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Deleterious or ‘Disease-Associated Mutations’
(DAMs) are mutations that lead to disease with
high phenotype penetrance: they are inherited
in a simple Mendelian manner, or, in the case
of cancer, accumulate in somatic cells leading
directly to disease. However, in some cases, the
amino acid that is substituted resulting in disease,
is the wild-type native residue in the functionally
equivalent protein in another species. Such
examples are known as ‘Compensated Pathogenic
Deviations’ (CPDs) since, somewhere in the
second species, there must be compensatory
mutations that allow the protein to function
normally despite having a residue which would
cause disease in the first species. Depending on
the nature of the mutations, compensation may
occur in the same protein, or in a different protein
with which it interacts. In principle, compensation
may be achieved by a single mutation (most
likely structurally close to the CPD), or by the
cumulative effect of a number of mutations.

While it is clear that these effects occur in pro-
teins, compensatory mutations are also important
in RNA potentially having an impact in disease.
As a much simpler molecule, RNA provides an in-
teresting model for understanding mechanisms of
compensatory effects, both by looking at naturally
occurring RNA molecules and as a means of com-
putational simulation.

This review surveys the quite limited literature
that has explored these effects. Understanding
the nature of CPDs is important in understanding
traversal along fitness landscape valleys in evolu-
tion. It may also have applications in treating dis-
eases that result from such mutations.
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Introduction

It has frequently been observed that, when deleterious
single amino acid mutations are surveyed, mutated
amino acid types with detrimental effects in one
species are found as the native wild-type residue in
homologous proteins of other species, with neutral
effect on the fitness of the latter species. The most
likely scenario explaining such observations is that the
two homologous proteins provide slightly different
structural environments for the same residue, thus
compensating for the deleterious effect of the residue
in the first protein. Generally people have looked
at cases of human disease-causing ‘deleterious’ or
‘disease-associated’ mutations (DAMs) and observed
that the mutant (disease-causing) amino acid is the
native (wild-type) amino acid in another species.
Such cases are known as ‘Compensated Pathogenic
Deviations’ (CPDs).

Figure 1 shows an example of two DAMs in human
antithrombin-III (ANT3), one of which is compensated
and the other un-compensated. In the human protein,
the mutations Ala416→Pro and Ala416→Ser both
cause susceptibility to thrombophilia as a result of
antithrombin III deficiency. Details of these mutations
can be seen in Online Mendelian Inheritance in
Man (OMIM) Entries 107300.0007 and 107300.0027
(http://www.ncbi.nlm.nih.gov/omim/107300).
While OMIM states that the mutation
occurs at residue 384, this equates to residue
416 in the UniProtKB/SwissProt sequence
(UniProtKB/SwissProt accession P01008). Our online
resource at http://www.bioinf.org.uk/omim/

provides a validated mapping of residue numbers in
OMIM to UniProtKB/SwissProt residue numbers.
As the alignment shows, this residue is a conserved
alanine in all the sequences examined — neither proline
nor serine is seen in any other species and the two
disease-causing mutations seen in humans are therefore
classified as ‘pathogenic deviations’ (PDs, see below).
However, a mutation of Ala419→Val (as described in
OMIM Entry 107300.0042, OMIM residue number 387),
which also leads to antithrombin III deficiency, occurs
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Figure 1: Examples of two disease-associated mutations (DAMs) reproduced from our structural analysis (10). The figure shows the
alignment of the human antithrombin-III (ANT3) protein sequence with non-human functionally equivalent homologous proteins.
Highlighted are columns 416 and 419 which represent an un-compensated pathogenic deviation (PD) and a compensated pathogenic
deviation (CPD) respectively.

at a residue which is not conserved in the alignment. In
fact, sheep and cows have a valine at this position in
the native sequence and thus the Ala419→Val mutation
in humans is classified as a CPD.

The question, therefore, is how do the sheep and
bovine proteins function properly with a valine at po-
sition 419? Presumably, during the evolution of human,
sheep and bovine ANT3 proteins from a common ances-
tor, some other amino acid difference(s) have occurred
in the sheep and bovine proteins compared with the hu-
man protein that somehow compensate for what, in the
human protein, is the negative effect of having a valine
at position 419. How the compensation is achieved in
this example is not clear.

Compensation of mutations is also important at the
RNA level. Stable Watson-Crick base pairing in RNA
can bring together remote parts of the molecule to form
stable three-dimensional structures of functional impor-
tance. Thus mutations in the RNA must undergo com-
pensatory events to maintain the necessary base pair-
ing requiring the crossing of valleys on the fitness land-
scape. Not only has this been studied using real RNA
sequences (1), but RNA has also been used in compu-
tational models designed to understand compensatory
mutation (2, 3).

Body of Review

The term ‘compensated mutations’ was introduced by
Kimura (4), who demonstrated that two mutually com-
pensatory mutations could become fixed in a popula-
tion as a result of random genetic drift. Kimura defined
‘compensatory neutral mutations’ as linked deleterious
mutations; in other words two mutations each of which,
by itself, has a deleterious effect, but together have a
neutral (or potentially even a beneficial) effect on over-
all fitness. The ability of one mutation to compensate
for the pathogenic effects of another newly-introduced
mutation is an important mechanism in evolution. Us-
ing the same analogy used by Wright (5) and used ex-
tensively by Dawkins (6), the fitness landscape can be
viewed as mountains of high fitness separated by valleys

of low fitness. Thus compensation of mutations allows
bridging the valleys of low fitness.

Terminology

Since the analysis and understanding of CPDs crosses
the boundaries of structural and evolutionary biology, it
is useful to define a number of terms that are used in the
field before we go into any more discussion.

