered X1 X2 angles) exists that makes

≤ 1 bad contacts, that is selected;

6. The lowest energy conformation is selected (closest to the MOP conformation if alter-

natives exist with the same energy).

(a) Rotating the mutant residue (shown in magenta) about χ1 in 30◦ steps

(b) Rotating the mutant residue (shown in magenta) about χ2 in 30◦ steps

Figure 4.5: Using MutModel to model a mutant residue into an existing structure: rotation
about the χ angles.
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4.4 Improving the clash analysis

The existing MutModel program recorded clashes as Boolean values; therefore, the aim was

to provide continuous (rather than Boolean) values to deal with the ‘degree of clash’. The

processes required to develop this approach are described in the following sections.

4.4.1 Linear Energy

Initially a linear energy was implemented using the equation:

E =


0 if d > Max

1 if d ≤Min

1− distance−Min
Max−Min otherwise

(4.2)

The degree of clash is defined by a minimum distance (e.g. Min = 1.5Å) and a maximum

distance (Max = 2.5Å). On this basis, a distance greater than 2.5Å gives a clash energy

equal to 0, while if the distance is ≤ 1.5Å, the clash energy is equal to 1, with a linear

scale in-between. This step was preliminary experiment as a step towards the full potential

energy.

4.4.2 Full Potential Energy

A full energy calculation to handle the amount of clash was then implemented (by ACRM),

this was achieved by incorporating a Lennard-Jones potential and a torsion potential:

E =
(
A

r12
− B

r6

)
+ k(1 + cos(nψ + φ)) (4.3)

The Lennard Jones parameters (A and B) depend on the types of the two interacting atoms

with parameters coming from the CHARMM forcefield (Brooks et al., 2009; Brooks et al.,

1983). The Lennard Jones potential accounts for clashes between atoms of the side-chain

being replaced and its surroundings, while the torsional term favours staggered conforma-

tions (see Figure 4.6). Then I modified the MutModel code to allow the user to select the

evaluation method. Currently the MutModel program evaluates the clash energy using one

of the four clash evaluation methods: 1: Boolean; 2: Linear clash; 3: vdW (Lennard-Jones);

4: vdW/Torsion.
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Figure 4.6: Schematic indicating the two new terms used in evaluation of clashes. EvdW is
the van der Waals energy evaluated using a standard Lennard-Jones potential while Eψ is
the torsion energy.

Figure 4.7: Distribution of side-chain clash energies calculated according to Equation 4.3 for
high resolution structures amongst CATH O-representatives.
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4.4.3 Testing the new method

After incorporating the new analyses into SAAPdap, the vdW/Torsion method was tested

on 400,000 residues from CATH O-representatives (domains having no more than 65% se-

quence identity) of high resolution (< 2.5Å). This showed that 99% of side-chains have an

energy of < 13.4 kcal/mol (see Figure 4.7) and the highest energy value is 34.33 kcal/mol.

That number was used as a cut-off for defining a damaging clash. Using the new energy

evaluation, the performance of the Boolean clash method was assessed. In the Boolean

method, no account was made of the degree of clash; overlaps of 0.01Å , or of 1.0Å , were

treated as the same and a mutation was classified as damaging if it made 3 or more clashes.

Figure 4.8 shows the energy distribution for side-chain replacements considered to make

0-5 or more clashes by the old method. Looking at side-chain replacements that made no

clashes using the old method (Figure 4.8, panel 1), we see that 99% of the data have an en-

ergy below 34.33 kcal/mol using the new energy-based method. Panels 2 and 3 show cases

evaluated by the original Boolean method as making one or two clashes that would have

been classified as non-damaging using the Boolean method. Using 34.33 kcal/mol as an

energy cut-off, these graphs indicate that 33.2% and 28.9% of potentially damaging clashes

(shaded regions in panels 2 and 3 respectively) were not detected using the old method.

Panels 4, 5, and 6 show the energy distributions for side-chain replacements having 3, 4,

and 5 or more clashes by the old method, which would have been classified as damaging.

However, using the new method, 19.5%, 10.7% and 11.2% of cases (shaded regions in panels

4, 5 and 6 respectively) have energies below the threshold and are therefore unlikely to be

damaging.

Overall, approximately 32% of mutations previously classified as not clashing are now

found to clash, while approximately 15% of mutations previously classified as clashing are

now found to have only minor clashes that could be relieved by very slight movements in

the structure. This improved evaluation of side-chain clashes should improve attempts to

explain why pathogenic deviations are damaging and will also help to improve machine

learning methods for predicting the effects of mutations.

Distribution of energies calculated according to Equation 4.3 for side-chain replacements
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4.5 Improving the void analysis

The aim was not to improve the actual void analysis, but to optimize the side chain replace-

ment by the MutModel program.

Using the CATH (V 2.3) and PDB databases, we first find domains that differ from one

another by only one residue and whose structures have been determined by X-ray crystal-

lography were identified with a resolution ≤3Å. A Perl program was written to create a

list of native proteins with their corresponding mutant by reading through the CATH file

and collecting all domains with the same CATH numbers into an array. It then takes each

domain in turn, checks if it is a native (i.e. not described in the PDB file as a mutant), and

then checks all the other domains in its CATH set and selects those that are mutants and

differ from it by only one residue. The list was in the form of the name of the native domain

followed by the number of related mutant. The native and mutant details are given on sub-

sequent lines (the positions of the ‘changed’ residue in both the native and mutant, and the

native and mutant residue). The file contains 2,129 native domains with their correspond-

ing mutants from which a total of 19,276 native/mutant pairs were obtained. Another Perl

program takes each native-mutation pair from the list created in the previous step, performs

MutModel to exchange the appropriate residue, then ProFit is used to fit the new modelled

mutant domain against that of the mutant crystal-structure measuring the backbone and

side-chain Root Mean Square Deviations (RMSDs). First the structures were compared by

fitting on Cα atoms and rejected if the Cα-RMSD was lg 0.5Å using ProFit. This was to en-

sure that there is no structural rearrangement resulted from the mutation. ProFit was then

used to calculate the backbone and side-chain RMSD for the mutated residue.

A further enhancement to the program was made to allow the user to specify the MutModel

evaluation method and parameters used, in particular the step-size and tolerance:

1. Evaluation method (1: Boolean; 2: Linear clash; 3: vdW (Lennard-Jones); 4:

vdW/Torsion.).

2. Tolerance in energy for accepting the parent (MOP) conformation or a standard ro-

tamer position, rather than the lowest overall energy.

3. Step size of rotation (in degrees).
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The evaluation was performed using various step-sizes (1, 5, 15, 30 and 60◦), with toler-

ance of 0, 1, 2 and 3 Kcal/mol clashed for the Boolean and Simple linear scale method (see

Tables 4.1 and 4.2) and tolerances of 0, 1, 5, 50, 100, 500 and 1000 Kcal/mol for the vdW

(Lennard-Jones) and vdW/Torsion method (see Tables 4.3 and 4.4).

By running the MutModel program on modelled mutations where structures are known

with varied combinations of the three parameters and observing the average RMSD, the

parameters to be used in calculating the voids with each method were optimised. The best

combinations of these parameters is used in the new clash and void analysis integrated into

the SAAPdap pipeline. Table 4.5 shows a summary of the best step size and tolerance for

the different evaluation methods. Surprisingly all evaluation methods showed the same

lowest mean RMSD of 1.30Å, with the two vdW energy methods showing a slightly better

standard deviation.

Table 4.1: Exploring different step-sizes and tolerance using MutModel (Method 1:
Boolean).

Stepsize Tolerance Sum
(RMS M*X)

Total
number

Mean
(RMS)

Standard
deviation

Variance
(Standard
deviation)

1 0 21559.19 15834 1.32 1.17 1.36
1 1 22346.57 15834 1.34 1.19 1.41
1 3 21791.64 15834 1.31 1.17 1.38
1 2 21805.72 15834 1.32 1.17 1.38
5 0 21527.51 15834 1.32 1.17 1.36
5 1 22161.09 15834 1.34 1.18 1.40
5 2 21592.11 15834 1.32 1.17 1.36
5 3 21518.76 15834 1.31 1.17 1.36
15 0 21905.23 15834 1.32 1.18 1.38
15 1 22439.83 15834 1.34 1.19 1.42
15 2 21937.30 15834 1.31 1.18 1.39
15 3 22010.84 15834 1.31 1.18 1.39
30 0 21773.45 15834 1.33 1.17 1.38
30 1 22039.87 15834 1.33 1.18 1.39
30 2 21921.01 15834 1.31 1.18 1.38
30 3 22135.71 15834 1.31 1.18 1.40
60 0 22222.08 15834 1.34 1.18 1.40
60 1 22279.68 15834 1.34 1.19 1.41
60 2 21774.01 15834 1.31 1.17 1.38
60 3 21567.75 15834 1.30 1.17 1.36
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Table 4.2: Exploring different step-sizes and tolerance using MutModel (Method 2: Linear).

Stepsize Tolerance Sum
(RMS M*X)

Total
number

Mean
(RMS)

Standard
deviation

Variance
(Standard
deviation)

1 0 21645.32 15834 1.32 1.17 1.37
1 2 21990.42 15834 1.31 1.18 1.39
1 1 21929.16 15834 1.32 1.18 1.38
1 3 22418.77 15834 1.31 1.19 1.42
5 0 21758.05 15834 1.33 1.17 1.37
5 1 21857.29 15834 1.32 1.17 1.38
5 2 21745.95 15834 1.30 1.17 1.37
5 3 21965.69 15834 1.30 1.18 1.39
15 0 22110.66 15834 1.33 1.18 1.40
15 1 22018.30 15834 1.32 1.18 1.39
15 2 20888.22 14887 1.32 1.18 1.40
15 3 21118.19 14913 1.32 1.19 1.42
30 0 21053.47 14932 1.36 1.19 1.41
30 1 21112.06 14933 1.34 1.19 1.41
30 2 21179.31 14919 1.32 1.19 1.42
30 3 21243.94 14921 1.32 1.19 1.42
60 0 21352.58 14781 1.36 1.20 1.44
60 1 20565.86 14748 1.33 1.18 1.39
60 2 21755.33 15834 1.30 1.17 1.37
60 3 21674.70 15834 1.30 1.17 1.37
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Table 4.3: Exploring different step-sizes and tolerance using MutModel (Method 3: vdW
(Lennard-Jones)).

Stepsize Tolerance Sum
(RMS M*X)

Total
number

Mean
(RMS)

Standard
deviation

Variance
(Standard
deviation)

1 0 24296.65 15834 1.52 1.24 1.53
1 1 24826.96 15834 1.47 1.25 1.57
1 5 22509.68 15834 1.32 1.19 1.42
1 10 22192.03 15834 1.33 1.18 1.40
1 50 22163.43 15834 1.33 1.18 1.40
1 100 22349.98 15834 1.33 1.19 1.41
1 500 22321.32 15834 1.32 1.19 1.41
1 1000 22397.68 15834 1.32 1.19 1.41
5 0 24317.88 15834 1.52 1.24 1.54
5 1 24882 15834 1.47 1.25 1.57
5 5 22524.97 15834 1.33 1.19 1.42
5 10 22443.83 15834 1.33 1.19 1.42
5 50 22180.18 15834 1.33 1.18 1.40
5 100 22302.54 15834 1.33 1.19 1.41
5 500 22289.92 15834 1.32 1.19 1.41
5 1000 22250 15834 1.32 1.19 1.41
15 0 23747.77 15612 1.52 1.23 1.52
15 1 24309.42 15613 1.47 1.25 1.56
15 5 22109.95 15620 1.32 1.19 1.42
15 10 21901.62 15619 1.32 1.18 1.40
15 50 22100.04 15624 1.33 1.19 1.41
15 100 22523.05 15830 1.33 1.19 1.42
15 500 22384.90 15829 1.32 1.19 1.41
15 1000 22392.70 15830 1.32 1.19 1.41
30 0 22899.81 15831 1.50 1.20 1.45
30 1 23723.77 15830 1.45 1.22 1.50
30 5 21459.78 15830 1.30 1.16 1.36
30 10 23121.80 15278 1.31 1.23 1.51
30 50 21093.90 15274 1.31 1.18 1.38
30 100 21485.75 15243 1.31 1.19 1.41
30 500 21482.62 15253 1.31 1.19 1.41
30 1000 21426.82 15266 1.31 1.18 1.40
60 0 24524.14 15834 1.50 1.24 1.55
60 1 25277.96 15834 1.38 1.26 1.60
60 5 23601.70 15834 1.32 1.22 1.49
60 10 23395.53 15834 1.33 1.22 1.48
60 50 22987.14 15834 1.32 1.20 1.45
60 100 23120.63 15834 1.32 1.21 1.46
60 500 22980.80 15834 1.32 1.20 1.45
60 1000 22925.33 15834 1.32 1.20 1.45
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Table 4.4: Exploring different step-sizes and tolerance using MutModel (Method 4:
vdW/Torsion).

Stepsize Tolerance Sum
(RMS M*X)

Total
number

Mean
(RMS)

Standard
deviation

Variance
(Standard
deviation)

1 0 23883.23 15834 1.46 1.23 1.51
1 1 24301.50 15834 1.42 1.24 1.53
1 5 22317.42 15834 1.32 1.19 1.41
1 50 21940.27 15834 1.32 1.18 1.39
1 10 21923.05 15834 1.32 1.18 1.38
1 100 22121.92 15834 1.32 1.18 1.40
1 500 22217.30 15834 1.32 1.18 1.40
1 1000 22305.66 15834 1.32 1.19 1.41
5 0 23881.62 15834 1.46 1.23 1.51
5 1 24246.59 15834 1.42 1.24 1.53
5 5 22243.86 15834 1.32 1.19 1.40
5 10 22312.50 15834 1.33 1.19 1.41
5 50 21953.47 15834 1.32 1.18 1.39
5 100 22049.08 15834 1.32 1.18 1.39
5 500 22170.77 15834 1.32 1.18 1.40
5 1000 22131.65 15834 1.32 1.18 1.40
15 0 23518.23 15834 1.45 1.22 1.49
15 1 23575.16 15834 1.41 1.22 1.49
15 5 21750.46 15834 1.31 1.17 1.37
15 10 21738.58 15834 1.31 1.17 1.37
15 50 21674.76 15765 1.31 1.17 1.37
15 100 22176.05 15738 1.32 1.19 1.41
15 500 22138.82 15738 1.32 1.19 1.41
15 1000 22164.27 15737 1.32 1.19 1.41
30 0 23600.11 15733 1.47 1.22 1.50
30 1 23262.38 15834 1.40 1.21 1.47
30 5 21306.22 15834 1.29 1.16 1.35
30 10 21314.11 15834 1.30 1.16 1.35
30 50 21569.50 15834 1.31 1.17 1.36
30 100 21382.10 15384 1.30 1.18 1.39
30 500 21450 15352 1.32 1.18 1.40
30 1000 21813.17 15834 1.30 1.17 1.38
60 0 25127.70 15834 1.46 1.26 1.59
60 1 24842.86 15266 1.37 1.28 1.63
60 5 23874.51 15282 1.34 1.25 1.56
60 10 23615.34 15287 1.34 1.24 1.54
60 50 23443.15 15834 1.33 1.22 1.48
60 100 23409.04 15834 1.32 1.22 1.48
60 500 23221.73 15834 1.32 1.21 1.47
60 1000 23123.50 15834 1.32 1.21 1.46
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Table 4.5: Summary of the best step size and tolerance for the different MutModel evalua-
tion methods.

Method Step size Tolerance Average
RMSD

Boolean evaluation 60 3 1.30
Linear evaluation 5 & 60 2 & 3 1.30
Energy evaluation vdW 30 5 1.30
Energy evaluation vdW/Torsion 30 10 & 100 & 1000 1.30

4.6 Conclusion and discussion

Clash and void analysis in SAAPdb involved Boolean evaluation with defined cut-offs. In

analyzing clashes, previous work defined a damaging clash as any side-chain that has at

least 3 van der Waals overlaps (of any degree) with other atoms. Similarly, voids were

considered damaging when they caused the creation of voids of volume> 275Å3, assuming

no compensatory movement within the protein structure. By looking at the distribution of

SNPs and PDs predicted to be damaging, it was clear that the Boolean method did not

accurately describe the effect of mutations causing clashes or voids, either overestimating

or underestimating damaging effects when values were close to the cut-off.

The new Clash analyses use a continuous energy scale calculation incorporating Lennard-

Jones and torsion energies using CHARMM (Brooks et al., 1983) parameters. An energy

cut-off representing ≤ 6 of side-chains (i.e. 4−5 structural) in high-resolution structures

was selected simply for visual indication that a mutation is likely to be damaging. The ac-

tual energy value is used in the machine learning described in Chapter 6. The MutModel

program is used in both clash and void analysis and parameters (step-size and tolerance)

used in searching side-chain positions were optimised by modelling known mutant struc-

tures. Consequently, the evaluation of both clash and void is optimised by using these

parameters. No other changes were made to the assessment of voids; the cut-off selected

previously is used as a visual indication that a void is likely to be damaging, but as with

clash energy actual void sizes are used in the machine learning described in Chapter 6.



Chapter 5

Improvements to Glycine and Proline

Analysis

∗ Some of the work in this chapter has been published in Al-Numair NS, Martin

ACR. 2013. The SAAP pipeline and database: tools to analyze the impact and predict

the pathogenicity of mutations. BMC Genomics 14.3:111.

Glycine and proline amino acids both exhibit an unusual Ramachandran dis-

tribution. Since glycine has no side-chain, it is able to access a wider range of

phi/psi combinations than the other amino acids, while the cyclic side-chain of

proline restricts the available phi angles available to it. Consequently, backbone

conformational changes may be necessary to accommodate mutations from-

glycine or to-proline, which could disrupt protein folding and alter function.

