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Abstract 

The adoption of agent technologies and Multi-Agent Systems 

constitutes an emerging area in bioinformatics. In this paper, we 

report on the activity of the Working Group on Agents in 



Bioinformatics (BIOAGENTS) founded during the first AgentLink 

III Technical Forum meeting on the 2nd of July, 2004, in Rome. The 

meeting provided an opportunity for seeding collaborations between 

the agent and bioinformatics communities to develop a different 

(agent-based) approach of computational frameworks both for data 

analysis and management in bioinformatics and for systems 

modelling and simulation in computational and systems biology. 

The collaborations gave rise to applications and integrated tools that 

we summarize and discuss in the context of the state of the art of 

this area. We investigate on future challenges and argue that the 

field should still be explored from many perspectives ranging from 

bio-conceptual languages for agent-based simulation, to the 

definition of bio-ontology-based declarative languages to be used 

by information agents, and to the adoption of agents for 

computational Grids.  
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1  Introduction 

 The avalanche of data that has been generated, particularly in biological 



sequences and more recently also in transcriptional and structural data, interactions and 

genetics, has led to the early adoption of tools for unsupervised automated analysis of 

biological data during the mid-1990s [34, 32]. Computational analysis of such data has 

become increasingly more important, and many more tools and models for the 

interpretation of biological data have been developed in recent years. However, not all of 

these are publicly available or permit bulk submissions via the web. Moreover some tools 

require training, particularly for individual organisms, and tools may be mutually 

interdependent.  

 The reason for establishing a Working Group on BIOAGENTS was to achieve 

improvements in the field of bioinformatics by designing and implementing new flexible 

Information and Communication Technologies tools able to support biological science 

data analysis and to distribute, at least partially, the computation burden, while reducing 

the need for the transfer of huge amounts of data. From this perspective, it is believed 

that software agents can play a major role. The scope of the Working Group was to 

promote a collaboration between the agent and bioinformatics communities, with the aim 

of creating synergies for modelling complex biological systems. As suggested by the 

AgentLink II Roadmap [57], one of the most promising emerging application domains 

for agent technologies is the biological sciences, both in relation to multi-agent systems 

for simulating and modelling biological systems, and for supporting the automation of 

information-gathering and information-inference processes. 

AgentLink III (http://www.agentlink.org) was a Coordination Action for Agent Based 

Computing, funded by the European Commission’s 6th Framework Programme, which 

provides support for researchers and developers with a common interest in agent-based 



computing. One of the most important and visible activities of AgentLink III has been 

concerned with organizing a periodic Technical Forum (AL3-TF), in which Technical 

Forum Groups (TFGs) meet to discuss issues of key interest to the agent community. In 

2004, AgentLink organized the first Technical Forum, held from the 30th of June to the 

2nd of July, in Rome, Italy, at which the first BIOAGENTS Technical Forum Group 

founded the Working Group [58].  

 Here, we report on the state of art in using agents in bioinformatics, presenting the 

activities and results of the Working Group and future perspectives. In particular, Section 

2 introduces agents and multi-agent systems, Section 3 motivates the use of agents in 

bioinformatics by discussing recent experiences within BIOAGENTS, Section 4 points 

out future challenges of agents in bioinformatics and Section 5 concludes the paper. 

2  Agents and multi-agent systems 

 Agents can be considered as a distinct kind of software abstraction, in the same 

way that methods, functions and objects are software abstractions. More specifically, an 

agent is a high-level software abstraction that provides a convenient and powerful way to 

describe a complex software entity in terms of its behaviour within a contextual 

computational environment. It differs from an object in the capability to control its own 

state. The weak notion of agents is of flexible problem-solving computational entities that 

are reactive (respond to the environment), proactive (maintain overarching goals), 

autonomous (not externally controlled) and interact with other such entities. By contrast, 

the strong notion views agents as composed of particular mental or cognitive abilities, 

suggesting agent architectures based on the belief-desire-intention model. The weak form 



has relatively low-level agents that do little computation processing, and the outcomes 

emerge from the results of the interactions of large numbers of agents. The coarser 

grained agents yield higher-level communication, and stronger individual problem-

solving capabilities.  

Building on this premise, multi-agent systems, in which multiple agents interact in 

some overarching system architecture, have been argued to be a particularly suitable 

level and means of abstraction for solving complex problems. This is achieved through 

the modelling and engineering of complex systems [44], which are characterized by 

organization structures and coordination processes that are increasingly better articulated 

and more dynamic than alternative forms [85]. 

 In this view, an agent is a computer system capable of flexible, autonomous 

problem-solving actions; it is capable of operating as a standalone process, and 

performing actions without user intervention by maintaining a description of its own 

processing state and the state of environment in which it is situated. The environments in 

which agents operate are typically dynamic, open, unpredictable and populated by other 

agents. An agent must therefore also be able to communicate with other agents and the 

execution environment itself [84, 45].  