Single nucleotide polymorphisms (SNPs) are
single DNA base changes. Strictly the term is
applied only to instances where the mutation is
observed in at least 1% of a ‘normal’ population.
In other words they will either have a completely
neutral phenotype, or a low penetrance phenotype
where there is no clear Mendelian inheritance.
Such SNPs may be involved in more complex
conditions such as heart disease, or simply give a
propensity towards disease through interaction
with external factors. However, it should be
noted that many people use the term SNP to
refer to any single base change, even when no
frequency data are available. In our work looking
at the effects of mutation on protein structure (7),
we tried to use the term SNP in the correct way
(with the assumption that they do not lead to
high-penetrance Mendelianly inherited disease)
and contrasted these with mutations that do
lead to disease. However, even dbSNP (8), the
primary repository for SNP data at the National
Center for Biotechnology Information (NCBI),
includes data on lower frequency mutations.

SNPs may occur in coding or non-coding regions of
DNA. Both coding (cSNPs) and non-coding SNPs
(ncSNPs) may have effects on gene expression or
mRNA splicing; cSNPs may (i) be synonymous in
terms of the resultant amino acid (sSNP), (ii) lead
to a premature stop or ‘nonsense’ codon (nSNP),
or (iii) be non-synonymous (an nsSNP) resulting
in a single amino acid change. See Figure 2.

Single amino acid polymorphisms (SAAPs)
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Figure 2: Hierarchy of SNPs, mutations and their effects. SNPs
(defined in the general sense to mean any single base DNA
mutation) can be non-coding (ncSNPs) or coding (cSNPs).
cSNPs can be synonymous (sSNPs), nonsense (nSNPs), or non-
synonymous (nsSNPs). nsSNPs result in a single amino acid
polymorphism (SAAP) at the protein level. These can be phe-
notypically silent (sSAAP), low penetrance (lpSAAP), or high
penetrance deleterious mutations (DMs) also known as disease-
associated mutations (DAMs). A DAM can be compensated
in another species (a compensated pathogenic deviation, CPD)
or un-compensated (a pathogenic deviation, PD). Note that all
forms of SNPs can have effects on expression as they may affect
regulatory regions or splice sites. Note also that lpSAAPs form
a continuum between phenotypically silent and high penetrance
disease-associated mutations.

are single amino acid mutations resulting from
nsSNPs. We use the term as defined by Hurst et

al. (7) to apply both to mutations resulting from
strictly-defined nsSNPs (i.e. those that occur
in at least 1% of a normal population) and to
deleterious muations (DAMs) as defined below.
See Figure 2.

Deleterious mutations also referred to as disease-
associated mutations (DAMs) (9) are SAAPs
that result in high-penetrance disease phenotypes.
In this review, we use the term to encompass both
PDs and CPDs as defined below. See Figure 2.

Pathogenic deviations (PDs) is often used as a syn-
onym for DAMs, but in the discussion of CPDs
(see below), we generally refer to PDs as disease-
causing mutations that are not observed to be com-

pensated in any other species and that is the defi-
nition we use throughout this review. As discussed
by Barešić et al. (10), this definition of PDs is not
completely reliable since it is based on a negative
observation. Mutations are classified as PDs rather
than CPDs simply because the residue is not ob-
served as the native residue in any other species,
but until we have the sequence of every species, we
cannot know conclusively that it is not compen-
sated in at least one other species. See Figure 2
and column 416 in Figure 1 for an example of a
PD.

Compensated pathogenic deviations (CPDs)
have also been referred to as ‘potential
compensated mutations’ (9). Their existence was
first discussed by Kimura (4), who termed them
‘compensatory neutral mutations’ while the term
CPD was first defined by Kondrashov et al. (11).
A CPD is a SAAP (as defined above) associated
with a disease phenotype (i.e. a DAM), usually
in a human protein, where the mutated amino
acid type is found as the native (phenotypically
neutral) residue at the same position in an
orthologue of another species. See Figure 2 and
column 419 in Figure 1 for an example of a CPD.

Functionally equivalent proteins (FEPs) are
orthologues which have maintained the same
function during evolution, as discussed by
McMillan & Martin (12). Homologous genes
(or proteins) have descended from a common
ancestor while orthologues are the subset of
homologues that arise from speciation events (13).
However, if two species have diverged sufficiently,
the function of one of the pair of orthologous
proteins may diverge. For example, Shibata et

al. (14) showed that although the general function
of exportin-5 proteins (nuclear export of miRNAs
and tRNAs) is conserved across different species,
substrate specificity varies.

Co-evolution. At the molecular level, evolution of each
protein molecule, is affected by (potentially numer-
ous) interaction partners and environmental fac-
tors. When a similar evolutionary pattern is de-
tected for the two molecules, they are said to be co-
evolving. This shared evolutionary history can be
a consequence of their co-adaptation, shared cellu-
lar pathway or localization, or a shared expression
pattern (15). In examining CPDs, we are only in-
terested in the first of these — the co-adaptation
of two amino acids which affect each other’s evo-
lutionary paths.

Epistasis is defined as the effects of one gene being
modified by one (or several) other genes
(sometimes termed ‘modifier genes’). Typically
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the phenotype of one gene (the ‘epistatic’ gene)
is expressed while the other (the ‘hypostatic’
gene) is altered or suppressed. This interaction
of different genetic loci contrasts with normal
Mendelian effects, where one allele is ‘dominant’
over another ‘recessive’ allele at the same locus.
In a more general way, epistasis is defined as
an inter-dependence between two gene loci
as discussed by Cordell (16). In the context
of population genetics, ‘epistasis’ refers to the
interaction between alleles at different loci in such
a way that the effect on the individual cannot
be predicted from merely adding up effects of
interacting loci. In the case of CPDs we are
interested in the change of fitness of a protein
caused by a change of a single amino acid. Fitness
may be modified by differences (i.e. amino acid
changes) at other locations. While strictly the
term ‘epistasis’ should be applied only to changes
in other proteins, when discussing CPDs it is
further generalized to refer to changes at other
locations within the same protein.

