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Abstract

Peptide vaccines have many potential advantages over conventional
ones including low cost, lack of need for cold-chain storage, safety and
specificity. However, it is well known that approximately 90% of B-cell
Epitopes (BCEs) are discontinuous in nature making it difficult to mimic
them for creating vaccines. In this study, the degree of discontinuity in
B-cell epitopes and their conformational nature is examined. The discon-
tinuity of B-cell epitopes is analyzed by defining ‘regions’ (consisting of at
least three antibody-contacting residues each separated by ≤ 3 residues)
and small fragments (antibody-contacting residues that do not satisfy the
requirements for a region). Secondly, an algorithm has been developed
that classifies each region’s shape as straight, curved or folded on the ba-
sis that straight and folded regions are more likely to retain their native
conformation as isolated peptides. We have investigated the structures
of 488 B-cell epitopes from which 1282 regions and 1018 fragments have
been identified. 90% of epitopes have five or fewer regions and five or
fewer fragments with 14% containing only one region and 4% being truly
linear (i.e. having one region and no fragments). Of the 1282 regions, 508
are straight in shape, 626 are curved and 148 are folded.

Highlights

• A comprehensive analysis of epitope discontinuity from 488 B-cell epi-
topes.
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• Regions defined as ≥3 antibody-contacting residues with gaps of ≤3
residues.

• Fragments defined as antibody-contacting residues that are not in regions.

• 14% of epitopes have only one region; only 4% are truly linear, having one
region and no fragments.

• 39.6% of regions are straight, 48.8% are curved and 11.5% are folded.

Keywords: antigen; protein conformation; protein structure; antibody-antigen
interactions; discontinuous epitopes; epitope conformation

1 Introduction

Despite the successes of vaccination against major infectious diseases and the
resulting global eradication of diseases such as small pox and poliomyelitis (Hen-
derson, 1998; Hovi, 2001; John, 2000; Breman and Arita, 1980), vaccines for
many infectious diseases remain elusive. Traditionally, vaccine development has
involved the delivery of live attenuated or inactivated viruses or bacteria by
injection. However, vaccines that include the whole organisms may cause a
detrimental immune response owing to unnecessary proteins present in the vac-
cine formulation (Thompson and Staats, 2011) which may result in unwanted
host responses such as allergenic and/or reactogenic immune responses (Petro-
vsky and Aguilar, 2004). This has led to a focus on using a single protein
(or a few proteins) to induce the protective immune response (Thompson and
Staats, 2011; Petrovsky and Aguilar, 2004). However, even a single protein con-
tains many epitopes, some of which may lead to an undesired immune response.
‘Peptide vaccines’ are capable of inducing more specific immune responses that
cross-react with intact protein, avoiding allergenic and/or reactogenic responses
(Nemchinov et al., 2000; Arthur et al., 1987; Sun et al., 1991; Purcell et al.,
2007).

Unlike T-cell epitopes that are linear continuous stretches of residues, B-
cell epitopes are generally conformational (discontinuous) being comprised of
multiple sequential segments that are in close spatial proximity in the 3D fold
of an antigen. This discontinuous nature of B-cell epitopes has made identifi-
cation and prediction from sequence challenging (Haste Andersen et al., 2006;
Kulkarni-Kale et al., 2005; Lo et al., 2013; Moreau et al., 2008; Zhao et al., 2012;
Ponomarenko et al., 2008; Sun et al., 2009; Sweredoski and Baldi, 2008). The in-
crease in structural data available for antibody/antigen complexes has provided
new opportunities for conformational analysis and characterization of epitopes
to understand their properties in detail. Thus far, structural characterization of
epitopes has been performed on the basis of solvent accessibility (Novotnỳ et al.,
1986; Lollier et al., 2011), amino acid composition, size (Haste Andersen et al.,
2006; Ofran et al., 2008; Rubinstein et al., 2008; Zhao and Li, 2010; Sun et al.,
2011), secondary structure (Ofran et al., 2008; Rubinstein et al., 2008; Liang et

al., 2010), location on the antigen (Haste Andersen et al., 2006; Rubinstein et

al., 2008; Thornton et al., 1986) and geometry (Rubinstein et al., 2008). More
recently, Sivalingam and Shepherd (2012) investigated discontinuous epitopes
defining regions with no gaps, gaps of three and gaps of five non-contacting
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residues. Their findings suggest that with the gap of three or five residues,
85–88% epitopes are comprised of multiple regions.

A recent study by Kringelum et al. (2013) was performed on a relatively
large dataset (107 unique antibody-antigen complex structures) compared with
previous studies which used smaller datasets (up to 53 unique antibody-antigen
complex structures (Sivalingam and Shepherd, 2012; Rubinstein et al., 2008)).
They present a detailed analysis of antigen-antibody interaction surfaces and
described the epitope in terms of its size, shape, segmentation, secondary struc-
ture, location, orientation relative to the antibody, amino acid composition,
amino acid ‘co-operativeness’ (particular amino acid pairs mediating coopera-
tive antibody-antigen binding) and spatial amino acid composition. In terms of
shape, Kringelum et al. described B-cell epitopes as flat, oblong or oval based
on an analysis of epitope and paratope residues.