The purpose of this chapter is to improve the SAAPdap analysis by develop-

ing a pseudo-energy potential based on Ramachandran plots to supercede the

simple set of allowed backbone phi/psi angles used in SAAPdb previously.

172
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5.1 Introduction

Glycine and proline are both unusual amino acids as described in the following sections.

5.1.1 Glycine

Glycine (Figure 5.1) is the smallest of the 20 amino acids commonly found in proteins. As

described earlier, Glycine has an unusual Ramachandran distribution because it has no

side-chain (i.e. its R group is a hydrogen). Thus, glycine is able to access and adopt a

wider range of phi/psi combinations than other amino acids which are sterically hindered.

Because of this unique capability, when a mutation alters any native glycine residue whose

backbone torsion angles are unfavourable for other amino acids, there will be an effect on

local protein structure and consequently a potential effect on function.

(a) (b)

Figure 5.1: Glycine amino acid (Gly or G),
(a) Glycine molecular formula NH2CH2COOH . (b) Glycine structure.

5.1.2 Proline

Proline (Figure 5.2) like glycine, is a ‘structural’ amino acid (strictly ‘imino’) that has an

unusual Ramachandran distribution. The cyclic nature of the side-chain of the amino acid

gives it more conformational rigidity compared with the other 19 amino acids commonly

found in proteins. The cyclic side-chain, which links back to the backbone nitrogen, restricts

the available phi angles compared with other amino acids (Figure 5.2). Therefore, just as

with mutations from-glycine, it is expected that when a mutation introduces a proline at a

position where torsion angles are unfavourable, it will affect the local protein structure and

potentially protein folding and function.
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(a) (b)

Figure 5.2: Proline amino acid (Pro or P).
(a) Proline molecular formula C5H9NO2. (b) Proline structure.

The trans conformation of amino acids is found in the majority of peptide bonds because in

the cis conformation, the proximity of the chiral carbons makes the structure approximately

1000 times less stable than the trans form. However, cis peptide bonds between any residue

and proline (x-Pro) are only 4 times less stable than the trans conformation (Branden and

Tooze, 1999). A study by Stewart et al., (1990) showed that only 0.05% of all amide bonds are

cis, while 6.5% of x-Pro amide bonds are cis. While these values are considerably lower than

the 20% expected from the difference in energy, x-Pro cis amide bonds are stable enough

to occur at a higher frequency than other cis amide bonds. Kinetically, cis-trans proline

isomerization is a very slow process, and is considered the rate-limiting step in protein

folding where it occurs (Wedemeyer et al., 2002).

A mutation from a cis-proline to any other amino acid is likely to disrupt the protein-fold

significantly because an amino acid other than proline is likely to adopt the trans conforma-

tion. Such a change is very likely to affect function.

In the SAAPdb analysis, mutation of a cis-proline to another amino acid is treated as a

Boolean analysis, no change is made in this work. However, mutations that cause changes

either from-glycine or to-proline that involve changes in the favoured/disfavoured regions

of the Ramachandran plot are potentially more subtle in nature. Previously simple ranges

of allowed angles were used, but these may be sensitive to precise structural details making

Boolean analysis inadequate for outcome prediction.
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5.2 Analysis of sensitivity to structural details

This analysis was initiated as part of a Masters thesis (Al-Numair, 2010) and was updated

as part of this doctoral research using the latest SAAPdb version (Chapter 3).

As described above, originally the SAAP analysis used a very simple set of allowed bound-

aries for backbone phi/psi angles to define a damaging mutation. These ranges were intro-

duced during analysis of 1363 point mutations obtained from the P53 mutation databank (

Martin et al. (2002); www.bioinf.org.uk/P53/). In that work, allowed regions for pro-

line of −70.0◦ ≤ φ ≤ −50.0◦ and (−70.0◦ ≤ ψ ≤ −50.0◦ or 110.0◦ ≤ ψ ≤ 130◦) were used

and a total of 50 distinct damaging mutations to proline were identified. In Figure 5.3, the

allowed regions for proline are shown in pink within the hatched region allowed for other

amino acids. These ranges for the allowed regions are very conservative, possibly resulting

in false-positive results (i.e an over-prediction of damage caused by a proline mutation).

Indeed, some of the mutations studied in P53 were borderline and may be accommodated

by a very small structural rearrangement (e.g. L137P).

In the P53 database, Martin et al. identified a total of 70 distinct mutations from a na-

tive glycine to another residue. The allowed regions of the Ramachandran plot for non-

glycine/non-proline residues were, defined as: (−180.0◦ ≤ φ ≤ −30.0◦/60.0◦ ≤ ψ ≤ 180.0◦)

or (−155.0◦ ≤ φ ≤ −15.0◦/ − 90.0◦ ≤ ψ ≤ 60.0◦) or (−180.0◦ ≤ φ ≤ −45.0◦/ − 180.0◦ ≤

ψ ≤ − 120.0◦) or (30.0◦ ≤ φ ≤ 90.0◦/20.0◦ ≤ ψ ≤ 105.0◦). All non-glycine residues in

the P53 crystal structure fell within these limits. In Figure 5.3, the allowed areas for non-

glycine/non-proline residues are shaded grey.

Mutation data analysed in this section were obtained from SAAPdb PostgreSQL database.

Glycine and proline mutation analyses were implemented using several custom Perl scripts.

The first Perl script was used to examine the gathered data in order to determine the num-

ber of structures to which each mutation mapped. This method was used for both SNPs and

PDs across all available mutations imported from SAAPdb, and across all proteins. Another

Perl script was written for counting mutations classified as unfavourable and mapped to at

least 2 structures. The same script was used to calculate the fraction of structures in which

a particular mutation was classified as unfavourable. Mutations classified as unfavourable

for each individual SAAP analysis type, where at least one structure was classified as un-

favourable were also identified using this Perl script.
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As with analysis of clashes and voids (Chapter 4) an enhancement to the original analysis

program was made to introduce an option (-nat) to include no mutant structures, but only

native structures from the PDB. A -res option was also added to restrict the analysis to

either high resolution (≤ 2.0Å when -res=H) or low resolution (> 2.0Å when -res=L)

structures. The fraction of structures to which a mutation is mapped that show a structural

effect in the Boolean analysis (F) is defined as in Equation 4.1.

Figure 5.3: Allowed regions for proline and glycine using the previous method.

The pink areas mark the restricted conformation for proline residues used in the Boolean analysis

the hatched grey area marks the regions for non-proline, non-glycine residues, and the yellow colour

marks the rest of the conformational space, primarily occupied by glycine residues.
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5.2.1 Glycine and proline analysis

In this section, using the old Boolean analysis, the results of mapping SNPs and PDs to

native structures with high resolution are presented to show the need for improving the

analysis. If the distribution of the fraction of structures (F) in which from-glycine mutations

are classified as unfavourable using the rigid φ/ψ cut-offs defined earlier (Figure 5.3) for

SNPs (Figure 5.4a) is compared with the equivalent analysis of to-proline mutations (Fig-

ure 5.5a), we see a similar distribution. Surprisingly the results are clearly skewed to F = 1,

whereas, one would expect such mutations not to have any effect and therefore one would

expect that the graphs would be heavily skewed towards F = 0. In other words we appear to

have a large number of false positive and this clearly indicates the need for a better analysis

of these effects.

In the case of PDs (Figure 5.4b and 5.5b), a much broader distribution is observed. In these

cases, one would hope to see distributions skewed towards F = 1. This is broadly the case for

PDs resulting from to-proline mutations with 51% of mutations having F ≥ 0.95. However,

the situation is very different for PDs resulting from-glycine mutations where 21% of mu-

tations have F ≥ 0.95, but 23% have F < 0.1. These broad distributions indicate sensitivity

to precise structural details and it is likely that mutations with F = 1 fall well within dis-

allowed regions while other mutations with F < 1 fall on the boundaries of the disallowed

regions in the Ramachandran plot (Figure 5.3).

5.3 Calculation of Ramachandran plot pseudo-energies TDMs

This section outlines the development and implementation of a pseudo-energy potential

based on Ramachandran plots (Torsion Density Maps (TDMs)) to be used in the new SAAP-

dap analysis. Initially a non-redundant set (sequence identity < 25%) of high-resolution

protein domains (resolution ≤1.8Å, R-Factor ≤0.3) was selected from the CATH pdblist

(CATH v3.4.0). The number of proteins was insufficient for our requirements, so PISCES,

a Protein Sequence Culling Server (http://dunbrack.fccc.edu) was used instead to

produce the dataset. PISCES selects a subset from the PDB based on specified thresholds for

resolution, sequence identity, and Rfactor. All non-X-ray entries were excluded. PISCES de-

termines identities for PDB sequences using the CE structural alignment and uses a Z-score

of 3.5 as the threshold to accept possible evolutionary relationships (Wang and Dunbrack,

2005). Table 5.1 shows the specifications and numbers obtained from PISCES for the subset

used in these analyses.
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(a) SNP

(b) PD

Figure 5.4: Boolean Glycine analysis
(a) The original Boolean glycine method tested on 29 SNP mutation using native structures. (b) The
original Boolean glycine method tested on 177 PD mutation using native structures. A fraction of
F = 0 represents no mutations classified as unfavourable. whereas F = 1 represents all mutations
classified as unfavourable. In (a) and (b), each bar less than the next bar label (e.g. Bar 0.25 is 0.25 ≤
F < 0.3 and bar 0.95 is 0.95 ≤ F < 1), the bar labelled with one represent all the fraction equal to one
only (i.e. all the structures are classified as unfavourable).
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(a) SNP

(b) PD

Figure 5.5: Boolean Proline analysis
(a) The original Boolean proline method tested on 24 SNP mutation using native structures. (b) The
original Boolean proline method tested on 189 PD mutation using native structures. A fraction of
F = 0 represents no mutations classified as unfavourable. whereas F = 1 represents all mutations
classified as unfavourable. In (a) and (b), each bar less than the next bar label (e.g. Bar 0.25 is 0.25 ≤
F < 0.3 and bar 0.95 is 0.95 ≤ F < 1), the bar labelled with one represent all the fraction equal to one
only (i.e. all the structures are classified as unfavourable).
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A Perl program was written to generate Ramachandran plots or Torsion Density Maps

(TDMs) on a 1-degree grid (360x360 cell matrix) for proline, glycine and ‘other’ amino

acids (non-glycine/proline). The program then extracted the PDB ID and chain for each

entry in the dataset, and accessed a local copy of the PDB. The torsion and getchain

programs (ACRM unpublished) were used to calculate backbone torsion angles for each

chain. Phi/Psi angles were then rounded to the nearest integer and the count of Phi/Psi

combinations was accumulated in the cells of Glycine, Proline and Other TDMs.

The different datasets shown in Table 5.1 were investigated, but throughout this chapter the

dataset with 1.8Å resolution is discussed only.

Table 5.1: Protein dataset obtained from PISCES.

Percentage Identity Resolution R-value Domains Chains

25 ≤1.5Å 0.3 111,005 1,689
25 ≤1.8Å 0.3 111,028 3,630
25 ≤2.5Å 0.3 111,923 6,564

5.3.1 Raw data and log transformation

Ramachandran plots were generated with the total count in each cell (Figures 5.6a, 5.7a

and 5.8a). To reveal more information in the plots and transform this to pseudo-energy, the

ln (1+count) matrices were then plotted (Figure 5.6b, Figure 5.7b and Figure 5.8b).

This preliminary analysis showed that the data were not smoothly distributed implying the

need for smoothing.
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(a)

(b)

Figure 5.6: Glycine TDM.
(a) Glycine Ramachandran plot generated with the total observed count in each cell.
(b) Glycine Ramachandran plot generated with the ln of total observed count in each cell.
(Dark-purple to dark-red heat map).
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(a)

(b)

Figure 5.7: Proline TDM.
(a) Proline Ramachandran plot generated with the total observed count in each cell.
(b) Proline Ramachandran plot generated with the total ln observed count in each cell.
(Dark-purple to dark-red heat map).
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(a)

(b)

Figure 5.8: Everything except Gly/Pro TDM.
(a) Everything except Gly/Pro Ramachandran plot generated with the total observed count
in each cell. (b) Everything except Gly/Pro Ramachandran plot generated with the total ln
observed count in each cell. (Dark-purple to dark-red heat map).
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5.3.2 Cell smoothing

Figures 5.6b, 5.7b and 5.8b showed that the data are not smoothly distributed and there

are many isolated points in the plot. The raw observed number of residues with a given

phi/psi combination data were smoothed by averaging the data in a cell with neighbouring

cells as shown in Equation 5.2. Values of 1, 2, 4, 6 and 8 were used for w, representing

smoothing over 3X3, 5X5, 9x9 13X13 and 17X17 regions respectively. An energy value was

then calculated for each cell as:

E = ln
(

1+obss
1+exp

)
(5.1)

Where obss is the smoothed observed count and exp is the expected number calculated as

the total number of observations divided by the number of cells.

Si,j =
∑i+w

x=i−w
∑i+w

y=j−w nx,y/N



x = 360 + x if(x < 0)

y = 360 + y if(y > 0)

x = x− 360 if(x > 360)

y = y − 360 if(y > 360)
(5.2)

Results of different smoothing are shown in Figures 5.9, 5.10 and 5.11. Of these, the w =

6, (13X13) smoothing was chosen because it showed the best smoothing while retaining all

scattered data present in the non-smoothed TDM (e.g. Figure 5.11f vs Figure 5.11e - the

17X17 smoothing loses a favoured region in the middle of the plot).
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(a) No smoothing (b) 3x3 cell smoothing

(c) 5x5 cell smoothing (d) 9x9 cell smoothing

(e) 13x13 cell smoothing (f) 17x17 cell smoothing

Figure 5.9: Glycine TDM smoothing.
(a) ln(obs/exp), (b)-(f) smoothed ln(obs/exp). (Dark-purple to dark-red heat map)
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(a) No smoothing (b) 3x3 cell smoothing

(c) 5x5 cell smoothing (d) 9x9 cell smoothing

(e) 13x13 cell smoothing (f) 17x17 cell smoothing

Figure 5.10: Proline TDM smoothing.
(a) ln(obs/exp), (b)-(f) smoothed ln(obs/exp). (Dark-purple to dark-red heat map).
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(a) No smoothing (b) 3x3 cell smoothing

(c) 5x5 cell smoothing (d) 9x9 cell smoothing

(e) 13x13 cell smoothing (f) 17x17 cell smoothing

Figure 5.11: Non Glycine/Proline TDM smoothing.
(a) ln(obs/exp), (b)-(f) smoothed ln(obs/exp). (Dark-purple to dark-red heat map).
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5.3.3 Threshold selection

The smoothed TDM (Ramachandran plot) created in the previous step was used to select

the threshold for a visual indication of whether mutations are likely to be damaging. The

energy values are used directly in the machine learning method (Chapter 6). The thresh-

old was based on ∼1% of observations in high-quality, non-redundant structures having a

worse energy for both Proline and Non-Gly/Pro TDMs and ∼2.5% for Glycine TDM (0.35,

0.5 and 1.5 for Glycine, Proline and Non-Gly/Pro TDMs (Table 5.2). Figure 5.12 shows the

final TDMs after applying the threshold cutoff.

Table 5.2: Threshold selection.
Using 3630 PDB list (Percentage Identity = 25, Resolution = 1.8Å and R-value = 0.3).

Glycine Proline Non-Gly/Pro
Energy threshold 0.35 0.5 1.5
Total count from all the cells 54767 34545 6557157
Expected count in each cell 0.42 0.27 5.06
Out of threshold count 1339 (2.445%) 298 (0.863%) 6073 (0.926%)

5.3.4 Comparison between the previous and new method

Comparing Figure 5.12b (allowed regions for proline based on 1% of prolines having a

worse energy) with the pink regions in Figure 5.3, which represent the regions allowed for

proline in the old Boolean analysis (see Figure 5.13b for comparison). The new analysis

demonstrates that in the previous method the regions were much too restrictive.

Figures 5.13a and 5.13c shows the same comparison between the allowed regions in the

new analysis and the previous Boolean analysis for Glycine and Non-Gly/Pro TDMs.
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(a) Glycine (b) Proline

(c) Non-Gly/Pro

Figure 5.12: Final TDMs after applying the threshold cutoff showing the allowed regions in
new analysis. (Dark-purple to dark-red heat map).
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(a) Glycine - The allowed regions for glycine using
the previous method where non -pink area marks the
conformational space, primarily occupied by glycine
residues.

(b) Proline - Pink areas mark the restricted
conformation for proline residues used in the Boolean
analysis.

(c) Non-gly/pro - The hatched grey area marks the
regions for non-proline, non-glycine residues residues
used in the Boolean analysis.

Figure 5.13: Comparison between the allowed regions in new method and old method.
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5.4 Discussion

In summary, the glycine and proline analyses have been improved by moving from sim-

ple Boolean decision making with rather arbitrary boundaries to an energy-evaluation ap-

proach. Figures 5.13a, b and c clearly shows that the previous allowed regions were inaccu-

rate and, in particular, the allowed regions for proline were incorrect. These analyses have

been integrated into the new SAAPdap pipeline and web interface (Chapter 3). Detailed re-

sults of these analyses were then used to build the pathogenicity predictor using a machine

learning approach (Chapter 6).

While the change from Boolean decision making to pseudo-energy estimation should have

improved the analyses of glycine and proline mutations, it is recognised that limitations

remain, which could be the subject of future improvements. For example, the cyclic side-

chain of proline means that there is no hydrogen bond to the backbone nitrogen.

Consequently, proline cannot satisfy the backbone hydrogen bond donation requirements

in α-helices and β-sheets other than at alternate position in the edge strands where hydro-

gen bonds are not required. This restriction is something that is currently not accounted for

in our model, but is an important factor to consider in the future.