Sign epistasis also known as fitness reversal refers
to the situation in which there is a deleterious
mutation which co-evolves with a mutation
having an epistatic effect that more than
compensates for the deleterious effects of the
other mutation. Thus the overall fitness change
becomes positive (or at least neutral) rather
than negative. Sign epistasis facilitates sampling
protein space for novel amino acid combinations
and provides a mechanism of escape from local
fitness minima (2). In some cases, ‘fitness
reversal’ may be used as a more general term
(perhaps influenced by epigenetic effects) while
sign epistasis refers specifically to the effect of
compensatory mutations. In this review, we use
the terms interchangeably.

RNA as a model of compensation

While it is clear that protein and RNA are very differ-
ent molecules, the simple nature of RNA models has, in
general, been widely applied to study evolution. Under-
standing the importance of compensatory events during
evolution is no exception. RNA consists of just four nu-
cleotides: adenine (A), guanine (G), cytosine (C), and
uracil (U) and, just as in DNA, stable Watson-Crick pair-
ing can occur between A and U, and between G and C.
This can bring relatively remote parts of the molecule to-
gether to form stable three-dimensional structures com-
posed of features such as ‘stems’ (helical base-paired re-
gions) and unpaired regions which form ‘loops’ (at the
end of a stem) or ‘bulges’ (in the middle of a stem). One
can view the RNA sequence as being a ‘genotype’ while
the manifestation of a stable folded structure is the ‘phe-

notype’. The simple nature of RNA folding means that
it can be simulated in a computer with a high degree
of accuracy using freely available software (see for ex-
ample Zuker’s MFold software (17, 18) and Schuster’s
ViennaRNA (19)). More recent software can even pre-
dict the shapes of RNA molecules during interactions
with other molecules (for example, the work of Hofacker
(20) and of Matthews (21, 22)).

Computational models of RNA evolution typically
simulate a large population of RNA molecules and
apply the standard strategy of random mutation
followed by natural selection. On the basis that most
functional RNA molecules have shapes that are
extremely conserved throughout evolution, since shape
has a dominant rôle in determining function (23), the
fitness of an RNA molecule is determined by predicting
its shape and then applying a fitness function based on
similarity to some predetermined ideal target shape.
Having evaluated the fitness, molecules are allowed to
replicate in proportion to their fitness and, during the
replication, random mutations are allowed to occur.

The application of RNA models to understanding
evolution is reviewed by Cowperthwaite and Meyers (3)
and, in an earlier paper, Cowperthwaite et al. (2)
used these models to examine fitness reversal. They
observed that RNA mutations that can be regarded as
‘pathogenic’ in the model system accumulate more
rapidly than expected based on their effect on overall
population fitness. Furthermore, they observed that
the drop in fitness was not as severe as would be
expected based on the accumulation of deleterious
variations. Since deleterious effects were not additive,
compensatory events were clearly occurring. Indeed,
mutations that initially were deleterious accumulated
at nearly the same rate as mutations that were
immediately beneficial and fixations of more than half
of the initially deleterious mutations led to fitness
reversals. The fixation of initially deleterious mutations
led to a substantial positive effect on the total fitness
of the genome. When other mutational events such
as ‘hitchhiking’ and random drift were considered,
their model showed that some 80% of PDs were fixed
through fitness reversal, or co-adaptation with a
compensatory mutation.

In a related study, but using real sequences rather
than computer simulations, Meer et al. (1) attempted
to address the question of whether valleys on the fitness
landscape (corresponding to low-fitness genotypes) can
be crossed in order to reach isolated fitness peaks. In
particular, they examined the switch between AU and
GC Watson-Crick nucleotide pairs at equivalent sites in
the mitochondrial tRNA stem regions in 83 mammalian
species. Clearly, to switch from an AU pair to a GC
pair either needs A→G and U→C mutations to occur
simultaneously (thus jumping from one fitness peak to
another — an unlikely event), or requires one mutation
to occur before the other thus passing through a valley of
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low fitness where there will be a Watson-Crick mismatch.
Because of the need to traverse low-fitness valleys, they
found that these ‘Watson-Crick switches’ occurred 30–
40 times more slowly than did pairs of neutral substitu-
tions (where base pairing was not a factor). However,
they found that substitutions leading to a Watson-Crick
switch were strongly correlated. They were able to esti-
mate the depths of the fitness valleys and showed that
AC intermediates are slightly more deleterious than GU
intermediates. Nevertheless, the compensatory evolu-
tionary events that do occur must proceed via rare dis-
favoured intermediate variants that never become fixed
in the population.

Analysis of compensatory events in proteins

As we have seen, computer simulations in RNA, and
studies of RNA molecules, have shown that compen-
satory events do indeed allow traversal of valleys in the
fitness landscape. RNA, having only 4 nucleotides is
clearly a much simpler system than proteins composed of
20 amino acids, but we know that compensatory events
must also occur in proteins. It is hard to say whether the
fact that there are 20 amino acids with a wide variety of
chemical and physical properties makes it harder or eas-
ier to compensate in proteins than in RNA. On the one
hand, the subtlety and complexity of interactions made
by amino acids may mean that compensatory events are
difficult; on the other hand, a change that is damaging
might be quite small in nature and therefore only need
a small compensatory event, perhaps by a conservative
substitution in a nearby amino acid. The compensating
event may (if it happens first) not have a particularly
negative effect.