A communication act between two agents is facilitated if a suitable ontology 

exists, shared by both agents. The communication itself is distinct, however. For example 

agent communication languages such as KQML [31] or FIPA ACL (http://www.fipa.org) 

provide the performatives (or types of message) that may be required here, but both allow 

for the specification of a particular ontology to ensure that the content of the message is 

understood by both parties. The use of ontologies guarantees agreement on the semantics 



of the exchanged data. Moreover, whenever an agent acquires additional information, it 

can integrate it with its personal knowledge base. Each agent is responsible for the 

consistency and the correctness of this operation. 

Agents provide designers and developers with a way of structuring an application around 

autonomous, communicative elements, and lead to the construction of software tools and 

infrastructure to support the design metaphor. In this sense, they offer a new and often 

more appropriate route to the development of complex systems. In order to support this 

view of systems development, particular tools and techniques need to be used: from agent 

computing platforms to support the design and engineering of agents and multi-agent 

systems, to more general infrastructures supporting the integration of current 

technologies, such as web services. However, agent technologies are distinct in spanning 

a range of specific techniques and algorithms for dealing more specifically with 

interactions with others in these dynamic and open environments. Such techniques 

include those for learning from, and about, other agents in the environment and user 

preferences, finding ways to negotiate and cooperate with agents, and developing 

appropriate means of forming and managing coalitions. With the increasing prevalence of 

agent-based computing in recent years, research on agent-oriented software engineering 

(AOSE) [35, 85] has also led to the proposal of several models, methodologies and tools 

to guide the analysis and design of complex systems in this context. 

3  Agents in Bioinformatics 

 Agent technology deals with entities typically equipped with information 

management and coordination capabilities. The notion of agents in bioinformatics thus 



suggests the support of integration of information by designing domain-aware 

information agents for knowledge management and problem-solving within a biological 

domain. The use of agents in computational and systems biology suggest the design of 

agent-based systems, tools and languages for modelling the biological processes 

themselves.  

 At the dawn of the “omics” age, bioinformatics was defined [11] as a 

computational discipline aiming at the management and analysis of biological data. 

Nowadays, we should also include in this definition the capability to address information 

and knowledge overflow as well – integration has become the password. Computational 

biology focuses more on the algorithmic aspects, often taking into account biomolecular  

concepts or even mimicking them [19]. Systems biology attempts to understand the 

emerging behaviour of biological systems as a whole [50].  The three disciplines are so 

strongly correlated and integrated that in the rest of the paper we wander among them. 

 Agents proved to be useful for applications that imply: repetitive and time-

consuming activities; knowledge management, such as integration of different knowledge 

sources; and modelling of complex, dynamic systems. All of these are typical tasks in the 

above mentioned disciplines. In particular, the kinds of resources available in the 

bioinformatics domain, with numerous databases and analysis tools independently 

administered in geographically distinct locations, lend themselves almost ideally to the 

adoption of a multi-agent approach. Here, the environment is open, distributed and 

dynamic, with resources entering and leaving the system over time. There are likely to be 

large numbers of interactions between entities for various purposes, and the need for 

automation is substantial and pressing. Some early work in this direction, using agents 



for genome analysis, is demonstrated by the GeneWeaver project in the UK [13], and 

work using DECAF in the US [39, 23]. Earlier work [34, 63] does not mention agents 

explicitly but shares many similar concepts. Recently Keele and Wray [48] reviewed the 

issues concerning applications of software agent technology to genomics. In Italy, results 

in the application of agents to data and tools integration, have been provided by the 

BioAgent project [4, 60, 20, 21]. For biological systems simulation, early work 

demonstrates the use of agent technology to model intracellular signaling pathways [36], 

and in visual tools for cell modelling [82]. More substantial work is now underway on the 

use of distributed components as part of the UK’s myGrid [75]   e-Science project 

(http://www.mygrid.org.uk), developing a Bioinformatics Grid testbed, which may also 

merit the application of the agent paradigm [65]. Another project, with a special 

applications for biology, is the Italian Grid.it (http://www.grid.it); this project aims to 

provide platforms for high-performance computational grids oriented at scalable virtual 

organizations. Promising experimental studies on the integration of Grid and agent 

technology are also being carried out in the framework of a new project, LITBIO 

(Interactive Laboratory of Bioinformatics Technologies; http://www.litbio.org). 

3.1  Recent Experiences 

 In this section we report on some recent experience in using agents in 

bioinformatics, and discuss the results obtained in employing them both as assistants for 

bioinformaticians and as problem solvers for biologists. More details of each application 

can be found in the corresponding references. 