Chapter 6

Predicting Damaging Mutations

(SAAPpred)
∗ The method and results in this chapter have been published (Al-Numair NS, Mar-

tin ACR. 2013. The SAAP pipeline and database: tools to analyze the impact and predict

the pathogenicity of mutations. BMC Genomics 14.3:1-11). However some of the results

shown here are more recent after improving the methods.

The identification of the effect of missense pathogenic mutations has seen

great progress through the development of computing applications, the major

issue being to separate neutral from pathogenic mutations. Several software

tools are currently available to analyse and study these missense mutations (e.g.

MutationAssessor - Section 2.6.1, SIFT - Section 2.6.3, PolyPhen2 - Section 2.6.2,

Condel - Section 2.6.4 and most recently FATHMM - Section 2.6.5). These tools

use various methods to make predictions, such as the conservation of amino

acids in homologous sequences (Reva et al., 2011), consensus deleteriousness

scores (González-Pérez and López-Bigas, 2011), and position-specific scoring

matrices (Adzhubei et al., 2010; Ferrer-Costa et al., 2005).

This chapter describes the main motivation for the project, namely the

construction of the SAAPpred predictive tool using the updated Single Amino

Acid Polymorphism database (SAAPdb) and Single Amino Acid Polymorphism

data analyses pipeline (SAAPdap) including the enhanced analyses described

in the previous two chapters. The next chapter (Cardiomyopathy Mutations)

describes how the SAAPpred predictive tool was used together with the

SAAPdap pipeline on a specific disease-related dataset.

192
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6.1 Introduction

An analysis of the data in the Single Amino Acid Polymorphism database (SAAPdb) (Fig-

ure 3.20) shows that there are clear differences in the sequence and structural characteristics

of SNPs and pathogenic deviations (PDs): PDs have additional, and more severe, structural

effects. This is therefore a clear indicator that these analyses can be used to predict the

pathogenicity of a novel mutation.

SAAPdb and SAAPdap currently provide sequence and structural analyses of mutations

in structures, deposited in the Protein Data Bank (PDB). Several enhancements were made

to the structural analyses (described in previous Chapters 4 and 5) and implemented in

SAAPdap in order to provide further information and more detailed structural effects with

the aim of creating the SAAPpred tool to be used in predicting the pathogenicity of any

novel mutation in the PDB structure.

The following sections describe and discuss the various steps involved in the construction

of the SAAPpred tool beginning with preliminary experiments through to a general com-

parison with other available predictors.

6.2 Preliminary experiments

For this preliminary work, the data and separation of neutral and pathogenic mutation

as used by SAAPdb were employed. Later work shows that the boundary between these

classes is different from that seen in datasets such as HumVar used in PolyPhen-2. These

differences will be discussed in Section 6.2.3.5.

6.2.1 Methods

This section will describe methods used to perform preliminary data selection and prepa-

ration, describe how these data were transformed into a machine-readable format to utilise

and optimise several machine learning methods finally used to train and build SAAPpred.

6.2.1.1 Data sets

The chapter describing SAAPdb (Chapter 3) describes in detail how an extensive and up-to-

date dataset was successfully rebuilt, how raw data were imported from SNP repositories
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and the various locus-specific mutation databases (LSMDBs) and how the sequence and

structural analyses were obtained including the enhanced and improved structural analyses

(Chapters 4 and 5).

In order to import and access SNP and PD mutation data from SAAPdb, a Perl script was

written that incorporated Structured Query Language (SQL) queries (Section 2.2.1). An

example PostgreSQL query that extracts SNPs from SAAPdb shown in Figure 6.1.

SELECT a.snp_lsid, a.sprot_lsid, a.aa_wildtype,
a.snp_protein_position, a.alleles_mutations,
COUNT(DISTINCT s.pdb_id)

FROM snp2annotated a, saap s
WHERE a.snp_lsid = s.snp_lsidG
GROUP BY a.snp_lsid,a.sprot_lsid,a.aa_wildtype,

a.snp_protein_position,a.alleles_mutations;

-------------------+-----

Figure 6.1: An example PostgreSQL query.
Two tables (snp2annotated aliased to a and saap aliased to s) are queried with the condition
a.snp_lsid and s.snp_lsid; and the distinct PDB id count for each mutation printed among
other information a.snp_lsid, a.sprot_lsid, a.aa_wildtype, a.snp_protein_position and
a.alleles_mutations as defined by the GROUP BY n.name clause; all PostgreSQL commands and func-
tions are given in capitals.

The Perl script was enhanced to allow the following command-line parameters:

• -strtype which defined the type of PDB structure and could take three values, ‘Na-

tive’, ‘Mutant’ or ‘All’ (i.e. both Native and Mutant);

• -restype which indicated the resolution of the structure and also took three values:

‘High’ (equivalent to ≤ 2.0Å), ‘Low’ (equivalent to > 2.0Å) or ‘All’.

The PDB resolution was determined from a PDB file using an external program (getresol,

ACRM, unpublished). The aim was to divide PDB data into either high resolution or low

resolution structures in order to determine whether high resolution structures would be

more useful with machine learning method used in later stages.

For initial experiments, from 611,641 pathogenic deviations (PDs) and 71,409 neutral mu-

tations (SNPs) 405,497 PDs (i.e. identified as damaging by at least one of SAAPdap struc-

tural/sequence analyses) and 45,699 SNPs (i.e. negatively identified as damaging by at

least one of SAAPdap structural/sequence analyses) were used as described in Table 6.1

and Figure 6.2.
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Table 6.1: Breakdown of the number of mutations in SAAPdb and their mapping to struc-
ture. In some cases, several hundred structures are available (e.g. haemoglobin, carbonic
anhydrase, prthrombin, transthyretin, insulin, CDK2, lysozyme) and, on average there are
two copies of each chain in each PDB file associated to SNPs and four copies for PDB files
associated with PDs.

Number of Mutations PDs SNPs
Mapped to UniProtKB/Swiss-Prot 13,059 48,452
Mapped to PDB 6,527 17,915
Mapped to multiple PDBs 202,566 33,369
Mapped to multiple Chains 611,641 71,409

6.2.1.2 Class value

The second step was to run the SAAPdap analyses pipeline (Section 3.8.3) for complete

structural and sequence analyses on each mutation using the PDB chain that matched a

specified UniProt accession number (obtained from PDBSWS, (Martin, 2005), Section 2.1.4).

SAAPdap was used in place of the pre-calculated analysis in SAAPdb because the en-

hanced analyses (Chapter 4 and 5) have not yet been incorporated into SAAPdb. The

SAAPdap pipeline code calls various plugins (‘binding’, ‘buriedcharge’, ‘cispro’, ‘clashes’,

‘corephilic’, ‘glycine’, ‘hbonds’, ‘impact’, ‘interface’, ‘proline’, ‘sprotft’, ‘ssgeom’, ‘surface-

phobic’ and ‘voids’) each of which implements an individual analysis. Another Perl pro-

gram runSAAPdapOnGrid was written to perform this step. This program processed and

batched SNP and PD mutations clean data; created the .sh file and submitted jobs to a lo-

cal computing farm (based on the Oracle Grid Engine)1; and recorded any errors. A further

enhancement to this program was to use -recordErrors which records all errors and cat-

egorizes them and re-submits failed jobs to the grid one more time before saving them as

an error to be looked at for any further action.

The output of the pipeline program (SAAPdap) is saved in a JavaScript Object Notation

(JSON) format file, an example of a JSON file obtained from SAAPdap is shown in Ap-

pendix [C]. Appendix [C.i] contains detailed tables that explain of the SAAPdap JSON file

output and the assigned class. At this stage another Perl program was written to parse the

1Previously known as Sun Grid Engine (SGE) it is an open source batch-queuing system, developed and
supported by Sun Microsystems and now by Oracle. SGE is used on a computer farm cluster and is responsible
for accepting, scheduling, dispatching, and managing the remote and distributed execution of large numbers
of standalone, parallel or interactive user jobs. It also manages and schedules the allocation of distributed
resources such as processors, memory, disk space.
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JSON file, JSON2CSV, which uses several Perl modules to extract structural and sequence

results obtained from SAAPdb for each mutation and give it a unique ID (see Figure 6.3)

and saves the data into a comma-separated value (CSV) file. JSON2CSV program will list

each mutation with its features (analysis results) and a class. A mutation could adopt one

of two class values: Neutral (snp), or pathogenic (pd). Figure 6.4 shows example of two

entries obtained from the CSV file.

At this stage another Perl program was written, CSV2ARFF (ACRM, unpublished), to con-

vert the CSV file obtained from the previous step to an Attribute-Relation File Format

(ARFF) file to be used in subsequent machine learning experiments.

At the end of this step for the preliminary experiments a balanced set of mutation data

from SAAPdb was used that consisted of 30,500 SNPs mapped to PDB structures and a

random selection of 30,500 PDs (also mapped to PDB structures). This was processed by

SAAPdap without any errors or missing structural or sequence analyses results. Where

several structures were available for a mutated residue, each was used as an independent

data point for machine learning. At this stage the analyses was restricted to high-resolution

PDB entries (≤ 2.0Å) (see Figure 6.2).

Figure 6.3: An example of a single amino acid polymorphism annotation.
Each mutation is a unique combination of: (i) UniProtKB/Swiss-Prot primary accession
number of a protein in which the mutation occurs, (ii) the amino acid type found native
in disease unaffected individuals, (iii) residue position in protein sequences, as reported by
the UniProtKB/Swiss-Prot, and (iv) the amino acid type found in the mutated genotype.
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1:P06396:231:N:D:1kcq:A:204:D:crystal:1.65A:17.70%:
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3.07199999999999,68.876,0.666097558274395,20,0,0.08,
1,0,0,85.624,54.96,47.454,41.197,40.834,37.345,32.599,30.618,24.8,23.758,85.624,
54.96,47.454,41.197,40.834,37.345,32.599,30.618,24.8,23.758,-5.40,-100,-100,0,SNP

2:P31785:222:R:C:2b5i:C:200:C:crystal:2.30A:22.50%:
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24.319,1,20,-1.84,0,1,0,0,100.853,85.731,76.998,
55.629,50.863,47.287,39.666,32.125,31.622,29.827,100.853,85.731,76.998,55.629,
50.863,47.287,39.666,32.125,31.622,29.827,-3.68,-100,-100,0,PD

Figure 6.4: An example CSV file.
Obtained from the JSON2CSV program consisting of a unique ID (Figure 6.3) and the forty-seven features
resulting from the SAAPdap analysis.

6.2.1.3 Feature encoding (Training attributes)

In addition to the class value, each mutation had forty-seven features (attributes) assigned

to it. For initial experiments, all forty-seven available features were selected as potential

predictors of pathogenicity. Table 6.2 shows the forty-seven features obtained from struc-

tural or sequence analyses in SAAPdap.

Table 6.2: The forty seven features obtained from SAAPdap.

Number Attribute Variable type Value type
1 Binding Binding analyses Boolean
2-14 SProtFT The 13 SwissProt features Boolean
15 Interface Interface analyses 4 sa
16 Relaccess The relative accessibility of this residue 4 sa
17 Impact Conservation score at this position in the alignment Score
18 HBonds HBonds Energy
19 SPhobic Surface hydrophobicity of mutant residue 4
20 CPhilic Buried hydrophilic 4
21 BCharge Buried charge 4
22 SSGeom SSGeom analyses Boolean
23 Voids Voids analyses Volume
24-33 MLargest Top 10 voids in the mutant Volume
34-43 NLargest Top 10 voids in the native Volume
44 Clash Clash analyses Energy
45 Glycine Glycine analyses Energy
46 Proline Proline analyses Energy
47 CisPro CisPro analyses Boolean
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6.2.2 Machine learning

There are many approaches to machine learning and many algorithms have been devel-

oped. It is often the case that a researcher needs to experiment with several different op-

tions in order to identify the technique that provides the most appropriate solution to their

particular problem. With this is mind, software such as WEKA (Hall et al., 2009) and Rapid-

Miner (Mierswa et al., 2006) implement a wide range of tools and techniques. At the same

time, they provide a user-friendly interface for the creation, optimisation and evaluation of

machine learning experiments.

6.2.2.1 Survey of classifiers using WEKA

WEKA (Hall et al., 2009) (Section 2.5) is an open-source collection of machine learning algo-

rithms written in Java. Machine learning experiments began by selecting the most appropri-

ate machine learning method. All the supervised classifiers implemented in WEKA_3.6.9

were trained on the dataset (using ALL attributes). In this step, the values of default pa-

rameters were not changed. The reason for this was to validate the choice of dataset and

attributes.

All of the methods tested had relatively high specificity (∼0.9) and lower sensitivity (∼0.4-

0.5). In other words, classifiers were more likely to miss a prediction of pathogenicity (a

false negative) than report a false positive. This is a desirable result when the aim of the

classifier is to indicate mutations as damaging with high confidence. The Matthews Cor-

relation Coefficient (MCC) is the best single indicator of a model’s performance, as it takes

into account both true and false positives and negatives: TP , TN , FP and FN . For more

details, see the definition of the MCC given in Section 2.3.7. Most of the methods tested had

similar, mediocre MCC scores of ∼0.4, indicating that the selected parameters had some

(but far from perfect) predictive value, potentially to be improved once various parame-

ters combination are tested and optimized. Furthermore, performance measures indicated

that there were no clear benefits in using numerical (regression) models compared to binary

(tree and other rule-based model) classification.

Based on the initial survey and other previously published methods, two of the supervised

learning methods were tested in more detail using a wider range of parameters and training

data set-ups. The results of this step are presented in the next section.
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6.2.3 Results and discussion

6.2.3.1 Neural network (NN)

The WEKA implementation of a neural network (weka.classifiers.functions.

MultilayerPerceptron) was used. The model was trained on normalised attribute

values2 using a sigmoid function, using 5 or 50 hidden nodes over 500 epochs, with all

other model variables set to WEKA’s defaults. An accuracy (ACC) of 0.862 and a Matthews

Correlation Coefficient (MCC) of 0.803 (based on 10-fold cross-validation and 5 hidden

nodes) were obtained. Adjusting the value of parameters clearly affect the result and

outperformed the initial test run.

6.2.3.2 Random forest (RF)

The other selected method was the Random Forest implemented in the

weka.classifiers.trees.RandomForest method. This is based on Breiman’s

Random Forest algorithm (Breiman, 2001). This algorithm creates un-pruned random

trees, with no limit on tree depth. As this classifier is unable to take into account missing

attribute values, they must be created: typically they are calculated either from mean

values (for continuous numerical attributes), or the most common category (for nominal

attributes). In these experiments, as the percentage of missing data (attributes) was very

small, it was instead decided to remove them from the training and testing datasets when

the model was built.

The balanced dataset of 30,500 SNPs 30,500 PDs mutations extracted and prepared from

SAAPdb previously were used in training and testing the model using a Random Forest

method. All results obtained from WEKA results from 10-fold cross-validation testing.

The common recommendation for the tree-number optimisation is to increase the number

of trees until the Out Of Bag (OOB) error3 stops decreasing. A range from 10-2500 trees

per ensemble was tested; the WEKA implementation of the Random Forest method is very

memory-demanding and large amount of RAM must be allocated to build Random Forest

using up to 2500 trees for the training dataset. Table 6.3 shows the Random Forest’s per-

formance while surveying parameter space, starting with different numbers of trees T= 10

- 2500. T = 1000 was selected as an optimum tree-number as increasing the number of trees

above that number did not improve the performance with an accuracy (ACC) of 0.946%, a

Matthews Correlation Coefficient (MCC) of 0.893 and area under the ROC curve of 0.985.
2i.e. all attribute values are adjusted to range between 0 and 1
3This is the Out Of Bag error – an internal error estimate of a Random Forest as it is being constructed
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Having selected the number of trees, the next step was trying different numbers of features

(attributes) mtry ranging from 5 up to 45 (the maximum is 47). Using more features im-

proved the training process, mtry = 40 was selected. The best performance using T= 1000

and mtry = 40 gave us an ACC of 0.956, MCC of 0.912 and ROC of 0.991 based on WEKA

10-fold cross-validation. Each run was repeated ten times and a summary of average score

in Table 6.3.

6.2.3.3 Training SAAPpred on different dataset

At that stage other datasets were examined with the available pathogenicity predictor and

the dataset they used. Part of our preliminary experiment was trying to explore training

and testing on the PolyPhen dataset (HumDiv: 5564 deleterious + 7539 neutral mutations

from the same set of 978 human proteins and HumVar: 22196 deleterious + 21119 neutral

mutations in 9679 human proteins), and the separate HumDiv and HumVar datasets using

the Random Forest method with WEKA 10-fold cross-validation. Any new dataset for train-

ing or testing using machine learning methods was prepared following the same methods

described in sections 6.2.1.2 and 6.2.1.3 first by running SAAPdap to obtain the structural

and sequence results in JSON format; convert JSON to CSV file then assigning the class

values (snp or pd) and then selecting the feature encoding (Training attributes) and finally

producing an ARFF file to be used for training and testing experiments.

6.2.3.4 Summary of preliminary training results

Figure 6.5 shows the ROC curve of the preliminary results and Table 6.4 shows a sum-

mary of preliminary experiments performance measures. At that stage no filtering was

performed and each entry was used as an independent data point for machine learning.

PolyPhen dataset (HumVar and HumDiv) using fully and no balance (snp:pd) data ex-

tracted nor checking for missing results.

From the ROC curve presented in Figure 6.5, training on SAAP data works best presum-

ably because the data set is so large. PolyPhen dataset does not do better than HumVar or

HumDiv, presumably because the SNP/PD boundary in HumVar and HumDiv is different,

so the training data are less clear. HumDiv, was compiled from all damaging alleles with

known effects on the molecular function causing human Mendelian diseases, present in the

UniProtKB database, together with differences between human proteins and their closely
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related mammalian homologs, assumed to be non-damaging where is HumVar, consisted

of all human disease-causing mutations from UniProtKB, together with common human

nsSNPs (Minor Allele Frequency > 1%) without annotated involvement in disease, which

were treated as non-damaging.