Over the past decade, a number of groups have
started to look at CPDs in proteins, but while the
definition of a CPD is the same, different approaches
have been taken to gathering CPD data.

CPDs are identified by (i) identifying missense muta-
tions that lead to disease (generally in humans), (ii) iden-
tifying a set of homologous proteins, (iii) performing
a multiple alignment of the human sequences with the
homologous sequences, (iv) identifying cases where the
pathogenic mutation is observed as the native residue
in at least one other species. Thus, not surprisingly,
datasets of CPDs are highly dependent on (i) the align-
ment building method, (ii) the thresholds used to de-
tect homologous proteins, and (iii) the choice of species
to be tested for homologues. Several methods are sum-
marized in Table I showing a variety of species, cutoffs
for identifying homologies to be included in the dataset,
and multiple sequence alignment methods. In particular,
Poon’s approach (24) was rather different from the oth-
ers. They analyzed deleterious missense mutations from
a range of proteins in different species. Rather than use
a sequence-comparison approach as used in the other
datasets, they analyzed data from publications identi-

fied using relevant keyword searches. Thus their data
show a very high fraction of deleterious mutations that
are compensated because their analysis focussed only on
these mutations. In addition they considered mutations
introduced with mutagenesis-inducing agents as well as
evolutionary events.

Once the data have been collected, some authors per-
formed various analyses to compare and contrast com-
pensated mutations with the rest of the dataset to try
to understand whether the nature of mutations that are
seen to be compensated (CPDs) is different from those
that are not seen to be compensated (PDs). As de-
scribed in the definitions above, while we use the term
PDs strictly to refer to uncompensated mutations, the
identification of a clear uncompensated set is not com-
pletely rigorous as it is based on a negative observation.
Thus the fact that no compensatory event has been ob-
served may simply be because a species that has a com-
pensatory event has not yet been sequenced. Similarly,
sequence quality is always a concern (25) and it is possi-
ble that apparent CPDs are actually a result of sequenc-
ing errors.

Excluding the Poon dataset which is deliberately bi-
ased towards compensated mutations, Table I shows that
the fraction of disease-causing mutations that are seen to
be compensated varies from 0.14% in the Zhang dataset
(62/44348) to 19.5% in the Barešić dataset (453/2328),
our contribution to this field. This clearly shows that
the number of compensatory events is correlated with the
evolutionary distance between the species considered. In
the Zhang dataset, only humans, chimpanzees and nean-
derthals were examined, while the high fraction in the
Barešić dataset results from the fact that no limit was
applied to the divergence of the homologous sequences.
As sequences diverge more, the environment around any
given residue is likely to be more different and therefore
a residue change is more likely to be tolerated, or indeed,
required. Kondrashov found that, when using a dataset
containing only homologues with at least 50% identity
to the reference sequence, on average around 1 in 10
disease-causing mutations is seen to be compensated in
other species (11, 26). In contrast, alignments of recently
diverged sequences (e.g. three Dipteran genomes (26), or
chimpanzee, neanderthal and modern human (9)) show
far fewer CPDs (0.4% in the Kulanthinal dataset and
0.14% in the Zhang dataset).

The motivation for not using any sequence identity
threshold in our work (10) was that we wished to com-
pare the local structural effects of mutations that could
be compensated with those that could not. Therefore
having a set of CPDs that was as broad as possible
meant that our uncompensatable PD dataset was likely
to be more accurate. The dataset was built using only
‘functionally equivalent proteins’ (FEPs as defined by
McMillan et al. (12)). Thus while other groups iden-
tify homologues using a BLAST (27) search with de-
fault parameters (11), or manually curated alignments
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Table I: Datasets of compensated pathogenic deviations described in the literature.

Dataset Species Identity cut-off Alignment method Human proteins # DAMs # CPDs
Kondrashov (11) Any CLUSTALW 32 4880+ 608

mammals† >50% 3 20
Kulathinal (26) Diptera 475◦ 1527 6
Ferrer-Costa (33)∗ Any ≥10% (>60%) Pfam 287 (24) 9334 1658 (52)

mammals 184 847
Barešić (10) Any None⋆ MUSCLE 245 2328 453
Zhang (missense) (9) Human, ANFO 2628 44348 62

neanderthal,
chimpanzee

Poon (24) Set A Any 43‡ 115 88
Poon (24) Set B Any 17‡ 59 49

The Poon Set-A includes mutations brought about by mutagenic agents while Set-B does not.
+ Precise numbers are somewhat unclear. They report 608 CPDs and that this is approximately 10% of DAMs. In
Table 1 of their paper, there are 4272 ‘known missense’ mutations which we believe to be PDs since the last row of
the table has more CPDs that ‘known missense’ mutations. This makes a total of 4880 (4272+608) DAMs
† Kondrashov tested all found orthologues (with no sequence identity threshold) for CPDs and then switched to
mammalian-only orthologues to identify compensatory mutations
◦ In the Kulathinal dataset, the reference species is D. melanogaster
∗ Numbers in parentheses refer to the CPDs with structural data available, used for structural analysis
⋆ Functional-equivalence among homologues used instead of a sequence identity threshold
‡ There is no reference species in the work of Poon et al.

from Pfam (28), we selected all orthologues where func-
tion has been conserved as defined by annotations in
UniprotKB/SwissProt. These data are available in our
FOSTA database (29).