 



Bioinformatics process automation  

In order to illustrate the role of agents in bioinformatics process automation, we 

consider the experience of GeneWeaver [13], which is a multi-agent system aimed at 

addressing concerns with the management of data and analysis methods for 

bioinformatics. It comprises a community of agents that interact with each other, each 

having a particular role, in an overall effort to automate processes involved in 

bioinformatics. The system was targeted at genome annotation, but should not really be 

viewed as satisfying a single need, with each agent being able to deliver its own expertise 

at solving particular problems. 

If we consider the kinds of problems that are common in such applications, including 

filtering and prioritizing information resulting from matched proteins, integrating several 

distinct  analysis programs possibly in sophisticated ways, managing multiple remote 

sources of data in different formats, and so on, no solution for automation suggests itself 

quite as much as a multi-agent approach. In fact, this kind of problem is not really novel 

— it fits what might be considered a standard model of a multi-agent system in a 

traditional information systems domain with the addition of some extra complications, 

and a different set of data. 

Agents in the system can be concerned with management of the primary databases, 

performing sequence analyses using existing tools, or with storing and presenting 

resulting information. The important point to note is that the system does not offer new 

methods for performing these tasks, but organises existing ones for the most effective and 

flexible operation.  

There are five types of agent present in the GeneWeaver community. 



• Broker agents are facilitators rather than points of functionality, are needed to 

register information about other agents in the community. 

• Primary database agents are needed to manage remote primary sequence 

databases, and keep the data contained in them up-to-date and in a format that allows 

other agents to query that data. 

• Non-redundant database agents construct and maintain non-redundant databases 

from the data managed by other primary database agents in the community. 

• Calculation agents encapsulate some pre-existing methods or tools for analysis of 

sequence data, and attempt to determine the structure or function of a sequence. 

Whenever possible, they are also responsible for constructing and managing any 

underlying data that they rely on. 

• Genome agents are responsible for managing the genomic information for a 

particular organism. 

 

Agents for the analysis of polygenic diseases 

 It is often not clear if a gene is expressed or differentially expressed. It is even 

more difficult to determine if an observed change is relevant for a disease. Humans are 

not good in ranking these findings, particularly not for complex diseases, with many 

contributing factors. A lab investigating a particular disease is likely to have both RNA 

and protein expression data from many different sources. The data are likely to include 

information from cell cultures, experiments prior to, and post, the inhibition of a 

particular set of genes, nucleotide polymorphisms and the same for animal models of the 

disease from multiple strains. Also of particular interest is the genotyping of animals, 



from which identifications of chromosomal loci that contribute to the disease may be 

inferred. 

 The use of agents for the analysis of polygenic diseases and preliminary results on 

combining RNA and protein expression levels, genotyping and intergenomics by 

adopting BioAgent, a programming environment based on mobile middleware [60], are 

encouraging. Agent technology supports uniform access to local and public data (through 

a facilitator, i.e. a wrapper of web services or local tools, as implemented by 

EDITtoTrEMBL and other efforts [34, 63, 9]). Agent technology helps in understanding 

links between data sources and their association with diseases, providing reasoning over 

these data to yield a model of the disease in terms of the minimal number of 

genes/pathways that explain the maximal number of observations of the disease. Agents 

gather annotation of protein or genomic sequences and establish a consensus, as 

implemented for information from protein domain databases and trans-membrane protein 

sequence annotation [64]. In this context, agents are viewed not only as a technical 

implementation of distributed computing, but also as a manager of different views on the 

collected data, from which a complete model needs to be inferred. 

Many other sources of information are available as web services that agents may provide. 

These include selection of nucleotide polymorphisms [62], conversion between genetic 

and physical distances [80], and inter-genomic consensus regions of disease association 

[73] which, today, are queried only manually and independently. 

Agents could also be used to select preferred investigations of particular regions of 2D 

gels e.g., zooming in on gels, MS-identification of spots, and searching for predicted 

variants. They might also suggest investigation of genes that are not on a microarray chip 



by intelligently supporting the huge computational effort required, which could benefit 

from load sharing in the context of Grid computing. 

 

myGrid  Practical Experience in Tasks Automation 

 One of the key problems facing bioinformaticians is the task of finding the 

services and the data that they need to perform in silico experiments. This task is 

complex for several reasons. First, the tools are often widely distributed, maintained by 

many different decentralized groups. Secondly, there are many different tools, 

performing many different kinds of operation, on many different kinds of data. And, 

finally, this is further complicated by the lack of formal standards for representing the 

data of bioinformatics. 

It is against this backdrop that the myGrid project operates. The project has built a service 

oriented system that enables the publication and composition of tools as services [67],  

recognising that service autonomy and heterogeneity are the key challenges in 

bioinformatics, rather than the requirement for high performance, which was the original 

focus of computational Grid technologies. While this simplifies some of the difficulties 

described above — it is no longer necessary to “screen scrape” web pages — it does not 

address the difficulties of complexity. 