Figure 6.5: ROC curves of SAAPpred predictor training on different dataset SAAPdb,
Polyphen (HumVar + HumDir), HumVar and HumDiv dataset. Results from WEKA 10-
fold cross-validation.
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6.2.3.5 Testing SAAPpred (trained on SAAPdb) on HumVar data

WEKA allows you to save trained models as Java binary serialized objects and use them to

obtain predictions/classifications via the command line. As mentioned before the HumVar

dataset is a popular benchmark dataset composed of pathogenic and common nsSNVs used

by PolyPhen2 and CONDEL to benchmark their prediction models for pathogenic SNPs.

To test HumVar using the best SAAPpred model built in the previous section (trained on

the SAAPdb dataset) the HumVar dataset was prepared as described above to generate an

ARFF file similar to the one used in building the classifier model. The actual class (snp or

pd) is contained in the file and the output will contain both the actual and predicted class.

An example of the output format is shown in Figure 6.6.

Sample output:
=== Predictions on HumVar Test data ===

inst# actual predicted error prediction
1 2:pd 1:snp + 0.329
2 1:? 1:snp 0.886
3 2:pd 2:pd 0.587
4 1:snp 1:snp 0.947
5 2:pd 1:snp + 0.683
6 1:snp 1:snp 0.952
7 2:? 2:pd 0.729
8 1:snp 1:snp 0.54
...

Figure 6.6: An example predictions output file.
Using the SAAPpred models training on SAAPdb and testing on HumVar dataset. The output will contain test
instance index, actual class index:actual class value, prediction class index:prediction class
value, [+], probability of prediction class value. If the test class attributes were marked by "?", the "actual"
column, which can be ignored, simply states that that instance belongs to an unknown class. The error label
will indicate "+" only for those items that were mispredicted. The probability that an instance actually belongs
to the positive class is estimated in the second "prediction" column.

Having trained on SAAPdb, testing on 1,540 SNPs and 7,182 PDs from the HumVar dataset

that mapped to structure gives an accuracy (ACC) of 0.446 and MCC of 0.135, essentially

a random prediction. This appears to be because of the different definition of the ‘bound-

ary’ between SNPs and PDs. Mutations form a spectrum from completely silent SNPs at

one end, to 100% penetrance, Mendelianly inherited PDs at the other end. As shown in

Figure 6.7, different datasets use different thresholds to separate the data into two sets or

may consider only the extremes. Prediction of the extremes may appear to be a trivial prob-

lem, but this is not always the case, some damaging mutations are very hard to predict.
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HumVar uses a broader definition of PDs than the SAAPdb data; in contrast, the SAAPdb

definition of SNPs is rather wide (anything in dbSNP not annotated as being involved in

disease) while the definition in HumVar enforces the requirement that SNPs are present in

at least 1% of a normal population. Table 6.5 shows a comparison of SAAPdb and HumVar

datasets. While there is an overlap of approximately 50% between PDs in the two datasets,

there is virtually no overlap in the SNP datasets.

Table 6.5: Comparison of SAAPdb and HumVar datasets. While there is an overlap of
approximately 50% between PDs in the two datasets, there is virtually no overlap in the
SNP datasets.

SAAPdb
SNP PD Not present Total

H
um

V
ar SNP 2 24 1,539 1,565

PD 0 3,411 4,509 7,920
Not present 17,911 3,092 — —

Total 17,915 6,527 —

Figure 6.7: The penetrance of a mutation lies on a scale between ‘True SNPs’ which show
no phenotypic effect at one extreme to Mendelianly inherited PDs with 100% penetrance
at the other. In SAAPdb, we use a very conservative definition of PDs, but a rather wide
definition of SNPs. In contrast, HumVar uses a somewhat broader definition of PDs, but a
much more conservative definition of SNPs and does not consider mutations that lie in the
middle.
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6.3 Main experiments

In the previous experiment, since very different definitions of SNP/PD boundaries were

used for training and testing, it is not surprising that a poor performance was obtained. As

expected from the different boundary used in SAAPdb and HumVar, SNPs are consider-

ably over-predicted, consistent with SAAPdb’s broader definition of SNPs. Consequently,

refined models were built and tested with the HumVar dataset.

6.3.1 Data sets

HumVar (Version v2.2.2 - 2011/12) contains 22,196 deleterious mutations and 21,151 neutral

mutations of which 7,192 and 1,540, respectively, can be mapped to structure. Consequently,

to obtain a balanced dataset, only 3,080 mutations (all 1,540 neutral and 1,540 randomly

selected deleterious) can be used (see Figure 6.8).

The strength of a model learned by a classifier, and its ability to generalise and perform on

new testing examples, is greatly influenced by the size and quality of the training dataset.

Compared with the SAAPdb dataset, HumVar is a small dataset with an even smaller subset

that maps to PDB structures. Consequently, it will be a less informative for a machine

learning predictor than SAAPdb. Nonetheless it is necessary to use this dataset for valid

comparison with other available method. Data were prepared in ARFF format as described

previously.

6.3.2 Training and testing on HumVar data

The whole dataset was divided into 10 subsets; each of which used all 1,540 neutral mu-

tations with a random selection of 1,540 deleterious mutations from the total of 7,182. Ten

train/test runs were then preformed, each using 10-fold cross-validation and the results

from the ten runs were then averaged. Table 6.6 shows the performance of the 10 SAAP-

pred classifier tried on a balanced HumVar dataset. At this stage we used a unique mutation

level filtering, in other words the same mutation (Uniprot:Nat:Num:Mut) does not occur

in training and testing sets (see Figure 6.9[1]). If the mutation mapped to multiple PDB

structures/chains best PDB/chain (based on resolution) was chosen for each mutation. Al-

though there are no cases of the same mutation in the training and test sets, this was still

considered to be partially-cross-validated since there may be a ‘structure overlap’ between

training and testing (i.e the same PDB ID maybe chosen for different munitions). In other
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words while there is no overlap between mutations in training and testing sets, multiple

mutations may occur at the same site in the same structure and some of these may be in the

training set while others are in the test set. All scores were averaged over 10-folds of WEKA

cross-validation and this was repeated 10-times (using different randomly selected sets of

deletion mutations) and the results averaged for each model giving an MCC of 0.893 and

ACC of 0.944.

To avoid ‘structure overlap’ between the training and testing data during cross-validation

preformed by WEKA (which was present in the previous experiment), a Perl program was

written to save all the available PDB structures to which HumVar mutations can map; then

each unique mutation (UniProt:Nat:Num:Mut) was read and one PDB structure assigned

to it and taken from the list of PDB structures (see Figure 6.9[2]). By using this method

it was ensured that there are no cases of the same mutation nor the same site in the same

structure ‘structural overlap’ between training and testing set. The values for the fully cross-

validated assessment of SAAPpred were obtained from 10-fold cross-validation performed

during the WEKA training and used all 1540 SNPs from HumVar that mapped to structure

with a random sample of 1540 of the 7182 PDs that mapped to structure. This was repeated

10-times (using different random sample of the PDs) and the results averaged. Table 6.7

presents the performance of the fully cross-validated classifiers ACC = 0.846 and MCC =

0.692.
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To enhance the predictor, different numbers of features (attributes) were explored using the

same dataset used in Table 6.7. A range between 10 and 45 features was selected. Figure 6.10

shows the ROC curve performance of the different predictions demonstrating that using

a small number of features with the humVar dataset actually improves the performance.

Figure 6.11 shows the ROC curve performance of 10 different Models using mtry = 40 and

another 10 models using mtry of 4 with a fix number of trees T = 1000. The optimized and

final results are shown in Table 6.7 with an average ACC of 0.885 and MCC of 0.773. This

is rather worse than training and testing with the SAAPdb data, simply because the size

of the HumVar dataset that can be mapped to structure is much smaller than the SAAPdb

dataset.

Table 6.8 and Figure 6.12 show the effect of dataset size on training and testing using sub-

sets of the SAAPdb data. The same procedure described above was used to avoid structural

overlap between training and testing sets during cross-validation. The graph clearly shows

that the smaller datasets perform considerably worse. The HumVar training used 3080 sam-

ples (1540 PDs and 1540 SNPs) so it is expected that performance will increase substantially

at least until the dataset triples in size.

Figure 6.10: ROC curves of SAAPpred trained on HumVar dataset using a 10-fold cross-
validation. The SAAPpred based predictor trained using T = 1000 and different mtry.
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Figure 6.11: ROC curves of SAAPpred trained on HumVar dataset using a 10-fold cross-
validation. The SAAPpred based predictor trained using T = 1000 and mtry = 4 and 40.

6.4 Comparison of performance with other predictor methods

The goal of this section is to compare the SAAPpred method developed in this chapter with

already existing methods, in a clear and reproducible way. An independent evaluation of

methods should be performed using the same HumVar dataset used in Section 6.3.

The results from SAAPpred fully cross-validated (i.e. with no structural overlap between

test and training sets) trained and tested on a subset of HumVar mutations that map to

structure considerably outperform other well-known individual methods where there may

be overlap between testing and training data including SIFT, PolyPhen2, MAPP (Binkley

et al., 2010) and MutationAssessor as reported by González-Pérez and López-Bigas (2011)

(accuracies between 0.690 and 0.771). Their consensus method (Condel) gives an ACC =

0.882. Our preliminary experiment (using the larger SAAPdb dataset) gives an ACC =

0.956 and a value of ACC = 0.944 and ACC = 0.884 partially and fully cross referenced

respectively (using the HumVar dataset) is considerably better. However these results are

still not directly comparable with the other methods as those methods are evaluated on

the complete HumVar dataset and it may be argued that the subset of mutations for which
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structures are available somehow outperform those for which structures are not available in

these other methods. For example, PolyPhen2 makes limited use of structural data where

these are available, and may be unfairly penalized on the mutations for which structures are

not available. Consequently the performance of different pathogenicity predicting methods

including PolyPhen2, SIFT, MutationAssessor, Condel and FATHMM was evaluated on the

same dataset used for testing SAAPpred.

Balanced datasets (1,451 neutral mutations and ten random selections of 1,451 deleterious

mutations) were used. Note that only 1,451 rather than 1,540 mutations could be used

since the remaining 89 PDs failed in at least one of the other predictors. In fact this gives

PolyPhen2 a significant advantage since it is trained on HumVar leading to an overlap be-

tween the training data and our test set. It is not clear precisely what data are used to train

SIFT; in their latest paper, Sim et al. (2012) state that SIFT was originally trained and tested

on LacI, Lysozyme and HIV protease, and refer to the original SIFT papers, but they do not

state whether the training has since been modified. MutationAssessor does not appear to

use a training set per se (Reva et al., 2011).

Partial cross-validated results were performed by using a slightly smaller set of 1451 SNPs

that mapped to structure and could be assessed by all the other methods together with a

random sample of 1451 PDs that could be assessed by all methods. Again this was repeated

10-times, and the results averaged. The partial-cross-validated values for SAAPpred give

the fairest comparison with the public version of PolyPhen2 which is trained on the Hum-

Var dataset.

The results are summarized in Table 6.9 where it can be seen that the results from fully

cross-validated (i.e. with no structural overlap between test and training sets) training and

testing on HumVar mutations that map to structure considerably outperforms other well-

known individual methods where there may be overlap between testing and training data

including SIFT, PolyPhen2, MAPP (Binkley et al., 2010) and MutationAssessor as reported

by González-Pérez and López-Bigas (2011) (Accuracies between 0.690 and 0.771 – as re-

ported by Condel and 0.676 and 0.785 from our evaluation on HumVar. Their consensus

method (Condel) gives an ACC of 0.882) while our preliminary value of ACC of 0.935 (us-

ing SAAPdb dataset) and a value of ACC of 0.944 (using HumVar dataset) is considerably

better. If we allow overlap in our own set (the fairest comparison) then we outperform

PolyPhen2 (the best of the competing methods) by an even larger margin. The partial-

cross-validated values for SAAPpred give the fairest comparison with the public version

of PolyPhen2 which is trained on the HumVar dataset. Evaluation of The recent predictor
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FATHMM (Shihab et al., 2013) on the same dataset shows a performance of ACC = 0.836,

MCC = 0.671. While approaching our cross-validated performance, it is likely that some of

the HumVar data were included in training FATHMM.

6.5 Conclusions

As previously stated, the main motivation behind this project was to build a pathogenic-

ity predictor using the SAAPdap structural analyses to give us more information about the

effects of any novel mutation. SAAPdb was conceived for the understanding of pathogenic-

ity all along, so after redesigning the SAAP pipeline (Chapter 3) and replacing individual

Boolean analyses with real values (Chapters 4 and 5), this step was the final phase of a

project.

The values for the cross-validated assessment of SAAPpred were obtained from 10-fold

cross-validation performed during the WEKA training and used all 1540 SNPs from Hum-

Var that mapped to structure with a random sample of 1540 of the 7182 PDs that mapped

to structure. This was repeated 10-times and the results averaged for both ‘fully cross vali-

dated’ experiments where is are no structure overlap between training and testing and ‘par-

tially cross validated’ where the training and testing sets may contain different mutation at

the same potion in the same structure. A comparison with other methods performed by us-

ing a slightly smaller set of 1451 (SNPs that mapped to structure and could be assessed by all

the other methods) shows SAAPpred results clearly outperform other well-known individ-

ual methods including SIFT, PolyPhen2, MAPP, MutationAssessor, Condel and FATHMM

giving an accuracy of 0.885 and 0.944 for fully cross validated and partially cross validated

(Table 6.9). MutationAssessor-1 was particularly bad as it over-predicts pathogenicity and

while the popular SIFT was worst in terms of sensitivity. The ‘partial cross validated’ val-

ues for SAAPpred give the fairest comparison with the public version of PolyPhen2 which

is trained on the HumVar dataset.

We learn from the high performance of SAAPpred that the structural information is very im-

portant in predicting the pathogenicity of any novel mutation. However predictions based

on structural information limit the range of mutations that can be covered by this predictor.

There are many reasons in many steps for a failure of structural predictor: missing PDB

structures from our database, PDB structure is available but mapping the mutation. This

will become less of an issue as protein structures become available for more proteins over

time.
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The ratio of neutral to pathogenic mutations is debatable in two aspects. First, identifying

truly negative cases can be questioned as low penetrance pathogenic effect may not have

been identified. In other words, they may not be truly neutral, just that we are not aware

of any effects based on current annotation. Second, there are more solved PDB structured

linked to PDs because protein involved in disease are a natural target for structural studies.

Using a dataset of annotated neutral mutations (such as HumVar) is bound to give a much

smaller dataset than the border definitions in SAAPdb and prediction of pathogenicity

clearly benefits from large amount of data. So the optimum should be to start with a large

set and carefully filter it, until a a sufficiently large experimentally-confirmed SNP dataset

becomes available. To make use of all the available mutation information in training the

predictor, multiple predictors consisting of 10 predictors, were used followed by a jury

vote.

There are multiple ways to achieve further improved prediction performance and results:

(i) Incorporating more data in the training process, once they become available; (ii) Inves-

tigate the features used in the training and select the most effective ones (to help with the

relatively small HumVar dataset size); (iii) Feature combination and construction (e.g. sub-

tracting native void sizes from mutant void sizes); (iv) Feature normalization (e.g. taking

the log of some feature values to improve the distribution of values); (v) Using the grow-

ing number of structures in the PDB that mapped to the mutations used in training our

prediction and (vi) Combining into a meta predictor.

Other approaches include enhancing the predictor by developing methods to make more

complete use of unbalanced datasets, especially when there is a smaller dataset in the

training stage. SAAPpred only works when there is a PDB structure, starting to com-

bine methodologically-different pathogenicity predictors in meta-predictors such as Con-

del (González-Pérez and López-Bigas, 2011) (a gatekeeper to dispatch to CONDEL if no

structure is expected to improve performance further. The field is currently saturated with

predictors of pathogenicity meta predictors are needed. Combining several good predictors

will always outperform a single predictor, it is important to choose highest performing pre-

dictors, with least overlap in attributes used to predict. Clearly from benchmarking done

in this chapter these ones should be combined with SAAPpred, potentially solving the gap

SAAPpred has for mutations where no structures are available.

In the next Chapter 7 the predictive power in discriminating between pathogenic and neu-

tral SNPs in MYH7, then create a novel prediction which attempts to distinguish between
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HCM and DCM mutation using SAAP analysis, exploring the feature selection, construc-

tion, normalisation and an additional set of features on structural clustering.

SAAPpred is now ready to be published on the web for the public to upload any mutation

with an available PDB structure to predict its pathogenicity based on SAAP structural and

sequence analysis.



Chapter 7

Cardiomyopathy Mutations

Understanding the impact of single nucleotide variations in the beta-myosin

heavy chain (MYH7 - UniProt accession code P12883) uncovers new genotype-

phenotype relationships in the cardiomyopathy. Unusually, mutations in car-

diac beta-myosin heavy chain can lead to two opposite phenotypes: hyper-

trophic cardiomyopathy (HCM) where the heart wall becomes thicker and di-

lated cardiomyopathy (DCM) where the heart wall becomes thinner.

In this chapter, the pathogenicity predictor developed in chapter 6 is first ap-

plied to predict effects of variants occurring in MYH7, then a novel predictor is

created which attempts to distinguish between HCM and DCM mutations using

SAAP analysis together with an additional set of features describing structural

clustering.

222
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7.1 Introduction

Inherited heart muscle diseases are a major cause of sudden death in the young and an

important cause of heart failure at all ages (Hughes and McKenna, 2005). As a set of

diseases, they are very heterogeneous in both their genotype and phenotype. For exam-

ple, over 1000 individual mutations in more than 15 genes have been implicated in hyper-

trophic cardiomyopathy (HCM) (Seidman and Seidman, 2011) and mutations in 26 genes

of 30 chromosomal loci have been identified by OMIM in autosomal dominant dilated car-

diomyopathy (DCM) (Ruti Parvari, 2012). Radically different cardiomyopathy phenotypes

(e.g. dilated, non-compaction, hypertrophic) have been observed resulting from muta-

tions in the same two sarcomeric genes: beta-myosin heavy chain (MYH7) and troponin

T (TNNT2) (Arad et al., 2002).