Properties of compensated mutations and
mechanisms of compensation

Maintaining a functional protein requires a delicate bal-
ance between the residues present in order to obtain pro-
teins having a narrow range of thermodynamic stability,
a range of ∆G from −3 to −10 kcal/mol. If the stability
is any lower, then the protein will start to unfold, be-
coming a target for degradation; higher stability means
that the protein cannot be turned over effectively and
therefore often becomes unresponsive to cell-regulation
or may lose its activity (30). In addition, mutated pro-
teins of both lower and higher stability than optimal of-
ten show increased propensity for aggregation, although
aggregation potential is not solely dependent on protein
stability. Amino acid substitutions result in an average
∆∆G of 0.5–5 kcal/mol (30), so it is clear that most
SAAPs will have a significant effect on protein stability
and consequently protein function and the individual’s
fitness.

From a structural perspective, compensated muta-
tions have been shown to have less damaging effects than
uncompensated mutations. Henikoff and Henikoff (31)
created the BLOSUM amino acid substitution matrices
from around 2000 blocks of aligned sequence segments

from more than 500 groups of related proteins to show
how frequently one amino acid can substitute for another
in homologous proteins. These matrices were designed
for use in protein sequence alignment and are familiar to
most biologists as the default similarity matrix for use
with the BLAST sequence searching tool (32). Ferrer-
Costa et al. (33) showed that CPDs show significantly
larger BLOSUM62 scores than PDs — in other words
the amino acid replacements observed in CPDs are more
frequently observed to occur in general in homologous
proteins, while the replacements seen in PDs are less
commonly observed between homologous proteins. They
also found that CPDs are characterized by less extreme
changes in amino acid volume and hydrophobicity when
compared with uncompensated PDs.

In our own work (10), we examined 14 different lo-
cal structural effects covering stability and folding of the
protein, as well as binding effects and functional annota-
tions. We found that CPDs are less likely to display any
of these effects, especially if the structural effect is likely
to require several consecutive compensatory mutations
for full fitness reversal rather than it being possible to
compensate using a single substitution. For example, a
buried mutation, where a small residue is replaced by a
larger residue, could cause a clash. However, while it is
theoretically possible that a single mutation could do so,
compensation of a clash is most likely to be achieved by
making a number of smaller changes. Both Ferrer-Costa
et al. (33) and Barešić et al. (10) found that CPDs have
a higher average solvent accessibility. In other words,
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they are much more likely to be found on, or near, the
protein surface.

Compensatory mutations in evolution

In the context of evolution, compensated mutations be-
come fixed in a population through ‘co-adaptation’, or
more precisely, through ‘sign epistasis’ as defined above.
At the protein level, depending on the context and rôle
of the deleterious mutation (D), the compensatory mu-
tation (C) can be on the same protein, or on an inter-
acting partner protein. The compensatory mutation, C,
may have no effect on fitness, or may itself be some-
what deleterious, but at such a level that it can exist in
the population. However, the main feature of C is that,
when it co-occurs together with the deleterious muta-
tion, D, it reverses the negative fitness effect of D to a
neutral or positive one and, if C by itself has any delete-
rious effect, the combination of C and D will also have a
neutral or positive effect. Thus during evolution, when
fitness landscapes are explored, compensation provides
a path through the valleys of lower fitness, allowing in-
dividuals to travel from one peak to another (5).

As discussed above, numerous cases of compensation
have been identified and documented in proteins (10, 9,
11). While a classic compensatory event to achieve fit-
ness reversal would result from C being a single amino
acid change, in proteins it is also perfectly possible —
and indeed more likely — for C to consist of a com-
plete change in environment from multiple amino acid
changes.

Poon et al. (24) set out to study how many differ-
ent compensatory mutations act on a given deleterious
mutation. They performed a maximum-likelihood anal-
ysis of experimental data collected from literature on
suppressor mutations (which are equivalent to compen-
satory mutations) to determine the shape of the statis-
tical distribution for the number of compensatory muta-
tions per deleterious mutation. They found that the data
were best explained by an L-shaped gamma distribution
which predicted an average of 11.8 compensatory mu-
tations per deleterious mutation in order to achieve full
sign epistasis and compensate for the deleterious effect
of a DAM (24). Interestingly, they also found that, when
they partitioned the data into viruses, prokaryotes and
eukaryotes, there was a significant improvement in the fit
to the model: on average, there were fewer compensatory
mutations in viruses than in prokaryotes or eukaryotes.
They suggested that the differences in genome size and
gene length in viruses compared with prokaryotes and
eukaryotes means that the number of possible interac-
tions within and between gene products is constrained.

In our more recent structural study (10), we showed
that CPDs are surrounded by significantly more diverged
residues than PDs. As described above, we created se-
quence alignments of functionally equivalent homologous
proteins for each instance in which a human deleteri-

ous mutation (DAM) is known (typically identified from
OMIM (34, 35), but also from a number of locus-specific
mutation databases (7)). The DAMs were then assigned
as CPDs or PDs depending on whether the damaging
mutant residue was observed as the native in another
species. Where a structure was available for the hu-
man protein, we identified amino acids within an 8Å
sphere around the DAM. Having identified these struc-
tural neighbours in the human protein which form the
environment surrounding the DAM, we mapped their po-
sitions back onto the sequence alignment. We were then
able to calculate the fraction of these structurally neigh-
bouring residues that were mutated in each of the se-
quences when compared with the human sequence. For
CPDs this was done just with the sequences in which
compensation was observed, while for PDs it was done
for each sequence in the alignment. We then plotted
this local fraction of mutated residues against the over-
all (whole protein) sequence identity between the human
and non-human sequence.