This environment is one that seems ripe for the application of agent technology; coping 

with distribution, decentralization and complexity are some of the biggest perceived 

advantages of this technology. However, to enable the use of agents, large amounts of 

knowledge are required in a form that can be processed by the agent. Toward this aim, 

myGrid  has made heavy use of semantic web technologies, focusing on providing 



descriptions of the services that support the task of discovering and composing services, 

in a manner that facilitates and supports the work of the bioinformatician [56]. Currently, 

this work is very much “user oriented”: the knowledge is provided by the user and the 

main service discovery agent is the user. However, it is now investigating techniques for 

making more automated use of this knowledge, in particular shim services — those 

services that align closely related data — enabling the bioinformatician to combine 

services without having to worry about complexity and reducing the difficulties resulting 

from the use of the flat files and informal representations [42]. 

 In addition to the task of discovery of tools and data sets, myGrid  has attempted to 

address some of the difficulties of organizing and storing knowledge about the derivation 

or provenance of data generated by its service oriented architecture [86]. This is 

traditionally a difficulty in bioinformatics, where it is often hard to determine what 

information was used to draw a given conclusion, resulting in databases that are error 

prone and possibly circular. Again, the focus has been on user interaction with this data, 

but using formats that should be computationally accessible to agents. 

 The experiences of myGrid  highlight some of the barriers to the adoption of agent 

technology. There is a continual tension between the desire for agents to use rich and 

expressive knowledge, with the complexity of actually obtaining this information. myGrid  

has generally used simpler technologies and much less expressive representations. This 

reduces the effort required to obtain the knowledge, but, probably, also reduces the 

application of it. Despite these difficulties, myGrid   is evidence of the importance of 

marrying computer science research with bioinformatics. Semantic web and agent 

technologies offer much for reducing the complexity of the tasks of bioinformatics, while 



bioinformatics offers a rich domain with real world problems for the computer scientist. 

As bioinformatics continues to increase the formalisation in the data and the desire for 

automation, both the resources needed and the requirements for multi-agent systems are 

becoming clearer.  

 

An Agent-based Semantic Web for Bioinformatics 

 The power of ontologies and the idea of the semantic web is evident from novel 

applications such as GoPubMed (www.gopubmed.org), an ontology-based literature 

search engine [29]. In a first step, GoPubMed automatically identifies GeneOntology [6] 

terms in PubMed literature abstracts and tags the abstracts accordingly. In this respect, 

GoPubMed changes web contents to semantic web contents. In a second step, it allows 

users to explore PubMed search results with the GeneOntology. The categories of the 

ontology help users quickly to survey and group abstracts according to relevant 

categories rather than working through a list of papers. And, it allows task automation by 

providing agents with large amount of knowledge in a form that can readily be processed. 

 

www.Prova.ws: Rule-based Java scripting 

 Semantic web applications such as GoPubMed integrate ontologies and other data 

sources such as PubMed. In general, there is therefore a need for bioinformatics system 

integration specifically supporting reasoning over structured vocabularies. Prova [52], a 

language for rule-based Java-scripting, aims to address this need. Prova has been used 

e.g. to implement the first GoPubMed prototype. The use of rules allows one to specify 

declaratively the integration needs at a high-level without any implementation details. 



The transparent integration of Java caters for easy access and integration of database 

access, web services, and many other Java services. This way, Prova combines the 

advantages of rule-based programming and object-oriented programming in Java. The 

Prova language is positioned as a platform for knowledge-intensive ontology-rich (most 

likely, agent-based) applications in biomedical research. It aims to satisfy the following 

design goals: combine the benefits of declarative and object-oriented programming; 

merge the syntaxes of Prolog as a rule-based language, and Java as an object-oriented 

language; expose logic as rules; access data sources via wrappers written in Java or 

command-line shells like Perl; make all Java APIs from available packages directly 

accessible from rules; run within the Java runtime environment; be compatible with web-

based and agent-based software architectures; and provide functionality necessary for 

rapid application prototyping and low cost maintenance. 

 Differently from other reasoners (e.g. RACER [40] ), Prova supports the use of 

agents for reasoning over such ontologies and integrating them with databases and web 

services. Karasavvas and colleagues in [47] also argue for the importance of an agent 

communication language (and a standard derived from it) in the perspective of 

bioinformatics integration systems. Furthermore, they evaluate criticality issues 

concerning the decisions to be taken in bioinformatics integration systems [46].  