The beta-myosin heavy chain (P12883) is part of the force-generating molecular motor of

the sarcomere (Figure 7.1). It is also the sarcomeric protein for which a larger part of the

structure has been solved. The MYH7 gene encodes the beta-myosin heavy chain and is,

together with MYBPC3 (the gene encoding myosin binding protein C), the gene where the

greatest number of mutations causing HCM have been identified. Finally, and contrary to

MYBPC3, the large majority of variants detected in MYH7 are missense, which presents a

different challenge for determination of pathogenicity compared with other variants that

are expected to cause mRNA and protein truncation (Carrier et al., 1997; Richard et al.,

2003).

As in the general case of understanding mutations, an important knowledge gap exists with

respect to the relationship between genotype and phenotype. Furthermore, most of the ini-

tial phenotypic associations shown for specific genes or individual mutations related to

cardiomyopathy have not been replicated in multiple studies. This challenges the effective

clinical utilization of genetic data to guide therapy, counselling, sudden death risk assess-

ment, and prognosis. It has recently been hypothesized that such genotype-phenotype vari-

ability could be explained by modifying gene-gene interactions (involving common and/or

rare variants), gene-environment interactions, or epigenetics (Marian, 2002). Also, differ-

ent functional consequences may depend on the specific domain/region where the variant

is localized. Nevertheless, the hypothesis that the structural impact of a missense variant

could influence phenotype, disease severity and outcome has never been directly tested.
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While programs such as PolyPhen2 (Adzhubei et al., 2010), SIFT (Sim et al., 2012) and CON-

DEL (González-Pérez and López-Bigas, 2011) can be used to predict the effect of a missense

variant, the performance of the tools is unknown when applied to specific diseases. This

is because the programs were not designed for clinical use and have not been validated

against phenotype datasets. Moreover, different tools frequently give opposite results that

create interpretation challenges. There is one example of a disease- (or protein-) specific

tool which is designed specifically for analysing the effect of mutation in voltage-gated

potassium channels (Stead et al., 2011). Generally the problem with examining a particu-

lar protein is in gathering a large enough data set for training machine learning methods.

In addition available data tend to be heavily un-balanced, it being particularly difficult

to obtain reliable data on neutral mutations. As described previously, another major lim-

itation of existing prediction software is the fact that methods only make use of limited

structural information. SAAPdap and SAAPpred use a combination of rule-based struc-

tural measures to assess whether a modification is likely to alter or destroy the function

of a protein. The SAAP software has already been used to study structural differences be-

tween disease-causing mutations and neutral polymorphisms, and in particular to analyse

mutations in glucose-6-phosphate dehydrogenase (Kwok et al., 2002) and in the tumour

suppressor P53 (Martin et al., 2002).

Here the hypothesis that the evaluation of the structural impact of missense variants, using

SAAPdap and SAAPpred, will improve the accuracy of predicting pathogenicity compared

with the most commonly used in silico prediction software (SIFT and PolyPhen) is tested.

Further, the possibility of using the same approach to investigate genotype/phenotype re-

lationships at a more detailed level by attempting to distinguish mutations that cause HCM

from those that cause DCM is investigated.

7.2 Methods

7.2.1 Dataset of variants

A dataset of beta-myosin heavy chain variants detected in a cohort of consecutively eval-

uated un-related HCM patients was studied and screened1. To increase the number of

variants analysed, the data were enriched with other established disease-causing or likely

pathogenic variants in MYH7, for which phenotypic data are available in HGMD (Stenson

et al., 2002).

1The data were collected and screened by Prof. Perry Elliott (The UCL Heart Hospital)



CHAPTER 7. CARDIOMYOPATHY MUTATIONS 225

(a)

(b)

Figure 7.1: Cardiac human myosin S1dC, beta isoform complexed with Mn-AMPPNP PDB
ID 1br4. (a) The structure of 1br4 showing the 8 chains in different colours. (b) actin-
binding site (residues 655-677) coloured in ruby; the ATP-binding region (residues 178-
185) coloured in blue; myosin light chain binding regions (residues 788-801 and 814-827)
coloured in yellow.
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7.2.2 Prediction of in silico pathogenicity

Prediction of mutation pathogenicity was performed using Polyphen-2, SIFT, and SAAP-

pred as described in Chapter 6.

7.2.3 Manual analysis

The association between each of three phenotype parameters (maximum wall thickness

[MLVWT], age at presentation, and HCM vs. other phenotypes) with SAAPdb features were

tested using a χ2 test. These features were a) effect of each of the SAAPdap predicted struc-

tural features; b) effect of each of the predicted SAAPdap structural features versus absence

of any structural effect; c) number of SAAPdap structural features affected; d) damage pre-

diction by SIFT or Polyphen2 and e) structural domain affected.

7.3 Results and discussion

7.3.1 MYH7 mutation data analysis

MYH7 mutations associated with various cardiomyopathy phenotypes are shown in Ta-

ble 7.2. A total of 403 mutations were identified in the MYH7 gene. More than two-thirds

of them are previously published in the literature as being associated with disease and the

others were novel variants. Of the total mutations, 396 were unique, 235 mapped to at least

one PDB with a total of 806 mappings to (multiple) PDB structures. Table 7.1 lists five PDB

structures from which a model (PDB ID 1ik2) was eliminated at the start. More mutations

were associated with HCM (n = 298), whereas all other phenotypes were associated with

fewer than 50 mutations each, including DCM with the next highest number of mutations

(n = 46). The majority of mutations in both HCM and DCM were unique (292 and 46 re-

spectively). Since mutations related to these phenotypes were the most abundant, further

analyses were conducted, looking specifically at HCM and DCM and grouping the remain-

ing phenotypes as ‘Others’ for most purposes.

The distribution of the variants amongst the structural and functionally-annotated domains

of the beta-myosin heavy chain protein were analysed. All of the variants were located in

the myosin globular head domain or the neck region. From all variants, 51% were located

in functionally annotated domains: 18% mapped to an actin-binding site (residues 655-

677); 4% mapped to the ATP-binding region (residues 178-185); 3% were located in the

essential and regulatory myosin light chain binding regions (residues 788-801 and 814-827)
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(see Figure 7.1b PDB ID 4db1); and 27% mapped to the MYBPC3 binding region (residues

839-964, mapped to different PDB ID 2FXM and 2FXO) ).

Table 7.1: PDB structures for UniProt accession code P12883.

PDB ID Description
1ik2 Model
2fxm Structure of the human beta-myosin S2 fragment
2fxo Structure of the human beta-myosin S2 fragment
4db1 Cardiac human myosin S1DC, beta isoform complexed with Mn-AMPPNP
3dtp Taratula heavy meromysin obtained by flexible docking to tarantula muscle

thiCk filament cryo-EM

The expected number of mutations for each residue (Ea) was calculated based on Ea =

NM × Ra/NT , where Ea is the NM = total number of mutated residue, Ra = total number

of interested amino acids of type a, and NT = total number of residues in the structure. The

log2(NM/Ea) was calculated and plotted in Figure 7.2 showing that the predominantly mu-

tated amino acid was arginine (85 variants, and the expected∼23.53), followed by methion-

ine (20 variants, expected∼10.84 ) and Glycine (26 variants, expected∼14.73) (see Table 7.3).

Using SIFT and Polyphen2 prediction software, the 396 unique mutations were analysed

(see Table 7.2), of which 69.51% were predicted to be damaging by SIFT, and 90% were pre-

dicted to be pathogenic by Polyphen-2. Analysing the same dataset with SAAPdap shows

that a total of 175 variants were classified as likely to be damaging by at least one SAAPdap

analysis. For 55 variants, no significant structural effect was detected by SAAPdap analysis

and 166 failed to be analysed by SAAPdap (i.e. they did not map to a PDB structure) (see

Table 7.4). The most frequent features affected were: mutation of a highly conserved residue

(impact) occurring in 138 variants; the mutation of an interface amino acid (interface) oc-

curring in 48 of the variants and those disrupting H-bonds occurring in 42 of the variants.

Other significant mutations effects occurred less frequently, with mutations causing voids

or disrupting disulphide bonds not occurring at all. A significant association was detected

between the mutation of a conserved residue detected with the (impact) analysis and the

presence of a DCM/LVNC phenotype instead of HCM using a χ2 test (90% vs. 53%, p =

0.029). In addition, the number of variants with annotated features in UniProt was signifi-

cantly higher in the presence of a DCM/LVNC phenotype versus an HCM phenotype (20%

vs. 0%, p = 0.020). Furthermore, an association was found between the predicted mutation

of an (interface) amino acid and the structural domain to which the residue mapped. For

example a mutation affecting interface amino acids tended to affect the MYBPC3 binding
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region (56% in the MYBPC3 binding region vs. 0% in the actin-binding domain, p = 0.001),

this might be just because the crystal structure only has an interface in that domain or has a

large interface. Finally, a tendency was observed for an association between the mutation of

an interface amino acid or a binding amino acid and a higher MLVWT (22±4 vs. 19±4mm,

p = 0.051 and 25±5 vs. 20±4mm, p = 0.052, respectively) using the t-test.

7.3.2 Pathogenicity prediction

Initial pathogenicity prediction was performed using the SAAPpred predictor trained on

HumVar2 as described in Chapter 6. Ten pre-built models were used and the performance

results were averaged. Note that TN and FP couldn’t be calculated since the dataset did

not include any true negatives – all mutations were damaging and consequently, the MCC

could not be calculated. Table 7.5 shows the summary of results from the initial predictive

model. Initially accuracy for all phenotypes (HCM/DCM/Other) was ∼0.970 when using

one PDB chain and was reduced to ∼0.838 when using all PDB chains. In a later stage, PDB

ID 3dtp file was identified as a human/chicken fusion protein and was removed from the

dataset. Removing the file improved prediction accuracy to 1.0 for both datasets (mapped

to one PDB structure and mapped to multiple PDB structures).

Ala Arg Asn Asp Cys Glu Gln Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

 lo
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Figure 7.2: The log2 of (expected number of mutations for each residue / total number of
mutated residue). The dark green bars shows the over-expressed residues while the gray
bars shows the under-expressed ones.

2Run without -norm option for normalization
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Table 7.3: Number of mutated amino acids from MYH7 data compared with the total and
expected number of mutations at each amino acid in the protein. Expected values calcu-
lated as Ea = NM × Ra/NT , where Ea is the NM = total number of mutated residue, Ra =
total number of interested amino acids of type a, and NT = total number of residues in the
structure.

Amino Acid Mutated Total number in protein Expected number of mutations
Ala 40 168 34.38
Arg 85 115 23.53
Asn 8 90 18.41
Asp 21 104 21.28
Cys 2 14 2.86
Glu 46 254 51.98
Gln 10 123 25.17
Gly 26 72 14.73
His 4 34 6.9
Ile 17 89 18.21

Leu 22 214 43.79
Lys 20 201 41.13
Met 20 53 10.84
Phe 8 57 11.66
Pro 5 33 6.75
Ser 13 96 19.64
Thr 13 85 17.39
Trp 1 10 2
Tyr 14 40 8.18
Val 21 83 16.98

Table 7.4: SAAPdap Structural Analysis for MYH7.

SAAPdap Structural Analysis Number of mutation
Failed (no PDB structure available) 166
No significant structural effect 55
At least one significant structural effect 175

• Hbonds 42
• Buriedcharge 31
• SProtFT 2
• Interface 48
• Clash 14
• Proline 2
• Impact 138
• Binding 20
• Void 0
• SurfacePhobic 15
• Glycine 8
• CisPro 1
• CorePhilic 26
• SSGeom 0
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After this analysis, it was realized that the weighting was incorrect. Scaling of the input

parameters on the test sets was not the same as that used in the training and building of the

models. The CVS2ARFF program used to convert and scale data for WEKA was modified

to introduce a -norm option to allow the scaling and normalization used to be stored and

reused in the test set.

Analyses were performed on data (excluding PDB ID 3dpt, the chicken fusion structure)

using the fixed normalization option for each model and the results were averaged. A sum-

mary of these analyses is provided in Table 7.5. In this summary table, it can be seen that

accuracy for all phenotypes was greater when using one PDB chain versus all PDB chains,

it is clear that normalization increased the SAAPpred predictor performance for DCM and

other phenotypes when using all PDB chains, but decreased performance with all chains

and the HCM phenotype. When using one PDB chain, accuracy was comparable with and

without normalization. To compare SAAPpred performance with SIFT and Polyphen2 pre-

diction software, 235 of unique mutations that mapped to at least one PDB structure were

analysed (see Table 7.2), of which 92.7% were predicted to be damaging by SAAPpred,

69.51% were predicted to be damaging by SIFT, and 90% were predicted to be pathogenic

by Polyphen-2.

7.3.3 A machine learning approach to predict MYH7 phenotype

As a starting point, any mutations associated with multiple phenotypes were discarded.

Perl code was written to limit the size of each class by selecting examples at random. For

example for HCM, if the HCM class size was limited to 60, the other classes are retained

but only 60 mutations were selected at random from the HCM class. Then, WEKA was

trained using the Random Forest method. This random selection process was repeated 10

times to provide a representative sample of the HCM class and the results were averaged.

Using the same class size limit, DCM phenotypes were also examined and comparisons of

phenotypes were made; HCM vs DCM vs ‘other’ (i.e. pooling CMDM, Ebstein and LVNC).

It was not expected that neural networks (ANNs) as the ML method would work very well.

After limiting class size, approximately 150 training examples were obtained. In practice,

this was reduced owing to 10-fold cross-validation – i.e. the training holds 10% of the data

back and trains on the remaining 90% and then tests on the reserved 10%. It does this 10

times over rotating the test set and averages the results. This means that training actually

uses 135 examples. Mutation are represented by a total of 47 ‘features’ from the structural
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analysis. Of these, 13 were found to be redundant (i.e. they had the same value for all

examples in the dataset), thus reducing the number to 34 features. An ANN consists of

layers of ‘perceptrons’ - an input layer (Ni) in which the observed features are encoded; a

‘hidden layer’ (Nh); and an output layer (No) that encodes the output class. Each perceptron

in the input layer is connected to all those in the hidden layer and all in the hidden layer

are connected to all in the output layer. So, the number of links is (Ni x Nh) + (Nh x No).

The ANN learns patterns by adjusting the weights on these links. Consequently, if we have

Ni=33, say Nh=10 and No=2, then we have 350 weights in the network. A good rule of

thumb is that you need 3x the number of training patterns i.e. 1050. In this training set, we

only have approximately 12% of the optimal number of examples.

7.3.4 HCM vs. DCM Predictor

The major problem encountered in this analysis was the unbalanced nature of the dataset;

many more mutations existed for HCM than for DCM. Because the available dataset was

limited in size, it was desirable to use mapping to multiple structure. Thus the same muta-

tion appearing in the training and testing data cannot be avoided during, cross-validation

could not be performed by WEKA. For that a Perl program was written to split the 189

HCM and 22 DCM unique mutations with available PDB structures into 10 sets of approx-

imately the same size. Each of these 10 sets in turn was chosen as a test set and enlarged

with all the available PDB/chain structures (see Figure 7.3). The remaining 9 sets were used

for training by randomly drawing balanced datasets of different sizes from the mutations

as mapped to protein chains (see Table 3.2.0.2). This manual cross-validation ensures that

there are no cases of the same mutation in the training and test sets but from different PDB

chains. Models were built using all DCM and 22 randomly selected HCM mutations, results

came from averaging 10 models built using different subsets of HCM and DCM.

7.3.5 Exploring the number of features and number of trees

The initial attempt was performed before the problems with PDB ID 3dtp were identified.

Consequently the parameter space around the best result was again explored having re-

moved PDB ID 3dtp. As shown in Table 7.6, the best results were obtained using 1000 trees

with 20 features.
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Table 7.6: Exploring the number of features and number of trees
T is the number of trees; mtry stands for the number of randomly chosen attributes in every
split. Performance measures: accuracy (ACC) and Matthew’s correlation coefficient (MCC).
All scores are averaged over 10-folds of WEKA cross-validation.

Number of models T mtry ACC MCC
10 1000 5 0.7547 0.2734
10 1000 10 0.7655 0.3269
10 1000 15 0.7654 0.3339
10 1000 20 0.7649 0.2721
10 1000 25 0.7549 0.2649
10 1000 30 0.7622 0.2668

No PDB ID 3dtp
10 1000 10 0.6229 0.2463
10 1000 15 0.6750 0.3590
10 1000 20 0.7000 0.4103
10 1000 25 0.6916 0.3851
10 50 20 0.6833 0.3681
10 100 20 0.6916 0.3872
10 500 20 0.6937 0.4023
10 1000 20 0.7000 0.4103
10 2000 20 0.6812 0.3686
10 5000 20 0.7000 0.4005

Table 7.7: χ2 tests performed to investigate which features were most informative.
? χ2 tests were not calculated as the Boolean SAAPdap analysis gave the same result for all
mutations analyzed and therefore was not informative.

Feature χ2 Feature χ2

Binding 4.9 Buried Charge 0.625
Surface Phobic 0.15 Proline 0.03
Clash 0.89 Impact (conservation) 19.9
Interface N/A? Disulphide N/A?

Core Philic 0.09 CisPro 0.9
Glycine 11.9 Hbonds N/A?

Relative accessibility N/A? Voids 0.199
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7.3.6 Exploring the most informative features

A simple cut-off for each of the 14 major features was used to suggest whether they were

damaging using SAAPdap results. χ2 tests were performed to investigate which features

were most informative (Table 7.7).