We found that this environmental ‘sphere’ compensa-
tion appeared on average to occur as a result of random
drift in the sequence. We fitted a straight line to the
data imposing the biologically obvious constraint that
the line had to pass through the 100% identity, zero mu-
tations point — if the sequences are 100% identical then
there can be no mutations within the local environment.
Allowing for the fact that sequence identity ranges from
0–100% while our fraction of mutations scale runs from
0–1 (and that one scale is scoring conservation while the
other is scoring mutations), this fitting revealed a slope
of 1.007 for CPDs and 0.9 for PDs. The slope of ∼ 1
for CPDs implies that the environment around a CPD
is mutated at the same rate as the sequence overall such
that compensation occurs as a result of random drift
in the sequence. On the other hand, the environment
around PDs is more conserved than the sequence as a
whole.

While this ‘sphere compensation’ is probably the
most common compensatory mechanism in proteins,
the alternative classical ‘one-on-one compensation’ can
also occur where one deleterious SAAP is compensated
by another single mutation in the structural vicinity.
This type of compensation is easier to detect, especially
in analyses where only recently diverged homologues
are considered (9, 11, 26). Two examples of one-on-one
compensations are shown in the Case Study presented
below.

Poon et al.’s study (24) also investigated whether
compensatory mutations are intragenic (i.e. occur within
the same gene, and hence the same protein chain, as the
deleterious mutation) or intergenic (i.e. occur within a
different gene and protein chain from the DAM). Overall,
from their dataset of 129 CPDs, they found that the ma-
jority (78%) of compensatory mutations were intragenic
suggesting that the complexity of interactions between
proteins is likely to be less important than the complex-
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ity of the protein itself. However, when they studied
different taxa separately, they found that compensation
is much less likely to be intragenic in viruses (69%) than
in prokaryotes (92%) and eukaryotes (90%). They pro-
posed that this is probably a result of the fact that viral
genes tend to be shorter, thus limiting the number of
internal interactions.

Work performed by Povolotskaya and
Kondrashov (36) suggests that compensated pathogenic
deviations are unidirectional drivers of evolution; once
compensation occurs, it is unlikely that sequences
will revert to the original wild-type state. Their
investigation of divergence of proteins in sequence
space showed that, at any given point in time, only
2% of all possible missense mutations are allowed in
order to avoid non-functional protein products. If we
assume that only one missense mutation at a time
can be introduced into the sequence, then we can
consider how this observation affects a protein chain
consisting of 100 residues. For every residue there are
19 possible substitutions, so at any one time 1900
(100 × 19) mutational events could occur. Given that
2% of these are ‘allowed’, 38 missense mutations will
result in a functional protein. Let us assume that an
allowed mutation of residue X to residue Y occurs at
position n (i.e. Xn → Y ). At the next step, there
will again be 38 allowed missense mutations, one of
which would be the reversal of the mutation that
occurred in the previous step (i.e. Yn → X). Thus
there is a 1 in 38 (2.6%) chance that this will occur,
but a 97.4% chance that another mutation will occur.
From this statistic, we do not know how the 38
allowed mutations will be distributed across the 100
amino acid positions of the protein. Thus the second
mutation could result in Yn → Z, but in general it is
much more likely that the mutation will occur at a
location m that is different from n. Thus we are much
more likely to obtain a double mutant after the second
step than we are to obtain a reversion to the original
sequence or to introduce a different amino acid at
position n. Consequently, subsequent mutational events
will lead to a drift away from the original sequence
and it is intuitive that compensation will be observed
significantly more often than reversal to the original
sequence.

The question remains as to the timeline of compen-
satory events. As we discussed in our previous work (10),
DePristo et al. (30) proposed two hypotheses of CPD
evolution based on models of biophysical properties. In
the first scenario, a compensatory mutation C is pheno-
typically neutral and stable, thus fixing itself quickly in
the population. The deleterious mutation D is unsta-
ble, and can only become fixed in the population if it
occurs after the compensatory mutation C. Thus D will
exist as a CPD because of the compensatory effect of
C. In the second model, both D and C are individually
deleterious, but either can exist in the population at low

levels; it is known that small frequencies of low-fitness
mutations exist in large populations. Consequently if D

is present in the population at low levels, then C can
occur later and fix the D–C genotype in the population
because of the epistatic effect of the mutant-pair. Cow-
perthwaite et al. (2), in their in silico RNA models dis-
cussed earlier, confirmed that the deleterious mutation,
D, can occur first. Equally the compensatory mutation
C can be present in the population at low levels and D

can occur later leading to fixation of the D–C genotype
in the same way. A less likely, but possible, scenario is
that both C and D occur simultaneously. Provided the
mutation rate is sufficiently high, epistatic selection with
compensatory mutations is the most prevalent mecha-
nism for fixation of otherwise deleterious mutations.

Artificial compensatory events

With recent advances in sequencing technology (37),
sequencing large amounts of genomic data is becoming
cheaper, faster and more accessible, providing new
opportunities in biomedical research. Genome-wide
association studies (GWAS) are becoming more and
more widespread, associating mutations with both high
and low penetrance disease phenotypes. An important
area of interest is the ability to predict whether a given
mutation — particularly a SAAP — will lead to disease.
Numerous tools have been developed both to analyze
the local structural effects of mutations and to predict
whether mutations will be damaging, many of these
working mostly at the sequence level. Among these are
SAAPdb (7), SNPs3D (38), stSNP (39), ModSNP (40),
MutDB (41), LS-SNP (42), TopoSNP (43), SIFT (44),
SNPeffect (45), PolyPhen (46, 47), subPSEC (48) and
nsSNPAnayzer (49).