 

Protein secondary structure prediction 

 The problem of predicting protein 3D structure is very complex, as the underlying 

process involves biological, chemical, and physical interactions. A simplified task is to 

predict the secondary structure, i.e. the local conformation of the peptide chain projected 



into a one-dimensional sequence. Despite this simplification, information about 

secondary structure often provides useful information for predicting protein functional 

sites, which justifies the interest of researchers in this particular and exciting field. 

Artificial neural networks (ANNs) have been widely applied to this task [41, 17] and 

represent the core of many successful secondary structure prediction methods, thanks to 

their ability to find patterns without the need for predetermined models or known 

mechanisms. In fact, all modern methods actually resort to ensembles of ANNs, usually 

organized into different functional levels. In relation to agents, one architecture in which 

the existence of separate “experts” is clearly articulated has been proposed in [5]. To 

predict the secondary structure of a protein, the corresponding system, called MASSP 

(MultiAgent Secondary Structure Predictor), resorts to a population of homogeneous 

experts –each expert being implemented by a software agent that embodies a genetic and 

a neural component (i.e., guard and embedded predictor, respectively). Guards and 

predictors perform different tasks and are supplied with different information. In 

particular, a guard is aimed at (soft-)partitioning the input space, insomuch assuring both 

the diversity and the specialization of the corresponding embedded predictor, which in 

turn is devoted to perform the actual prediction. Guards deal with inputs that encode 

information strictly related with relevant domain knowledge, whereas embedded 

predictors process other relevant inputs, each consisting of a limited window of residues. 

In the current release of the system, agent technology in its full potential is used, Jade 

[10] being adopted as underlying programming framework. Although experimental 

results are already promising, - an accuracy of about 76%, measured in terms of Q3, has 

been reached -  the adoption of the agent technology is mainly due to the requirements 



imposed on the next release of the system –which is expected (i) to implement complex 

interactions, (ii) to implement heterogeneous experts, and (iii) to integrate predictions 

performed by other predictors disseminated over the Internet. In fact, software agents are 

perfectly suited to fulfil the requirements above, as they offer a new paradigm for very 

large scale distributed heterogeneous applications, focused on the interactions of 

autonomous, cooperating processes (for further details see, for instance, Bradshaw [12]).  

Regarding the first of the above issues, let us stress that the environment in which 

MASSP experts operate basically stems from that dictated by the basic rules of 

evolutionary computation, in which the main schema of interaction is based on 

competition. Thus, more complex and flexible forms of interaction may be difficult to 

implement, in particular to enable experts to apply different policies in accordance with 

the current state of the computation and with the current operational context. Fortunately, 

interaction is a key focus of agent technology (see, for instance, [74]), which involves 

communication languages and interaction protocols. As for the second issue (i.e. 

heterogeneity), it is clear that the ability to deal with experts able to process different 

kinds of data, either locally available, or downloaded from the Internet, creates a scenario 

in which automated experts can mimic the workflow activity performed by human 

experts, which are able to cooperate in predicting secondary structures despite the fact 

that their “expertise” may derive from different bodies of domain knowledge. Due to 

their capability of exchanging information despite their heterogeneity, software agents 

appear to be the most suitable technology able to deal with this kind of problem. In 

relation to the third issue (i.e., openness), there is a growing amount of evidence that 

consensus methods may outperform the accuracy of single predictors [2]. Although 



MASSP has been designed and implemented to exploit this phenomenon on a local basis, 

nothing prevents the extension of this approach in such a way that remote predictors may 

become part of the overall population of experts. This is relatively easy to do by resorting 

to software agents, as they are also particularly well suited to acting as wrappers, each 

hiding the details of the corresponding remote predictor while interacting with other 

experts involved in the prediction activity. 

 

Stem cell analysis and simulation 

 In recent years there has been a growing debate about how stem cells behave in 

the human body; whether the fate of stem cells is pre-determined or stochastic, and 

whether the fate of cells relies on their internal state, or on extra-cellular micro-

environmental factors. More recent experimental evidence has suggested that stem cell 

development may be more complicated than was originally thought [77]. New theories 

challenged the prevailing view suggesting that stem cell fate is both reversible, (cells can 

become less differentiated or behave more like stem cells), and plastic, (cells can migrate 

from one cell lineage to another). More recently, there has been a growing body of work 

that is concerned with building predictive formal models of stem cell behaviour that can 

be simulated. In this direction, much work has been done in building agent-based 

simulations of stem cells [27,28,69,76]. 

 Work to date has used existing, well-established techniques for specifying and 

modelling agent-based systems in general [25] and progressed along two parallel strands. 

The first strand has been an attempt to develop an agent-based model of Theise’s theory 

of stem cell behaviour and organization [76]. The second strand has been to use the same 



agent-based approach to analyze and re-develop existing models to ensure that the agent 

framework is sufficiently flexible to model more than one theory and to understand how 

other work differs. 