The highest χ2 values were obtained for highly conserved ‘impact’ mutations, followed by

mutations to glycines. These results indicate that mutation of residues affecting these fea-

tures confers a high probability of a pathogenic phenotype. Mutation of binding residues

is also associated with pathogenicity, whereas mutations to proline and introducing hy-

drophilic residues in the core confers the lowest risk.

7.3.7 Clustering features

MYH7 mutations fall into two distinct regions that map to different PDB files (DCM and

HCM mutations). For the more C-terminal structure (PDB ID 2fxm) there are only 2 DCM

mutations (compared with 35 HCM), indicating that DCM mutations are rare in this do-

main. For the N-terminal structure (PDB ID 4db1), there are 16 DCM and 116 HCM muta-

tions. Anecdotal evidence had suggested that HCM and DCM mutations tend to cluster in

different areas of the MYH7 N-terminal domain. Consequently the addition of location into

the feature vectors was performed as follows.

For the N-terminal domain, the Cα positions of the mutated residues were clustered using

single linkage hierarchical clustering. For each of 2...10 clusters a χ2 test was preformed to

see how well the clustering separated HCM from DCM mutations.

• 2 clusters: Significant at the 0.4384 level

• 3 clusters: Significant at the 0.0003755 level

• 4 clusters: Significant at the 0.001256 level

• 5 clusters: Significant at the 0.002577 level

• 6 clusters: Significant at the 0.005057 level

• 7 clusters: Significant at the 0.01013 level

• 8 clusters: Significant at the 0.01778 level

• 9 clusters: Significant at the 0.03044 level

• 10 clusters: Significant at the 0.03116 level
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Apart from 2 clusters, these are all clearly significant at the <0.05 level. However, as the

number of clusters gets larger one needs to take care with the significance levels, because no

more than 20% of expected should be <5 and none <1 (significance will be over-estimated

if either of these is true). For≥ 3 clusters the first of these fails and for 6+ clusters the second

also fails. However, between 3 and 6 clusters the significance is so good, that (while it will

be over-estimated) it is probably still better than 0.05 and 3 clusters is clearly the most sig-

nificant result. Consequently we do seem to have clusters of residues that are over/under

populated with DCM and HCM mutations compared with what is expected.

Figure 7.4 illustrates the 3 clusters on PDB ID 4db1, colouring the clusters red, green and

blue for HCM and orange, yellow and cyan for DCM. Note that the clustering was done on

one chain and the results are then shown on the two chains in the 4db1 crystal structure. In

particular, DCM is highly over-represented in the third (blue/cyan) cluster. DCM mutations

in clusters 1 and 2 (orange and yellow) are hardly visible and therefore mostly buried. On

the other hand the DCM mutations in cluster 3 (cyan) are largely on the surface.

To use this information in machine learning, the centroid of each cluster was calculated and

the feature vector for each mutation was expanded by the addition of the distances from

the C-alpha of the mutated residue to each of the three centroids.

Figure 7.4: Clustering MYHC mutation on PDB ID 4db1 human myosin structure. Colour-
ing the clusters red, green and blue for HCM and orange, yellow and cyan for DCM.



CHAPTER 7. CARDIOMYOPATHY MUTATIONS 238

7.3.8 Number of models

Previously, training used 10 models with the prediction results averaged across the 10. Us-

ing a larger number of models will allow us to exploit more of the HCM data in each model

(while maintaining balanced datasets). Using 20 models, only one unique DCM mutation

can be held back from training for test purposes. However, the number of models is not

limited to 20 because it is possible to hold one DCM back and then build several models

using different sets of HCMs.

After determining the optimum number of features and trees, together with exploration of

the most informative feature subsets, different numbers of models were also investigated (5,

10 and 20 models). Addition of the ‘clustering’ feature described above was also explored.

The different sets were defined as follows3:

‘All’

Refers to the standard set of 33 features of the 47 obtained from SAAPdap. The 13

SwissProt SwissProt features and SSGeom analyses were uninformative: (BCharge,

Binding, CPhilic, CisPro, Clash, Glycine, HBonds, Impact, Interface, MLargest1,

MLargest10, MLargest2, MLargest3, MLargest4, MLargest5, MLargest6, MLargest7,

MLargest8, MLargest9, NLargest1, NLargest10, NLargest2, NLargest3, NLargest4,

NLargest5, NLargest6, NLargest7, NLargest8, NLargest9, Proline, Relaccess, SPhobic,

Voids).

‘Top 5 voids’

Uses only the top 5 native and mutant voids instead of 10 plus the rest of features:

BCharge, Binding, CPhilic, CisPro, Clash, Glycine, HBonds, Impact, Interface,

MLargest1, MLargest2, MLargest3, MLargest4, MLargest5, NLargest1, NLargest2,

NLargest3, NLargest4, NLargest5, Proline, Relaccess, SPhobic, Voids.

‘Delta Voids’

Uses the differences between mutant and native voids instead of actual values plus the

rest of the features: BCharge, Binding, CPhilic, CisPro, Clash, Glycine, HBonds, Im-

pact, Interface, Largest1, Largest10, Largest2, Largest3, Largest4, Largest5, Largest6,

Largest7, Largest8, Largest9, Proline, Relaccess, SPhobic, Voids.

3Table 6.2 defined the forty seven features obtained from SAAPdap.
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‘Set1’

Uses the most informative features based on χ2 tests: Binding, Relaccess, Impact and

Glycine.

‘Set2’

A WEKA randomly selected dataset: Binding, Relaccess, SPhobic, Cphil, Voids,

MLargest1, NLargest1, Clash, Proline, CisPro.

‘Set3’

A WEKA randomly selected dataset: Binding, Interface, Relaccess, Impact, Hbonds,

Bcharge, Voids, Largest1, Largest2, Largest3, Largest4, Largest5, Clash, Glycine.

Summary results are presented in Table 7.8 showing that 11 models gave the best perfor-

mance together with ‘Set2’ plus clustering features giving an ACC = 0.75 and MCC = 0.531.

Table 7.8: Summary results of machine learning performance using different features of
HCM/DCM dataset.

Number
of models

Features used Number
of trees

Features
per tree

ACC MCC

5 All 1000 25 0.576 0.152
5 All + Clustering 1000 25 0.648 0.311
5 Top 5 voids + Clustering 1000 25 0.681 0.368
5 10 delta void + Clustering 1000 25 0.608 0.205
11 All 1000 25 0.682 0.429
11 All + Clustering 1000 25 0.608 0.220
11 Top 5 voids + Clustering 1000 25 0.699 0.427
11 10 delta voids + Clustering 1000 25 0.676 0.521
11 Set1 + Clustering 1000 5 0.625 0.314
11 Set2 + Clustering 1000 5 0.750 0.531
11 Set3 + Clustering 1000 5 0.699 0.520
21 All 1000 25 0.631 0.357
21 All + Clustering 1000 25 0.623 0.293
21 Top 5 voids + Clustering 1000 25 0.627 0.374
21 10 delta voids + Clustering 1000 25 0.560 0.133
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7.4 Conclusions

The predictive power of the SAAPpred approach was examined in discriminating between

pathogenic and neutral SNPs in MYH7, the dataset gives a final prediction results (using all

PDB structures) of All MYH7 mutations: ACC = 0.7934, DCM: ACC = 0.789 and HCM: ACC

= 0.7951. Some of the incorrect prediction for HCM are mapped to multiple PDB chains, and

that affected the prediction result; if the best PDB structure for each mutation was chosen

the performance increased to: All MYH7 mutations: ACC = 0.927, DCM: ACC = 0.991 and

HCM: ACC = 0.914.

This test was then followed by creation of a novel predictor which attempts to distinguish

between HCM and DCM mutations using SAAP analysis. Feature selection, construc-

tion, normalisation and an additional set of features based on structural clustering were

explored.

In conclusion, the best performance currently achieved for distinguishing HCM and DCM

mutations is an ACC = 0.75 and MCC = 0.531. This predictive performance was achieved

by averaging 10 models using feature Set2 (Binding, Relaccess, SPhobic, Cphil, Voids,

MLargest1, NLargest1, Clash, Proline, CisPro + Clustering) and using 1000 Trees with 5

features. By removing models that perform particularly badly, we can reach ACC = 0.79

and MCC = 0.61. However, the reason for removal of these badly performing models must

be justified from a protein structural rather than a prediction perspective. Some of the

falsely predicted PDB structures for HCM are mapped to multiple chains, and that affected

the prediction result (i.e some structures appear to make the performance worse).



Chapter 8

Conclusions and Discussion

This thesis has described the SAAPdb database, a resource that collates information on

single amino acid polymorphisms (SAAPs), SAAPdap, a sequence and structural analysis

pipeline to identify the effects of disease mutations by providing hypotheses as to how they

might disrupt structure and/or function and SAAPpred, a method for predicting damaging

mutations, as well as specialized version of SAAPpred designed to distinguish phenotypes

of MYH7 mutations.

The SAAP project is a unique resource. Several other resources collate SAAPs and some

calculate SAAP effects. However, (1) there is no other resource that takes a predominantly

structural perspective of protein structure perturbation (that is, attempts to assess the mu-

tations in terms of the effects they are likely to have on protein function, stability, folding

and interactions); (2) SAAPdap is built to allow easy extension of processing and caches

all results; (3) although SAAPdb is no longer updated, it is still a powerful SAAP resource

which provides a straightforward but powerful graphical interface to examine SAAPs in

protein structures; (4) SAAPdb and SAAPdap takes careful, conservative and sophisticated

approach to examine the likely structural effect of SAAPs. These data allowed SAAPpred

to be built. The original motivation for the SAAPdb project was the collation of SAAP

structural explanations for use in analyzing previously unseen SAAPs. Work presented in

this thesis started with rebuilding SAAPdb, improving the structural analysis, introduc-

ing SAAPdap and finally training and testing SAAPpred. The work will continue in this

direction within the Martin group.

There are numerous other ways in which the resource could be used and the data exploited.

These potential applications can be used in protein structure: where experimentalists need-
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ing to design a stable mutant protein structure for use in an experiment they will be able

to consult SAAPdap and SAAPpred to assess whether a mutation is likely to be damag-

ing; reducing the time taken to devise an appropriate experiment. On a wider and more

theoretical scale, the structural integrity of all the structures could aid in the understand-

ing of protein structure in general: currently, the precise mechanisms that are responsible

for structural stability are not well understood. These mechanisms could be examined by

considering deleterious mutations as ‘perturbations’ of the usual structural ‘system’, much

in the same way that experimental assays are designed. SAAPdap can describe thousands

of disease-associated mutations, both with respect to sequence and structure. These data

could be exploited to examine pharmacogenomic variation within populations, specifically,

understanding the precise mechanistic reasons for variation in pharmacological response

in different populations. In addition, the SAAP analysis data could aid in understanding a

disease process. It may also be possible to characterise gain of function and loss of function

PDs differently with respect to their analyses, and as such devise different strategies for

their treatment.

Chapters 1 and 2 provided details of the structure and information contained within the

primary information sources used to build SAAPdb and SAAPdap, and how they have

changed since the time of the database build. Examples of how to store, manage, and inter-

pret these data have also been given, with an emphasis on maintaining data integrity and

consistency. Different approaches to machine learning were discussed, all with the com-

mon aim of knowledge attainment from large datasets that are yet to be fully characterized.

A variety of tools for the assessment of mutation-effects were also presented, each using

different methodology to predict the structural effect of missense mutations. These were

presented to demonstrate the vast array of techniques that can be employed to analyse SNP

data and to set the scene for the development of SAAPpred.

8.1 The analysis of disease mutations

Chapter 3 discussed SAAPdb and other support databases (i.e. FOSTA, the database of

functionally equivalent proteins from SwissProt, and ImPACT, the sequence conservation

scoring method that uses a species similarity matrix), how these were rebuilt and how

this was a labour intensive task requiring substantial testing and rewriting of all the code

involved in data collection, database creation, and some structural analyses. SNP data

were extracted from the XML format dump of dbSNP (Sherry et al., 2001) obtained from

the NCBI. Non-synonymous, ‘valid’ human SNPs (i.e. those annotated with validation
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strings ‘by frequency’, ‘by 2hit 2allele’, or ‘by hapmap’), were extracted and combined

into a single XML file. Any mutations not annotated as having disease involvement were

assumed to be neutral. PDs were obtained from Online Mendelian Inheritance in Man

(OMIM, http://www.ncbi.nlm.nih.gov/omim/) and a number of locus-specific mu-

tation databases (LSMDBs), see Table 3.1. All mutations were then mapped to protein se-

quences and thence to structure.

The SAAPdb web-server contains fourteen structural analyses and one sequence-based

analysis (Martin et al. (2002), Cuff and Martin (2004)), shown in Table 3.6, all aiming to

show how SAAPs are likely to affect protein structure: in particular interfaces with other

proteins, functional sites, folding and stability of the mutated protein. Only mutations

mapped to solved protein structures can be assessed, therefore it has not been possible to

analyse all known mutations. Of the amino acid mutations in OMIM, approximately 65%

were mapped to structure. In addition, approximately 32% of ‘valid’ SNPs from dbSNP that

result in an amino acid change, map to structure. Consequently, the coverage of the analysis

is currently somewhat limited, but is expected to improve in the future. After rebuilding

SAAPdb, the number of SNPs in the database has rose by 41% and the number of PDs by

36%. However, SAAPdap is now regarded as our primary resource.

SAAPdb was designed to be a regularly updated pre-calculated resource. However, the

database has proved very difficult to maintain. Consequently the value of SAAPdb has di-

minished and it has been replaced with SAAPdap (Single Amino Acid Polymorphism Data

Analysis Pipeline). A large and expanding body of literature exists in the field of protein

structure-function analysis in relation to disease phenotypes and SAAPdb and SAAPdap

contribute to the current understanding of disease-causing mutations and ultimately the

treatment of the resulting pathological conditions.

SAAPdap uses a plugin architecture implemented by Andrew Martin, making use of the

new non-Boolean analyses (described in Chapters 4 and 5). While SAAPdap still indicates

whether a mutation is likely to have a detrimental effect on structure using cut-off val-

ues, continuous values are also provided for each of the analyses. Because some of the

analyses (especially the analysis of voids) is quite time consuming (taking several min-

utes), the web interface makes use of AJAX (Asynchronous JavaScript And XML) to up-

date the user with the progress of the analysis. The submission page is available at http:

//www.bioinf.org.uk/saap/dap/. Results from the SAAPdap pipeline are presented

as shown in Figure 3.21.
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In conclusion, the data in SAAPdb have been updated, the analyses have been improved

(see the following section) and integrated into the new SAAPdap pipeline and web inter-

face.

8.2 Improving and extending the pipeline

In the original SAAPdb all assignments of structural effects are Boolean; that is, any mu-

tation either does, or does not, have a given effect. While Boolean assignment is appro-

priate in some cases (for example, a residue either is, or is not, annotated as a feature in

UniProtKB/Swiss-Prot), in other cases, it relies on a critical cut-off value (for example, en-

ergy, void volume, hydrophobicity difference) as described previously (Hurst et al., 2009;

Cuff et al., 2006; Cuff and Martin, 2004; Martin et al., 2002). In this thesis it was found that

assigning a mutation as (not) having a structural effect is very sensitive to precise structural

detail. Wherever appropriate, real-number scores or pseudo-energies for each effect have

now been implemented. In particular, the analysis of clashes and torsion angles has been

enhanced to provide energy values.

In analyzing clashes, previous work defined a damaging clash as any side-chain that has

at least 3 van der Waals overlaps (of any degree) with other atoms. Similarly, voids were

considered damaging when they caused the creation of voids of volume> 275Å3, assuming

no compensatory movement within the protein structure. By looking at the distribution of

SNPs and PDs predicted to be damaging, it was clear that the Boolean method did not

accurately describe the effect of mutations causing clashes or voids, either overestimating

or underestimating damaging effects when values were close to the cut-off.

The new clash analyses use a continuous energy scale calculation incorporating Lennard-

Jones and torsion energies using CHARMM (Brooks et al., 1983) parameters. The actual

energy value is used in the machine learning described in Chapter 6. The MutModel pro-

gram is used in both clash and void analysis and parameters (step-size and tolerance) used

in searching side-chain positions were optimised by modelling known mutant structures.

Consequently, the evaluation of both clash and void is optimised by using these parameters.

No other changes were made to the assessment of voids; the cut-off selected previously is

used as a visual indication that a void is likely to be damaging, but as with clash energy

actual void sizes are used in the machine learning described in Chapter 6.
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Glycine and proline analyses have been improved by moving from simple Boolean decision

making with rather arbitrary boundaries to an energy-evaluation approach. Figure 5.13

clearly shows that the previous allowed regions were inaccurate and, in particular, the al-

lowed regions for proline were incorrect. These analyses have been integrated into the new

SAAPdap pipeline and web interface (Chapter 3). Detailed results of these analyses were

then used to build the pathogenicity predictor SAAPpred (Chapter 6).

There are many potential structural effects of SAAPs that are currently not assessed by

SAAPdap, as with the analysis of the kinase domain where oncogenic mutations are known

not only to destabilise the inactive form of B-RAF, but also to mimic the phosphorylated,

active form of the protein (Wan et al., 2004) thus disrupting native protein function. Data

derived from other external resources (including the Catalytic Site Atlas (Porter et al., 2004),

PROCOGNATE (Bashton et al., 2008) or dbPTM (Lee et al., 2006)) could be incorporated to

widen the focus of SAAPdb with respect to enhanced analysis of the likely effect of muta-

tions and consequently improve predictions further.