Recently, Critical Assessment of Genome
Interpretation (CAGI) (50), a community experiment
to assess computational methods for predicting the
phenotypic impacts of genomic variation objectively,
organized by Steve Brenner, John Moult and Susanna
Repo, was run for the first time. Participants were
provided with genetic variant data and asked to
make predictions of the resulting molecular, cellular,
or organismal phenotype. Results from over 100
prediction submissions from 8 countries were evaluated
against experimental data by independent assessors
and discussed at a workshop in December 2010 (see
http://genomeinterpretation.org/).

One of the prediction datasets was particularly
interesting in the context of compensated
mutations. A dataset of p53 mutations (see
http://genomeinterpretation.org/content/p53/)
was designed to test prediction of ‘cancer rescue
mutations’. p53 is a tumour suppressor protein which
plays a central rôle in detecting DNA damage, slowing
the cell cycle to allow DNA repair enzymes to do their
work (51), or if DNA damage is too severe, triggering
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programmed cell death (apoptosis) (52, 53). If p53 is
rendered non-functional as a result of mutation, this
central checkpoint is lost, allowing other mutations to
accumulate in the DNA eventually leading to cancer.
Unusually for tumour suppressor genes, in which most
mutations tend to be frameshifts or nonsense codons,
the majority of mutations in p53 are single DNA base
changes resulting in a SAAP. In some cases, mutations
at second intragenic sites are known to rescue the
function reactivating otherwise inactive p53 (54, 55, 56)
and are therefore acting as compensatory mutations.
Rick Lathrop’s group at the University of California,
Irvine, has been performing a complete functional
census of these cancer rescue mutations (57). In this
case, the aim of the CAGI prediction experiment was
to predict whether a given mutation is able to rescue
the function of p53 and thus act as a compensatory
mutation (58, 59). While the results of the CAGI
prediction experiment have not been published at the
time of writing this review, we suspect the field of
compensation prediction will progress significantly in
the near future. If a disease-associated deleterious
mutation is amenable to compensation (i.e. it is seen to
be a CPD), it is likely that other (non-mutational)
mechanisms of compensation may also be applied.
For example, Alan Fersht’s group in Cambridge has
shown that some p53 mutations can be compensated
by binding small peptides that stabilize the p53 core
domain (60, 61). More recently, small molecules which
are more likely to be usable drug leads have been used
successfully in the same way (62, 63, 64, 65).

Case study: two compensated mutations and
their environment

There are many examples of compensation which include
the p53 rescue mutations described above where, in some
cases, crystal structures have been solved to study the
mechanism of compensation (55). Here we will discuss
two examples of compensated mutations. First, a CPD
in human GTP cyclohydrolase (GTPCH) is presented,
with an obvious destabilizing effect on the protein struc-
ture, while a compensating mutation has a stabilizing
effect restoring enzyme activity. The second example,
in ornithine transcarbamylase (OTC), is less obvious at
the structural level, despite being confirmed by in vitro

enzyme activity experiments.
GTPCH, encoded by the gene GCH1, plays a rôle

in the folate and biopterin biosynthesis pathways and
hydrolyses guanosine triphosphate (GTP) to form 7,8-
dihydroneopterin-3′-triphosphate. This is the first step
in the biosynthesis of tetrahydrobiopterin, an essential
cofactor required by aromatic amino acid hydroxylase
(AAAH) and nitric oxide synthase (NOS). These, in
turn, are involved in the biosynthesis of monoamine neu-
rotransmitters such as serotonin, melatonin, dopamine,
noradrenaline, adrenaline and nitric oxide. Mutations

are associated with phenylketonuria (PKU) and hyper-
phenylalaninemia (HPA), as well as levodopa-responsive
dystonia.

Figure 3a shows the whole wild-type GTP cyclohy-
drolase I which consists of five identical chains, with
mutually parallel C′ helices stabilizing the pentameric
structure (66). The images, rendered with PyMol (http:
//www.pymol.org/), are based on coordinates obtained
from Protein Databank entry 1FB1 accessible online at
http://www.pdb.org/ (67). Figure 3b shows detail of
the wild-type residues that are mutated (residues 249
and 250). The wild-type Arg249 in one chain and Ser250
in the next chain form a tight ring-like structure.

An Arg249→Ser mutation is associated with
disease, causing a severe decrease in enzyme activity
and resulting in recessive levodopa-responsive dystonia
(OMIM:600225.0016). Figure 3c shows the effect of
introducing an Arg249→Ser mutation in all five chains
modelled using the minimum perturbation protocol (68)
implemented in the program Mutmodel (69). The
non-covalent interactions between residues 249 and 250
are reduced, presumably destabilizing the complex and
leading to disease. However, the functionally-equivalent
protein in Rickettsia bellii has a serine at 249 in the
wild-type enzyme, but also has a compensatory lysine
at 250, which is also modelled into the structure in
Figure 3d restoring, and indeed enhancing, the ring-like
set of interactions.

A less clear example of a compensatory mutation
is seen in Ornithine transcarbamylase (OTC)
which catalyzes the reaction between carbamoyl
phosphate and ornithine to form citrulline and
phosphate. In prokaryotes and plants, it is involved in
arginine biosynthesis, while in mammals it is a key
enzyme of the urea cycle. Figure 4a shows one
monomer of the enzyme which exists as a trimer.
The structure for OTC in the Protein Databank
shows only a monomer (PDB ID: 1OTH), but the
assembly of the biologically relevant trimer can be
obtained from PISA (70) available online at http:

//www.ebi.ac.uk/msd-srv/prot_int/pistart.html.
OTC deficiency, although a rare condition occurring in
around 1 in 80,000 births, is the most common disorder
of the urea cycle which removes ammonia from the
body. Mutations in OTC lead to an accumulation of
toxic ammonia which can lead to developmental delay
and mental retardation, progressive liver damage, skin
lesions, poorly-controlled breathing, seizures, coma and
death.