Two of the most common approaches to formal models of stem cells use cellular 

automata [1] and equational or probabilistic models [70]. In order to support the claim 

that the agent approach is more suitable than other modelling approaches, existing 

approaches have been taken and re-cast in the agent-based modelling and simulation 

framework, which has demonstrated a number of clear advantages of the agent approach 

over existing approaches [26]. Specifically, the agent model has more biological 

plausibility, and is thus appropriate as a computer modelling metaphor for 

interdisciplinary collaboration between modellers and wet lab experimentalists. For 

example: in the CA models, cells magically appear; in the probabilistic-based models 

cells have access to global system information; and in the differential-based models we 

cannot begin to investigate how individual cell-cell interaction leads to the well-

documented global system behaviour of cell systems. This is not to say that agents are in 

any way better than other approaches in general; each has its own merits, of course. It is 

simply that in this context the agent-based approach has, to date, demonstrated a clear 

number of advantages.  

Furthermore, arguably the most sophisticated current equational-based model of stem cell 

activity, has been re-caged in an agent framework, demonstrating a number of clear 

advantages. First, it shows how the environment may limit the behaviour of cells. For 

example, division is not necessarily guaranteed if there is insufficient space. The agent-

based simulation increases the biological intuition and plausibility, and allows the 



investigation of behaviours due to subtle changes in micro-environmental effects for each 

cell. This was not possible before. Modelling cells as agents responding autonomously to 

their local environment is much more fine grained than using an equational/probabilistic-

function approach to model cell transitions, and therefore allows for a much greater 

degree of sophistication in the possibilities of understanding how self-organization 

actually takes place in the adult human body. 

In this view, the agent approach is more biologically plausible since it does not rely on 

getting information about the overall system state, and instead its behaviour is based 

solely on its internal state, its perception of the local environment state, and the actual 

physical state of the local environment. Biological plausibility at this abstract modelling 

level is important to attract biologists to use and work with models and simulations in 

general. Stem cells are a prime example of a self-organizing system where individual 

agents react to their local physical, chemical and biological environment.  

To date we have produced formal and mutually consistent specifications of the leading of 

many of the key predictive models of stem cell behaviour within our agent framework.  

In addition, we have produced simulations and visualisations of these models. And 

having worked in this field now for around three years it is our belief that visualisation of 

stem cell simulations may hold the key for the integration of new models of stem cell 

organisation into the wet lab culture.  

Moreover, using the application of our agent framework we have introduced more 

biological plausibility to the models (cells as agents is a natural and engaging metaphor 

for biologists), we have introduced cell mechanisms in place of statistical or probabilistic 

methods that rely on information about the entire cell population being instantaneously 



available to all cells, we have produced visualisations that enable a dialogue between wet 

lab researchers, and we have made predictions about stem cell behaviour that can be 

investigated in the wet lab. For example, according to our models, stem cell activity 

pulses around the stem cell niche. We are currently in negotiation with stem cell 

laboratories to develop an experiment to test our hypothesis relating to this system 

behaviour (predictions about individual cells cannot be tested in the human body) and 

thus the corresponding model on which it is based. We are aware of course, that are 

model is incredibly simple compared to the sophistication of the human body. 

Nevertheless we are increasingly confident that the theoretical simplifications inherent in 

any model will provide crucial understandings into cell interaction mechanisms, and that 

the agent metaphor provides exactly the right metaphor for continued interdisciplinary 

collaboration between biologists and the developers of predictive models.  

 

4  Future Challenges 

 In this section, we report on several areas for which agents appear to offer a 

promising technology in support of a new approach.  

Analysis of mutant proteins: an exercise in motivation 

 A potential application of agents could be the problem of collecting data on 

mutations and analyzing their effects on protein structure. Many diseases are caused by 

DNA mutations which lead to protein mutations: Cystic fibrosis, Favism (G6PD), 

Niemann Picks disease, OTC deficiency (urea cycle – hyper-ammonemia – brain 



damage), Cancer (p53, BRCA-1, APC, MYH). Often, biologists who study protein 

mutations attempt to analyze the protein structure, since structure determines function. 

Could agents in some way help to provide an answer to the problem of verifying SNPs 

and confirming whether they are coding, leading to a protein mutation [16]?  If so, where 

is the mutation in the protein sequence and is there a structure already known for such 

proteins?  How does the mutation affect the structure?  We could encode a workflow to 

describe the possible answers to these questions. 

The automation of the workflow implies middleware suitable for supporting the 

specification, execution and coordination of very complex activities. The use of 

information agents, in the context of the semantic web, could help significantly in 

retrieving and integrating meaningful information from heterogeneous and distributed 

data repositories. In collecting information from diverse sources, however, technology is 

often not the problem: ontologies, web-services and agent-based systems are all well 

established [59]. Rather, the problem can be in persuading the biologist to agree to use 

ontologies (The Open Biomedical Ontologies web site lists all the available ontologies in 

the biomedical field http://obo.sourceforge.net/) and nomenclatures [24]. If the 

technologies are too complex, or perceived to be too complex, then why should the 

biologist bother?  They need to see a direct benefit in making use of such systems. 