It may also be beneficial to consider the protein in a wider context, for example its rôle in

known pathways (Kanehisa et al., 2008). Consideration of genomic data is another area to

explore. The focus of SAAPdap is the manifestation and effects of genomic mutations at the

protein level, primarily with respect to structure; however, there is undoubtedly more in-

formation implicit in the raw genomic data (Cargill et al., 1999). For example, are PDs more

often transversions (where a purine base (AG) is substituted with a pyrimidine base (CT)

or vice versa) and therefore an alteration of the chemical nature of the base, and SNPs more

often transitions (mutations between purine bases or between pyrimidine bases), where the

chemical nature of the base does not change? Is there any bias in codons targeted by PDs or

SNPs, or is there a bias in the particular position in the codon that is mutated? At the very

least, estimates of base change substitution rates, calculated from a basic understanding

of biochemistry and mutagenesis mechanisms, could allow protein level data to be ‘nor-

malised’ such that genomic effects are removed from analysis at the protein level (e.g., Care

et al. (2007)). For example, arginine has a high rate of mutability (due to deamination of

5’-CpG dinucleotides in the arginine codon); such information could be used to normalise,

for example, amino acid frequencies as shown in Chapter 7 (MYH7 protein) (where, indeed,

arginine is one of the most commonly mutated residues). Further, mutations may have ef-

fects in controlling expression or splicing. Such effects have been completely disregarded

in this thesis, but are being investigated by another member of the group.
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8.3 Moving onto prediction

As previously stated, the main motivation behind this project was to build the pathogenic-

ity predictor using the SAAPdap structural analyses to give us more information about the

pathogenicity of any novel mutation. SAAPdb was initially conceived for the understand-

ing of pathogenicity, so after redesigning the SAAP pipeline (Chapter 3) and improving in-

dividual binary analyses to ranged values (Chapters 4 and 5), this step was the final phase

of the project.

SAAPdb data with SAAPdap analysis were used to train machine learning methods to pre-

dict whether a novel SAAP will disrupt the native protein structure and induce a disease

phenotype in a tool known as Single Amino Acid Polymorphism prediction (SAAPpred)

(see Chapter 6). The SAAPdb database of SNPs and PDs was later replaced with the Hum-

Var dataset for comparison with other methods. SAAPdb and SAAPdap perform fourteen

analyses, from these analyses (using software written in Perl and C); 47 features are derived

that are used for machine learning.

Application of machine learning techniques exploit the predictive power of all of these indi-

vidual features, resulting in a very sensitive and accurate method for classifying previously

unseen mutations as disease-causing or neutral. The prediction results are summarised

in Table 6.9. A comparison with other methods, performed by using a slightly smaller

set of 1451 SNPs that mapped to structure and could be assessed by all the other meth-

ods, shows SAAPpred results clearly outperform other well-known individual methods

including SIFT, PolyPhen2, MAPP, MutationAssessor, CONDEL and FATHMM giving an

accuracy of 0.885 and 0.944 for ‘fully-cross-validated’ and ‘partially-cross-validated’ (Ta-

ble 6.9), respectively. The performance of MutationAssessor-1 was particularly bad as it

over-predicts pathogenicity and very popular SIFT was worst in terms of sensitivity. The

fully-cross-validated reflects performance on a novel mutation/protein for which no train-

ing have been done, partial-cross-validated is still fully cross validated in the conventional

sense (see section 6.3.2. Performance on PolyPhen2 is not cross validated at all with a full

overlap between training and testing set trained on the HumVar dataset), for that partial-

cross-validated values for SAAPpred give the fairest comparison with PolyPhen2.

We learn from the performance of SAAPpred, that structural information is very important

in predicting the pathogenicity of any novel mutation. However predictions based on struc-

tural information limit the range of mutations that can be covered by this predictor. There
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are many reasons in many steps for a failure of a structural predictor: for example missing

PDB structures; PDB structure is available but the mutated residue is missing; additions

such as missing atoms, etc. This will become less of an issue as protein structures become

available for more proteins over time.

The ratio of neutral to pathogenic mutations is debatable in two aspects. First, identifying

truly negative cases is either questionable when we define them as mutations that merely

do not have a known pathogenic effect at the moment (the current definition in SAAPdb) as

this does not mean they are truly neutral, just that we are not aware of any effects based on

current annotation. Also, there are more solved PDB structures linked to PDs. But a dataset

of annotated neutral mutations (such as HumVar) is bound to be much smaller; pathogenic-

ity prediction clearly benefits from large amounts of data. So the optimum should be to

start with a large set and carefully filter it, until sufficient experimentally-confirmed SNP

data become available. To make use of all the available mutation information in training

the predictor, multiple predictors were used and a jury vote was taken.

8.4 Implications for disease therapies

There is much potential for SAAPdap and SAAPpred to be used in the identification of

novel drug targets. If one can characterise the specific reason that a mutated protein is not

able to function properly, a counteractive rescue mechanism could be developed. Boeck-

ler et al. (2008) reported the development of an in silico screened drug that was shown

to rescue the function of a P53 mutant, Y220C. This mutant was known to destabilise the

protein by introducing a crevice in the protein structure and SAAPdap successfully iden-

tifies this mutation as void-creating. Boeckler et al., used in silico screening and multiple

NMR spectroscopy experiments, and identified a compound (PhiKan083) that bound to

the destabilised mutant P53 structure, but not the native P53 structure, and is sufficiently

distant from the DNA binding region not to interfere with functionality.

Alternatively, Friedler et al. (2002) have shown that alternative pharmaceuticals could bind

to the functional native structure of P53, thus ‘chaperoning’ the correctly folded structure.

Such compounds may form the basis of future P53-deficient cancer therapies, or indeed

therapy for any disease caused by structurally-destabilising mutations. It is therefore en-

couraging to note that most disease-associated mutations in SAAPdb have been shown to

affect protein stability.
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In Chapter 7 the predictive power of the SAAPpred approach was examined in discrimi-

nating between pathogenic and neutral SNPs in MYH7. This gave, for all MYH7 mutations

an accuracy of 0.7934, for DCM an accuracy of 0.789 and for HCM an accuracy of 0.7951.

This test was then followed by creation a novel predictor which attempts to distinguish

between HCM and DCM mutation using SAAP analysis, exploring the feature selection,

construction, normalisation and an additional set of features on structural clustering.

In conclusion, the best performance we can currently achieve for distinguishing HCM and

DCM mutations is an accuracy of 0.75 and MCC = 0.531. This predictive performance was

achieved by averaging 10 models using feature Set2 (Binding, Relaccess, SPhobic, Cphil,

Voids, MLargest1, NLargest1, Clash, Proline, CisPro) + Clustering and using 1000 Trees

with 5 features. By removing models that perform particularly badly, we can reach ACC =

0.79 and MCC = 0.61. However, the reason for removal of these badly performing models

must be justified from a protein structural rather than a prediction perspective.

8.5 Future prospects

The Martin group has plans to improve and expand SAAPdap including analysis of muta-

tions in non-coding regions. These features will be used to improve the machine learning

training.

There are multiple ways to achieve further improved prediction performance and results:

(i) Incorporating more data in the training process, once they become available; (ii) Inves-

tigate the features used in the training and select the most effective ones (to help with the

relatively small HumVar dataset size); (iii) Feature combination and constructions (e.g. sub-

tracting native void sizes from mutant void sizes); (iv) Feature normalization (e.g. taking

the log of some feature values to improve the distribution of values); (vi) Using the growing

number of structures in the PDB that mapped to the mutations used in training our predic-

tion; (v) Combining SAAPpred into a meta predictor (CONDEL-style) with other methods

such as PolyPhen2 and SIFT; (vi) SAAPpred only works when there is a PDB structure, start-

ing to combine methodologically-different pathogenicity predictor by using a gatekeeper

to see if there is an available structure for a particular mutation and using CONDEL-style

meta-predictor (González-Pérez and López-Bigas, 2011) which employs SAAPpred as one

of its elements, or if there is no available structure, using normal CONDEL for sequence

based prediction and (vii) Enhancing the predictor by developing methods to make more
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complete use of unbalanced datasets, especially with a smaller dataset in the training stage

when applied to specific problems such as phenotype prediction.

The field is currently saturated with predictors of pathogenicity, more meta-predictors are

needed. Combining several good predictors will always outperform a single predictor, it

is important to choose the highest performing predictors, with least overlap in attributes

used to predict. Clearly from benchmarking done in Chapter 6 these ones should be com-

bined with SAAPpred, potentially solving the gap SAAPpred has for mutations where no

structures are available.

While the coverage of the method is currently somewhat limited by the need for a structure

of the protein, investigation of the use of modelled structures is also planned. However, cur-

rently it is not known how well this will work given the detailed structural analysis (e.g. of

hydrogen bonds) that the method performs. It is proposed that different predictors would

be trained for different sets of models having different ranges of sequences identity with

the templates used in modelling (i.g. < 30%, 30–50%, 50–70% and > 70%) – a gatekeeper

would then select the appropriate predictor. However clinically relevant proteins tend to

be key targets for structural studies, and as more structures become available, the number

of mutants mapped to structure will increase, improving the coverage of the method. In

addition, more structural data will allow the machine learning methods to be trained and

tested with more data. Consequently, we expect performance to increase further.

SAAPpred is now available to be published on the web for the public to upload any muta-

tion with an available PDB structure to predict its pathogenicity based on SAAP structural

and sequence analysis.

8.6 Summary

In summary, this thesis has improved the analysis of the likely structural effects of muta-

tion and has used these analysis, present in SAAPdap pipeline, to train a prediction able

to distinguish between pathogenic and neutral mutations. SAAPpred, clearly outperform

all other individual predictors and when assessed by partial cross validation (still full cross

validation by other terminology) outperform CONDEL (Accuracy is 0.944 for SAAPpred

compared with 0.882 for CONDEL). A method for distinguishing between phenotypes re-

sulting from MYH7 mutation has also been developed. while the performance is low com-

pared with the general pathogenicity prediction, it outperforms older method which simply

predict pathogenicity (such as MutationAssessor).
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[A] The UniProtKB/Swiss-Prot file format description

Entry information (ID, AC and DT)

The ID line provides the entry name. The primary AC, followed by the secondary ACs

are indicated in the AC line, and DT line provides the entry date. See line #1-8 in

Figure 2.1).

Name and origin (DE, GN AND OS)

The description (DE) line contains the protein name, synonyms and abbreviations.

Proteins may be described using any number of synonyms. Also included in this line

is an indication of whether or not the protein is a ‘Fragment’, and the EC number if

relevant. The GN line gives gene and locus names. The species (OS) line indicates

the species and taxonomy information. In the example, there are four synonyms:

‘Cellular tumor antigen p53’; ‘Antigen NY-CO-13’; ‘Phosphoprotein p53’ and ‘Tumor

suppressor p53’ (line #9-14 in Figure 2.1).

Cross references (DR)

The DR line UniProtKB/Swiss-Prot provides cross-references between databases (this

data is used to construct datasets with which to benchmark FOSTA (McMillan and

Martin, 2008) against another method Inparanoid). P53_HUMAN is cross referenced

to ENA records X02469 and CAA26306.1; PIR records A25224 and DNHU53; RefSeq

records NP_000537.3 and NM_000546.4; PDB records 1A1U and other databases en-

tries (lines #15-18 in Figure 2.1).

Features (FT)

UniProtKB/Swiss-Prot provides more than 30 feature keys (FT) that include sequence,

structural and function annotations found in the protein. These may be transferred

by homology, or there may be experimental evidence or non-experimental qualifiers

(‘Potential’, ‘Probable’ and ‘By similarity’) which indicate the status of the annotation

(lines #19-33 in Figure 2.1).

Sequence (SQ)

The sequence (SQ) line provides the sequence; total amino acid count; molecular

weight and a cyclic redundancy check (CRC) value. This is followed by a terminating

line (‘//’), which designates the end of an entry, (lines #34-35 in Figure 2.1).
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[B] Improved MutModel Program

Usage: mutmodel [-m resspec newres] [-e clashMethod] [-c chitab]

[-r refcoor] [-v] [-f conffile] [-d] [-o] [-x]

[-s stepsize] [-t tolerance] [-p paramfile]

[-l Lennard-Jones-Cutoff] [infile.pdb [outfile.pdb]

-m Specify a mutation where resspec is of the form [c]nnn[i]

(where [c] is an optional chain name, nnn is a residue

number and [i] is an optional insert code).

Multiple mutations may be specified with multiple

-m options. newres may be 1-letter or 3-letter code.

-e Specify the clash evaluation method: 1: Boolean;

2: Linear clash; 3: VdW (Lennard-Jones);

4: VdW/Torsion. [Default: 1]

-p Specify energy parameter file. [Default: eparams.dat]

-c Specify the Chi equivalents table (Default: chitab.dat

in the current directory or $DATADIR)

-r Specify the reference coordinates file

(Default: coor in the current directory or $DATADIR)

-v Verbose mode; reports whether the side-chain replacement

was acceptable.

-f Write each conformation to a PDB format file

-d Debugging: Print clash table and choice

-o Only do MOP, not MPP

-s Specify search step size (degrees). [Default: 30.00]

-x Generate a random model for the side-chain

-t Specify tolerance in energy for accepting the parent

conformation or a standard rotamer position.

[Default: 1.0]

-l Specify distance cutoff for van der Waals (Lennard-Jones)

energy calculations. Atom pairs with greater separation

are ignored. [Default: 8.0]
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If input and output files are not specified, standard

input/output will be used.

MutModel performs a very simple side-chain replacement using the

minimum perturbation protocol (MPP). The side-chain is replaced

and then spun around its Chi1 and Chi2 torsion angles to find a

position which makes minimal bad contacts as evaluated using one

of three clash evaluation methods (see -e).

Note that using methods 3 and 4, if a conformation is written

from this program and then the energy is calculated, it will

differ somewhat from the energy calculated when the conformation

was generated. This is because the PDB format rounds the atom

coordinates to 3 decimal places. Each VDW energy can then be

out in the 5th decimal place, but this can accumulate to a

surprisingly large difference in final energy.

Note that the ideal value for -l is 14.5A but this increases

the run time by ~10x. The default of 8.0A gives a good

tradeoff between accuracy an speed - smaller values will

speed it up more at the expense of accuracy.
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[C] Predicting Damaging Mutations – JSON file

{"SAAPS": { "uniprotac": "P12883",
"resnum": 869,
"native": "R",
"mutant": "G",
"pdbs" : [

{"SAAP":
{ "file": "/acrm/data/pdb/pdb2fxm.ent",

"pdbcode": "2fxm",
"residue": "A869",
"mutation": "G",
"structuretype": "crystal",
"resolution": "2.70A",
"rfactor": "24.20%",
"results": {
"Binding": {"Binding-BOOL": "OK"},
"BuriedCharge": {"BuriedCharge-NATIVE-CHARGE": "1", "BuriedCharge-MUTANT-CHARGE": "0",

"BuriedCharge-BOOL": "OK", "BuriedCharge-RELACCESS": "51.582"},
"CisPro": {"CisPro-BOOL": "OK", "CisPro-NATIVE": "ARG", "CisPro-OMEGA": "178.996"},
"Clash": {"Clash-ENERGY": "0.00", "Clash-BOOL": "OK"},
"CorePhilic": {"CorePhilic-MUTANT-HPHOB": "0.16", "CorePhilic-BOOL": "OK",

"CorePhilic-RELACCESS": "77.011", "CorePhilic-NATIVE-HPHOB": "-1.8"},
"Glycine": {"Glycine-MUTANT-THRESHOLD": "", "Glycine-BOOL": "OK",

"Glycine-NATIVE-THRESHOLD": "0.35","Glycine-NATIVE-ENERGY": "",
"Glycine-PSI": "-46.473", "Glycine-MUTANT-ENERGY": "",
"Glycine-PHI": "-59.091", "Glycine-NATIVE-BOOL": "OK",
"Glycine-MUTANT": "GLY", "Glycine-NATIVE": "ARG"},

"HBonds": {"HBonds-ENERGY": "NULL", "HBonds-BOOL": "OK", "HBonds-ZVAL": "NULL",
"HBonds-ATOM": "NULL", "HBonds-PARTNER-RES": "NULL",

"HBonds-PARTNER-ATOM": "NULL"},
"Impact": {"Impact-BOOL": "BAD", "Impact-NSEQ": "9", "Impact-THRESHOLD": "0.67",

"Impact-CONSSCORE": "1"}, "Interface": {"Interface-BOOL": "BAD",
"Interface-RELACCESS": "51.582", "Interface-RELACCESS-MOL": "77.011"},

"Proline": {"Proline-MUTANT-THRESHOLD": "0.53", "Proline-BOOL": "OK",
"Proline-NATIVE-THRESHOLD": "", "Proline-NATIVE-ENERGY": "",
"Proline-PSI": "-46.473", "Proline-MUTANT-ENERGY": "", "Proline-PHI": "-59.091",
"Proline-NATIVE-BOOL": "OK", "Proline-MUTANT": "GLY", "Proline-NATIVE": "ARG"},

"SProtFT": {"SProtFT-BOOL": "OK", "SProtFT-FEATURES": "0000000000000", "SProtFT-NAMES": ""},
"SSGeom": {"SSGeom-BOOL": "OK"},
"SurfacePhobic": {"SurfacePhobic-MUTANT-HPHOB": "0.16", "SurfacePhobic-BOOL": "OK",

"SurfacePhobic-RELACCESS": "77.011", "SurfacePhobic-NATIVE-HPHOB": "-1.8"},
"Voids": {"Voids-MUTANT": [11.799,10.381,10.000,7.106,6.356,4.966,4.745,2.792,2.351,0],

"Voids-MUTANT-LARGEST": "11.799000", "Voids-BOOL": "OK", "Voids-NATIVE": [11.799,
10.381,10.000,7.106,6.356,4.966,4.745,2.792,2.351],

"Voids-NATIVE-LARGEST": "11.799000"}}}}
,
{"SAAP":

{ "file": "/acrm/data/pdb/pdb2fxm.ent",
"pdbcode": "2fxm",
"residue": "B869", ... }}

]
}

}

Figure 1: An example of a JSON file.
UniProt: P12883, an Arginine amino acid in postion 869 mutated to Glycine.
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[C.i] JSON file explanation

Table 1: JSON file category explanation.