Figure 4b shows helix 3 from PDB entry 1OTH and
highlights residues 125 and 135 in red and green respec-
tively (71). Thr125→Met is a known disease causing mu-
tation in humans resulting in lethal neonatal congenital
hyperammonemia (OMIM:311250). Suriano et al. (72)
showed that the human enzyme with the Thr125→Met
mutation has a negligible rate of enzyme activity in in

vitro constructs. However this mutation is a CPD as
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Figure 3: Compensated mutation in human GTP cyclohydrolase I. Residues 249 and 250 are shown with a surface in all 5 chains.
A) Structure of the wild-type homo-pentamer with each chain shown in a different colour. B) Zoomed view of residues 249 and 250
from all five chains with the residues shown in green and red, respectively. C) The disease-causing Arg249→Ser mutation modelled
into all five chains. D) The compensatory Ser250→Lys mutation modelled into all five chains as well as the Arg249→Ser mutation.

Figure 4: Compensated mutation in human ornithine transcarbamylase. A) Structure of wild-type human OTC. B) View on helix 3,
with residues 125 and 135 shown in red and green respectively. C) The disease-causing Thr125→Met mutation, modelled structure.
D) A compensatory Ala135→Thr in addition to the Thr125→Met mutation.

Met is the native residue in chimpanzees. The only
other residue which differs between human and chimp
OTC is residue 135 where there is an Ala→Thr muta-
tion which must compensate for the deleterious effect of
the Thr125→Met mutation. However the mechanism of
compensation is unclear as Figure 4 shows that residues
125 and 135 are not in direct contact and this is also
the case in the trimer. However, as previously suggested
by Azevedo et al. (73), the presence of Thr125 might be
crucial at the end of helix 3 since this helix is involved in
trimerization of human OTC, and the chimpanzee com-
pensates for its loss by having a threonine introduced
at the other end of helix 3 (at position 135), restoring
enzyme activity to rates similar to human wild-type. In-
terestingly, Suriano et al. (72) also suggested that the
ancestral genotype may have had threonines at both po-
sitions 125 and 135 and had a higher enzyme activity
than either the human or chimpanzee enzymes. If this is
the case, then this mutation is an example of two species
starting to explore fitness ridges, in search of another lo-
cal optimum.

Expert Opinion

In conclusion, while there is also the possibility that epi-
genetic effects can also be compensatory (i.e. some dif-
ference in the non-protein environment), compensation
of deleterious mutations through epistatic protein muta-
tions is a very common effect. The frequency of these
compensatory mutations depends on the time elapsed
from the common ancestor and the data in Table I show
that there is a correlation between the frequency of CPDs
and the diversity of the homologues used to detect CPDs.
For example, our dataset (10) (where we apply no con-
straint on the sequence identity between functionally
equivalent homologues) shows a higher ratio of CPDs
compared with the dipteran-only (26) or mammalian-
only (9, 11, 33) datasets.

Study of the evolution of RNA molecules and in silico

models of RNA evolution show clear examples of one-on-
one compensation (2). While compensation in proteins
is often more complex, involving multiple compensatory
events changing the environment in which a residue ex-
ists, there are also several examples of one-on-one com-
pensation including ‘cancer rescue’ mutations in p53.

As shown by DePristo et al. (30), any mutation has
an average effect on protein stability (∆∆G) of around
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0.5–5 kcal/mol. Restoring protein stability and hence
regulated activity, will often need compensatory muta-
tions that restore stability to the acceptable range of
free energies. From a structural analysis perspective,
compensated mutations are preferentially on the protein
surface (10, 33). As shown by Poon et al. (24), com-
pensatory events are most commonly intragenic, so the
surface location is likely to be a result of it being eas-
ier to accumulate compensatory events (probably before
the CPD mutation occurs) rather than it being anything
to do with interactions with other proteins. In addition
CPDs have ‘milder’ effects on the protein structure than
uncompensated mutations (10, 33) and tend to be more
conservative in nature (33).

Outlook

CPDs will continue to be an interesting area of research
in understanding evolution and traversal of the fitness
landscape. As more species are sequenced, the identi-
fication of true PDs will become more accurate. This
will allow us to compare CPDs and PDs in a more accu-
rate manner and therefore understand more completely
which mutations can be easily compensated and which
cannot. The CAGI experiment described above has led
the way with the challenge of predicting which mutations
will be ‘cancer rescue’ mutations in p53 and this will be-
come a more significant area of research. The fact that
certain mutations can be rescued or compensated by an
amino acid change will also allow us to identify types of
mutations that, in general, can be more easily rescued
leading us towards the possibility of drugs that can res-
cue protein function. Consequently studying CPDs is
not only of interest in understanding evolution, but is
also important in developing future drugs.

Highlights

• Compensation of deleterious mutations through
epistatic protein mutations is a very common
effect.

• The frequency of compensated mutations depends
on the time elapsed from the common ancestor —
more diverged sequences are more likely to show
compensatory events

• Study of RNA molecules and in silico models of
RNA evolution clearly show one-on-one compen-
sation.

• Compensation in proteins is more likely to involve
multiple compensatory events, but there are also
several examples of one-on-one compensation.

• ‘Cancer rescue mutations’ in p53 are an example
of one-on-one compensation.

• CPDs are more likely to occur on the protein sur-
face, be more conservative in nature and be less
damaging in structural terms than PDs.

• Prediction of compensatable mutations may allow
design of drugs that are able to compensate for the
effects of a damaging mutation.
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