Clearly, if one technology is obviously better than another, then there will be no 

hesitation in its adoption. However, what may be ‘better’ for the community as a whole 

may not be of direct benefit to an individual biologist. In addition, the technology may 

well be so outside the scope of expertise of a bench biologist that he or she has no 

concept of how and why it may be useful. Thus, the problem is one of motivation — 



persuading the biologist who may have collected some interesting data and put it up on 

the web (e.g. one of the several hundred web sites listing mutations for specific proteins 

[18]), to adopt standards and ontologies [54] that can be used by agents and the semantic 

web. Thus to be successful, biologists, bioinformaticians and computer scientists must 

work closely, but most importantly, must be driven by the needs of the biologist. 

LIMS as an agent-based laboratory 

 An area that would certainly benefit from the agent paradigm is that of Laboratory 

Information Management Systems (LIMS). More than 160 packages and programs [66] 

are available for laboratory automation necessities. Most of them represent commercial 

products, provided from hardware vendors, specifically designed for their laboratory 

machinery and solutions. The enormous amount of data and metadata [83] produced from 

high-throughput technologies and projects in the plethora of -omics fields (e.g. genome 

sequencing, microarrays and transcriptomics, proteomics) and in a number of others (e.g. 

immuno-fluorescence imaging, flow cytometry, chemical analysis, environmental 

sciences) require such an information management framework. Very little academic 

research has been performed on this topic, mainly because of its very strict connection to 

dedicated equipment and to laboratory-specific data format, requirements and procedures. 

Without aiming to be exhaustive, we can cite some ad-hoc academic solutions to specific 

problems: QuickLIMS [51] developed for microarrays production, MMP-LIMS [72] used 

for integrated genetic and physical map in the maize genome project, CLIMS [33] for a 

crystallography laboratory and the LIMS setup for building the P. aeruginosa gene 

collection [53]. LabBase [37] represented a general-purpose database management 

system for implementation of laboratory information systems. Based on a community-



agreed data model and already looking in the e-science dimension is the MOLE project 

[66] aiming to serve protein production laboratories in the UK and Europe. 

The requirements for a system that would be flexible, scalable and capable to easily adapt 

to any change, without engendering any traumatic event for the laboratory [7] are 

evident. It should also be noted that until recently automation has focused primarily on 

improving hardware. Future advances will concentrate on intelligent software to integrate 

physical experimentation and result analysis with hypothesis formulation and experiment 

planning [83, 49]. We argue that the agent metaphor, integrated with appropriate and 

detailed domain ontologies, could intuitively describe and manage distributed 

environments populated by autonomous entities that wrap robotized stations, interface 

human operators, describe laboratory objects (e.g. samples, well, plates), operations and 

procedures. Intelligent agents would also be capable of successfully coping with fast-

changing (due to the ever increasing technological turnover) and unpredictable 

conditions. 

Cellular processes modelling 

 The modelling of cellular processes is difficult due to the complexity of the 

organization of biological systems and of its cellular processes. Modelling complex 

systems implies a deep understanding of the system both in terms of its structure and its 

behaviour [50]. Once we have identified some of the components, some of their 

functions, their topological relationships, and the parameters of each relation, we can 

start to analyze the system behaviour trying to understand the mechanisms behind the 

robustness and stability of the system. At present, the unavailability of complete 



knowledge, leads to an unavoidable degree of uncertainty in our models. To this end, 

agent technology can be exploited to develop a suitable conceptual framework for 

simulation in order to analyze system behaviour and eventually to infer new components 

and functions. One proposed exercise is to analyze the cell in terms of the known active 

components, the roles and behaviours these play in the cell processes, their interactions 

with the living environment. But, in approaching the agent-based cell simulation, at what 

abstraction level should we model the cell system — the fine grained level?  What would 

be the main features of an agent-based conceptual framework for simulation of biological 

systems?  What would be a good bioagent conceptual language?  

Based on the consideration that biological systems are complex, consisting of a set of 

components interacting with each other and with an external (dynamic) environment, a 

conceptual framework for engineering an agent society that simulates the behaviour of a 

biological system has been proposed [14]. In contrast to the classical mathematical 

descriptions mainly based on ordinary differential equations, the specification of complex 

systems is based on behavioural modelling. For example, an agent-based model of the 

carbohydrate oxidation in the cell, describing each engineering step by UML graphical 

notation has already been suggested [22]. Other recent examples of application of agent 

technology in systems biology concern the tissue homeostasis in human epidermis [38], 

bacterial chemotaxis [30], molecular self-organization [79], and T cell recognition [15].  