Category Explanation

"Binding": "Binding-BOOL": "OK" Is this residue making an H-Bond or VDW contact with a ligand or another protein chain?

"BuriedCharge": "BuriedCharge-NATIVE-CHARGE": "1" Charge on the native amino acid

"BuriedCharge-MUTANT-CHARGE": "0" Charge on the mutant amino acid

"BuriedCharge-BOOL": "OK" Is this a buried residue (<25% accessibility) where charge has changed

"BuriedCharge-RELACCESS": "51.582" accessibility (out of 100%)

"CisPro": "CisPro-BOOL": "OK" Was this a proline with a cis peptide bond

"CisPro-NATIVE": "ARG" The native amino acid

"CisPro-OMEGA": "178.996" The peptide bond dihedral angle

"Clash": "Clash-ENERGY": "0.00" Energy calculation for any clash - can be anything about -1000 to +100000

"Clash-BOOL": "OK" We define a bad clash as >34.33 (99% of clashes are less than this in native proteins)

"CorePhilic": "CorePhilic-MUTANT-HPHOB": "0.16" Mutant residue hydrophobicity

"CorePhilic-BOOL": "OK" Is this introducing a hydrophilic in the core where there was a hydrophobic: -0.1 is used as a

threshold for hydrophilic/hydrophobic CorePhilic-RELACCESS: "-1"

"CorePhilic-RELACCESS": "77.011" Relative accessibility - only calculated when the native is hydrophobic and mutant is hydrophilic

"CorePhilic-NATIVE-HPHOB": "-1.8" Native residue hydrophobicity

"Glycine": "Glycine-MUTANT-THRESHOLD": ""

"Glycine-BOOL": "OK" Was this a native Gly with unusual backbone phi/psi angles being mutated to something else

"Glycine-NATIVE-THRESHOLD": "0.35"

"Glycine-NATIVE-ENERGY": ""

Continued on next page
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Table 1 – Continued from previous page

Category Explanation

"Glycine-PSI": "-46.473" Backbone Calpha-C dihedral angle

"Glycine-MUTANT-ENERGY": ""

"Glycine-PHI": "-59.091" Backbone N-Calpha dihedral angle

"Glycine-NATIVE-BOOL": "OK" Was this a native Gly with unusual backbone phi/psi angles being mutated to something else

"Glycine-MUTANT": "GLY"

"Glycine-NATIVE": "ARG"

"HBonds": "HBonds-ENERGY": "NULL" Energy for the HBond with the mutant âĂŞ NULL if not formed

"HBonds-BOOL": "OK" Was this a residue involved in an HBond and the mutant can’t retain the HBond?

"HBonds-ZVAL": "NULL" Also energy for the HBond with the mutant âĂŞ NULL if not formed

"HBonds-ATOM": "NULL" Atom involved in an HBond

"HBonds-PARTNER-RES": "NULL" Partner residue if in an HBond

"HBonds-PARTNER-ATOM": "NULL" Partner atom if in an HBond

"Impact": "Impact-BOOL": "BAD" Was this residue significantly conserved

"Impact-NSEQ": "9" Number of sequences in the alignment In this case treat results with caution as we really want

>=10 sequences

"Impact-THRESHOLD": "0.67" Threshold (0-1) for significant conservation

"Impact-CONSSCORE": "1" Conservation at this position in the alignment

"Interface": "Interface-BOOL": "BAD" Was this residue in an interface? Relative accessibility changed by >=10

"Interface-RELACCESS": "51.582" Relative accessibility (0-100) of this residue

"Interface-RELACCESS-MOL": "77.011" Relative accessibility (0-100) of this residue in a monomer

"Proline": "Proline-MUTANT-THRESHOLD": "0.53"

"Proline-BOOL": "OK" Was this a mutation to a proline where the phi/psi angles can’t accommodate proline

"Proline-NATIVE-THRESHOLD": ""

"Proline-NATIVE-ENERGY": ""

Continued on next page
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Table 1 – Continued from previous page

Category Explanation

"Proline-PSI": "-46.473" Backbone Calpha-C angle

"Proline-MUTANT-ENERGY": ""

"Proline-PHI": "-59.091" Backbone N-Calpha angle

"Proline-NATIVE-BOOL": "OK"

"Proline-MUTANT": "GLY"

"Proline-NATIVE": "ARG"

"SProtFT": "SProtFT-BOOL": "OK" Was this residue described in SwissProt as a ’feature’ (e.g. active site, PTM, etc)

"SProtFT-FEATURES": "0000000000000" Which features were affected

"SProtFT-NAMES": "" Which features were affected - as text

"SSGeom": "SSGeom-BOOL": "OK" Was this a Cys in a disulphide (from PDB file)

"SurfacePhobic": "SurfacePhobic-MUTANT-HPHOB": "0.16" Hydrophobicity of mutant residue

"SurfacePhobic-BOOL": "OK" Are we replacing a hydrophilic with a hydrophobic on the surface?

"SurfacePhobic-RELACCESS": "77.011" Relative accessibility (0-100)

"SurfacePhobic-NATIVE-HPHOB": "-1.8" Hydrophobicity of native residue

"Voids": "Voids-MUTANT": [11.799,10.381, ...] Top 10 voids in the mutant

"Voids-MUTANT-LARGEST": "11.799000" Largest void in the mutant

"Voids-BOOL": "OK" Are we introducing a void > 275Å3 when there wasn’t

"Voids-NATIVE": [11.799,10.381, ...] Top 10 voids in the native

"Voids-NATIVE-LARGEST": "11.799000" Largest void in the native
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[D] MYH7

Table 2: SAAPpred performance 10 Model on (All MYH7 mutation) using one PDB per variance and using multiple PBD

ALL MY7H [onePDB] ALL MY7H [MultiPDB]
TP FN TN FP SENS F1 ACC TP FN TN FP SENS F1 ACC

Run without -norm option for normalization and including PDB ID 3dpt
SAAPpred M1 216 19 0 0 0.919 0.958 0.919 655 150 0 0 0.814 0.897 0.814
SAAPpred M2 222 13 0 0 0.945 0.972 0.945 589 216 0 0 0.732 0.845 0.732
SAAPpred M3 235 0 0 0 1.000 1.000 1.000 683 122 0 0 0.848 0.918 0.848
SAAPpred M4 230 5 0 0 0.979 0.989 0.979 728 77 0 0 0.904 0.950 0.904
SAAPpred M5 234 1 0 0 0.996 0.998 0.996 626 179 0 0 0.778 0.875 0.778
SAAPpred M6 208 27 0 0 0.885 0.939 0.885 720 85 0 0 0.894 0.944 0.894
SAAPpred M7 231 4 0 0 0.983 0.991 0.983 677 128 0 0 0.841 0.914 0.841
SAAPpred M8 235 0 0 0 1.000 1.000 1.000 731 74 0 0 0.908 0.952 0.908
SAAPpred M9 235 0 0 0 1.000 1.000 1.000 598 207 0 0 0.743 0.852 0.743
SAAPpred M10 235 0 0 0 1.000 1.000 1.000 743 62 0 0 0.923 0.960 0.923

Average 0.971 0.985 0.971 675 130 0 0 0.839 0.911 0.839
Run with -norm option for normalization and excluding PDB ID 3dpt

SAAPpred M1 212 23 0 0 0.902 0.949 0.902 585 107 0 0 0.845 0.916 0.845
SAAPpred M2 228 7 0 0 0.970 0.985 0.970 591 101 0 0 0.854 0.921 0.854
SAAPpred M3 219 16 0 0 0.932 0.965 0.932 488 204 0 0 0.705 0.827 0.705
SAAPpred M4 221 14 0 0 0.940 0.969 0.940 645 47 0 0 0.932 0.965 0.932
SAAPpred M5 222 13 0 0 0.945 0.972 0.945 598 94 0 0 0.864 0.927 0.864
SAAPpred M6 218 17 0 0 0.928 0.962 0.928 486 206 0 0 0.702 0.825 0.702
SAAPpred M7 229 6 0 0 0.974 0.987 0.974 598 94 0 0 0.864 0.927 0.864
SAAPpred M8 201 34 0 0 0.855 0.922 0.855 459 233 0 0 0.663 0.798 0.663
SAAPpred M9 210 25 0 0 0.894 0.944 0.894 569 123 0 0 0.822 0.902 0.822
SAAPpred M10 219 16 0 0 0.932 0.965 0.932 471 221 0 0 0.681 0.810 0.681

Average 0.927 0.962 0.927 549 143 0 0 0.794 0.882 0.794
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Table 3: SAAPpred performance 10 Model on (HCM-MYH7 mutations) using one PDB per variance and using multiple PBD

MY7H-HCM [onePDB] MY7H-HCM [MultiPDB]
TP FN TN FP SENS F1 ACC TP FN TN FP SENS F1 ACC

Run without -norm option for normalization and including PDB ID 3dpt
SAAPpred M1 170 18 0 0 0.904 0.950 0.904 541 128 0 0 0.809 0.894 0.809
SAAPpred M2 177 11 0 0 0.941 0.970 0.941 487 182 0 0 0.728 0.843 0.728
SAAPpred M3 188 0 0 0 1.000 1.000 1.000 569 100 0 0 0.851 0.919 0.851
SAAPpred M4 183 5 0 0 0.973 0.987 0.973 604 65 0 0 0.903 0.949 0.903
SAAPpred M5 187 1 0 0 0.995 0.997 0.995 522 147 0 0 0.780 0.877 0.780
SAAPpred M6 162 26 0 0 0.862 0.926 0.862 590 79 0 0 0.882 0.937 0.882
SAAPpred M7 185 3 0 0 0.984 0.992 0.984 554 115 0 0 0.828 0.906 0.828
SAAPpred M8 188 0 0 0 1.000 1.000 1.000 610 59 0 0 0.912 0.954 0.912
SAAPpred M9 188 0 0 0 1.000 1.000 1.000 499 170 0 0 0.746 0.854 0.746
SAAPpred M10 188 0 0 0 1.000 1.000 1.000 613 56 0 0 0.916 0.956 0.916

Average 0.966 0.983 0.966 558.9 110.1 0 0 0.836 0.909 0.836
Run with -norm option for normalization and excluding PDB ID 3dpt

SAAPpred M2 182 6 0 0 0.963 0.981 0.963 488 82 0 0 0.856 0.922 0.856
SAAPpred M2 181 7 0 0 0.963 0.981 0.963 488 82 0 0 0.856 0.922 0.856
SAAPpred M3 173 15 0 0 0.920 0.958 0.920 406 164 0 0 0.712 0.832 0.712
SAAPpred M4 176 12 0 0 0.936 0.967 0.936 530 40 0 0 0.930 0.964 0.930
SAAPpred M5 175 13 0 0 0.931 0.964 0.931 491 79 0 0 0.861 0.926 0.861
SAAPpred M6 171 17 0 0 0.910 0.953 0.910 402 168 0 0 0.705 0.827 0.705
SAAPpred M7 182 6 0 0 0.968 0.984 0.968 493 77 0 0 0.865 0.928 0.865
SAAPpred M8 156 32 0 0 0.830 0.907 0.830 378 192 0 0 0.663 0.797 0.663
SAAPpred M9 165 23 0 0 0.878 0.935 0.878 471 99 0 0 0.826 0.905 0.826
SAAPpred M10 173 15 0 0 0.920 0.958 0.920 391 179 0 0 0.686 0.814 0.686

Average 0.914 0.955 0.914 453.3 116.7 0 0 0.795 0.883 0.795
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Table 4: SAAPpred performance 10 Model on (DCM-MYH7 mutations using one PDB per variance and using multiple PBD).

MY7H-DCM [onePDB] MY7H-DCM [MultiPDB]
TP FN TN FP SENS F1 ACC TP FN TN FP SENS F1 ACC

Run without -norm option for normalization and including PDB ID 3dpt
SAAPpred M1 20 1 0 0 0.952 0.976 0.952 28 32 0 0 0.467 0.636 0.467
SAAPpred M2 20 1 0 0 0.952 0.976 0.952 23 37 0 0 0.383 0.554 0.383
SAAPpred M3 21 0 0 0 1.000 1.000 1.000 44 16 0 0 0.733 0.846 0.733
SAAPpred M4 20 1 0 0 0.952 0.976 0.952 44 16 0 0 0.733 0.846 0.733
SAAPpred M5 21 0 0 0 1.000 1.000 1.000 33 27 0 0 0.550 0.710 0.550
SAAPpred M6 20 1 0 0 0.952 0.976 0.952 34 26 0 0 0.567 0.723 0.567
SAAPpred M7 20 1 0 0 0.952 0.976 0.952 43 17 0 0 0.717 0.835 0.717
SAAPpred M8 20 1 0 0 0.952 0.976 0.952 39 21 0 0 0.650 0.788 0.650
SAAPpred M9 21 0 0 0 1.000 1.000 1.000 22 38 0 0 0.367 0.537 0.367
SAAPpred M10 21 0 0 0 1.000 1.000 1.000 47 13 0 0 0.783 0.879 0.783

Average 20.4 0.6 0 0 0.972 0.986 0.972 35.7 24.3 0 0 0.595 0.736 0.595
Run with -norm option for normalization and excluding PDB ID 3dpt

SAAPpred M1 20 1 0 0 0.952 0.976 0.952 45 9 0 0 0.833 0.909 0.833
SAAPpred M2 21 0 0 0 1.000 1.000 1.000 46 8 0 0 0.852 0.920 0.852
SAAPpred M3 21 0 0 0 1.000 1.000 1.000 37 17 0 0 0.685 0.813 0.685
SAAPpred M4 21 0 0 0 1.000 1.000 1.000 54 0 0 0 1.000 1.000 1.000
SAAPpred M5 21 0 0 0 1.000 1.000 1.000 47 7 0 0 0.870 0.931 0.870
SAAPpred M6 21 0 0 0 1.000 1.000 1.000 37 17 0 0 0.685 0.813 0.685
SAAPpred M7 21 0 0 0 1.000 1.000 1.000 44 10 0 0 0.815 0.898 0.815
SAAPpred M8 21 0 0 0 1.000 1.000 1.000 37 17 0 0 0.685 0.813 0.685
SAAPpred M9 20 1 0 0 0.952 0.976 0.952 43 11 0 0 0.796 0.887 0.796
SAAPpred M10 21 0 0 0 1.000 1.000 1.000 36 18 0 0 0.667 0.800 0.667

Average 0.991 0.995 0.991 42.6 11.4 0 0 0.789 0.878 0.789



277

Table 5: SAAPpred performance 10 Model on (Others-MYH7 mutations) using one PDB per variance and using multiple PBD.Others:LVNC, ASD,
Endocardial Fibroelastosis, RCM, Myopathycentral Core, Miopatoa Distal De Laing, Ebsein, Mysin Strong Miopathy and Distal Myopathy.

MY7H-Others [onePDB] MY7H-Others [MultiPDB]
TP FN TN FP SENS F1 ACC TP FN TN FP SENS F1 ACC

Run without -norm option for normalization and including PDB ID 3dpt
SAAPpred M1 26 1 0 0 0.963 0.981 0.963 39 45 0 0 0.464 0.634 0.464
SAAPpred M2 25 2 0 0 0.926 0.962 0.926 41 43 0 0 0.488 0.656 0.488
SAAPpred M3 27 0 0 0 1.000 1.000 1.000 54 30 0 0 0.643 0.783 0.643
SAAPpred M4 27 0 0 0 1.000 1.000 1.000 51 33 0 0 0.607 0.756 0.607
SAAPpred M5 27 0 0 0 1.000 1.000 1.000 45 39 0 0 0.536 0.698 0.536
SAAPpred M6 26 1 0 0 0.963 0.981 0.963 56 28 0 0 0.667 0.800 0.667
SAAPpred M7 26 1 0 0 0.963 0.981 0.963 55 29 0 0 0.655 0.791 0.655
SAAPpred M8 27 0 0 0 1.000 1.000 1.000 56 28 0 0 0.667 0.800 0.667
SAAPpred M9 27 0 0 0 1.000 1.000 1.000 40 44 0 0 0.476 0.645 0.476
SAAPpred M10 27 0 0 0 1.000 1.000 1.000 64 20 0 0 0.762 0.865 0.762

Average 26.5 0.5 0 0 0.982 0.991 0.982 50.1 33.9 0 0 0.597 0.743 0.597
Run with -norm option for normalization and excluding PDB ID 3dpt

SAAPpred M1 26 1 0 0 0.963 0.981 0.963 63 11 0 0 0.851 0.920 0.851
SAAPpred M2 27 0 0 0 1.000 1.000 1.000 63 11 0 0 0.851 0.920 0.851
SAAPpred M3 26 1 0 0 0.963 0.981 0.963 51 23 0 0 0.689 0.816 0.689
SAAPpred M4 25 2 0 0 0.926 0.962 0.926 67 7 0 0 0.905 0.950 0.905
SAAPpred M5 27 0 0 0 1.000 1.000 1.000 66 8 0 0 0.892 0.943 0.892
SAAPpred M6 26 1 0 0 0.963 0.981 0.963 52 22 0 0 0.703 0.825 0.703
SAAPpred M7 27 0 0 0 1.000 1.000 1.000 67 7 0 0 0.905 0.950 0.905
SAAPpred M8 25 2 0 0 0.926 0.962 0.926 50 24 0 0 0.676 0.806 0.676
SAAPpred M9 26 1 0 0 0.963 0.981 0.963 61 13 0 0 0.824 0.904 0.824
SAAPpred M10 26 1 0 0 0.963 0.981 0.963 50 24 0 0 0.676 0.806 0.676

Average 2 6.1 0.9 0 0 0.967 0.983 0.967 59 15 0 0 0.797 0.884 0.797