Other approaches not agent-based are relevant in the cell modelling and simulation 

context: Cell-DEVS [81], based on discrete-events systems specification, E-CELL  [78], 

for modelling biochemical and genetic processes, Virtual Cell [55], a general framework 

for the spatial modelling and simulation of cellular physiology  and Physione [43], for 



modelling human body from a fine to coarse grain level.   

 

Formal and semi-formal methods in bioinformatics 

 In addition to the expected contribution of agents in bioinformatics as a 

technological framework, we see another challenge to deal with, i.e. the possibility of 

designing incredibly complex systems, through models suitable for representing and 

analyzing biological systems from different viewpoints: static-structural, dynamic and 

functional [68, 22]. In fact, the use of models to represent a biological system at different 

abstraction levels helps us to understand the biological system itself. The specification 

model, e.g. agent-oriented, can help by identifying the system structure, critical 

component roles and responsibilities, functions and interactions (which are generally 

poorly identified). Of course, to create models we need languages and suitable notations. 

 In the literature, a wide range of formal and semi-formal languages and notations 

can be found. These depend on the level considered, on the properties in which the 

designer is interested, and on the tools available to perform the analysis and verify 

properties. Proving properties in biological models can mean verifying properties related 

to the system/process behaviour (e.g. safety properties; liveness properties; simulations of 

system dynamics; checking for causal relationships...). Any property can be formally 

proved by using well known methods such as equivalence checking, model checking, 

simulation and model synthesis. 

In a very simple scenario, a semi-formal notation, based on PetriNets [68] and UML 

Activity Diagrams [3], is used to graphically describe the workflow activities for a 

biological process. In particular, Figure 1 shows four different models to represent the 



malaria parasite invading human host erythrocytes system at different levels of 

abstraction with bold arrows indicating the steps (modelling, analyzing, simulation and 

validation) to derive one model from another. 

Starting form the biological knowledge of a system, a graphical (semi-formal) description 

can be derived. Then on the one hand, this model is translated to a formal specification 

(by process algebra) to verify the model’s properties, and on the other hand, the graphical 

description can be compiled into a low-level specification (in an agent-oriented language) 

to generate the agent-based simulation of the biological system. The last step, the 

software validation [8] of the multi-agent system [71], can give rise to an enrichment of 

the formal model by including properties to make the model more faithful to the 

biological system [61]. The natural question, therefore, is how we can know what kind of 

system properties biologists want to verify. Are they interested in having clear evidence 

of how the simulation system behaves, being able to modify the system’s properties at 

run-time?  And should it be possible to incrementally build, maintain and refine the 

system?  What kind of conceptual simulation framework would be useful to fulfill 

biologists’ expectations?  Would an agent approach be sufficient to create a framework 

with these features[14]?  Would mobility be a meaningful feature to simulate biological 

systems through agent technology?  (Note that in Figure 1 some system components are 

mobile.) 

  

Figure 1:  Engineering Bioinformatics: from biological model to multiagent system. A 

biological process can be described by a graphical semi-formal model, validated by a 



formal model, simulated by a multi-agent system and finally tested with the experimental 

results. 

5  Conclusion 

It is clear that the combination of agents and bioinformatics presents a twofold 

opportunity. On the one hand, the domain of bioinformatics, with its extensive and 

growing resources of databases and analysis tools, provides an appropriate domain for 

the application of agent technologies. It offers the possibility for deploying and testing 

agent systems in a real-world setting with the possibility of making substantial 

contributions to human society. On the other hand, there is a distinct and identified need 

for good solutions to improve the performance of existing bioinformatics systems, and 

agents may be able to contribute to that improvement. In this sense, there is a very strong 

synergy between the two domains. 

This picture is both enhanced and complicated by the introduction of relevant 

infrastructural technologies that facilitate both 

bioinformatics and agent-based computing. For example, the Grid has become 

increasingly important to both communities, and suggests a convergence to a service-

oriented vision of bioinformatics underpinned by Grid-based virtual organizations. 

However, there are still significant challenges. Researchers from both communities 

generally require education in the other, and work must be undertaken to ensure that any 

solutions across both areas satisfy both needs. In many cases, the language of discourse is 

so distinct that discussion of key issues becomes problematic. Additionally, the 

introduction of new technologies like the Grid requires further efforts, both in terms of 



understanding and adoption, and in terms of its immaturity in fully-deployed systems. 

Maturity at the interface is thus the key challenge. While many agent techniques may be 

used to address the concerns of bioinformaticians, the lack of a complete understanding 

across domains suggests that it may still be too early to develop more sophisticated 

systems than the current generation of essentially management and mediation systems. 
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