Several methods (Kulkarni-Kale et al., 2005; Haste Andersen et al.,
2006; Sweredoski and Baldi, 2008; Ponomarenko et al., 2008; Sun et al.,
2009; Schneidman-Duhovny et al., 2005; Comeau et al., 2004; Rubinstein
et al., 2009a,b; Liang et al., 2009, for example) have been developed for
the prediction of conformational B-cell epitopes. These methods used
3D structural information of an epitope along with several other features that
include amino acid properties, spatial information, surface accessibility and
residue clustering. Unfortunately, none of these methods is able to provide
good predictions of conformational B-cell epitopes, but an understanding of
the 3D structural shape of epitopes may aid in their prediction.

In this paper, we take a different approach to analyzing the structures of
epitopes to look at the level of discontinuity and the conformational nature of
continuous stretches. Unlike previous work, we also consider antigens formed
from multiple protein chains.

2 Materials and Methods

All code was implemented in Perl and C. Data and code are available at github.
com/ACRMGroup/epitopes. The code also makes use of programs from Biop-
Tools (Porter and Martin, 2015) available at www.bioinf.org.uk/software/

bioptools and github.com/ACRMGroup/bioptools.

2.1 Dataset Preparation

A dataset of 673 unique antibody-antigen structures was obtained from AbDb
(www.bioinf.org.uk/abs/abdb) (Ferdous and Martin, 2018) in December
2016. The dataset was filtered to remove peptide antigens of <30 amino
acids reducing the dataset to 520 unique antibody-protein antigen complexes.
A further 11 antibody-antigen complexes solved using electron diffraction
were excluded because of their low resolution and three complexes were
removed owing to incorrect pairing resulting from single-chain Fabs in AbDb,
missing structural information and incorrect symmetry. Of the remaining 506
complexes, after performing redundancy test using cdhit (Li and Godzik, 2006)
(100% cut-off), the dataset was reduced to 488 complexes. Among these 488
complexes, 446 had a single antigen chain associated with the antibodies while
42 had multiple chains bound.
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2.2 Defining Epitopes

Epitope residues were defined as the set of antigen residues having any atoms
in contact with the CDR region of an antibody where a contact was defined
as a centre-to-centre distance less than 4 Å (Ponomarenko and Bourne, 2007;
Haste Andersen et al., 2006; Sun et al., 2011) and implemented in the program
chaincontacts from BiopTools (Porter and Martin, 2015).

2.3 Epitope Structural Discontinuity Determination

Epitopes were separated into two types of structural elements: regions (R) and
fragments (F). Regions were defined as continuous stretches of antigen sequence
having at least three residues in contact with antibody. As with several previous
studies (Haste Andersen et al., 2006; Sun et al., 2011; Kringelum et al., 2013;
Sivalingam and Shepherd, 2012), gaps between contacting residues were allowed
and a gap size of up to three non-contacting residues was chosen on the basis
of the structure of α-helices allowing the inclusion of amino acids which lie on
the same face of an α-helix (Supplementary Figure S2).

Note that terminology varies between different studies. We use the term
‘region’ for extended sets of contacting residues (with gaps) where other stud-
ies have used terms such as ‘segment’ or ‘fragment’ (Rubinstein et al., 2008;
Sivalingam and Shepherd, 2012; Kringelum et al., 2013); we reserve the term
‘fragment’ (F) for single amino acids that make contact with antibody, but
which do not form part of a region (Supplementary Figure S3).

2.4 Conformational Analysis of Epitope Regions

A method was developed to classify regions into straight, curved and folded
conformations (Supplementary Figure S4).

Each peptide region was first classified as predominantly alpha, beta or
coil based on secondary structure assignments performed using the program
pdbsecstr from BiopTools (Porter and Martin, 2015), an implementation of the
Kabsch and Sander method (Kabsch and Sander, 1983) as modified by Smith
and Thornton (1989). A threshold of >60% occurrence of a given secondary
structure was used to classify a region as helix, strand or coil.

The shape classification algorithm uses a measure of linearity by comparing
a given region with an ideal β-strand or α-helix. A best-fit line is calculated
through the Cα positions of the peptide using pdbline from BiopTools and the
Cα closest to the midpoint of this line is identified. The position of that Cα is
then projected onto the line and reference positions for the projections of the
other Cα atoms are calculated based on a spacing of 3.5 Å for an ideal β-strand
and 1.5 Å for an ideal α-helix. Regions classified as coil also use the β-strand
spacing. The remaining actual Cα atoms are also projected onto the line and
the mean absolute deviation in their positions from the ideal reference positions
is calculated as a descriptor of linearity. The method is described in detail in
Supplementary Section ‘Evaluation of Linearity’.

2.5 Classification Protocol

Classification cut-offs for the linearity descriptor were explored using a visual
analysis. The following cut-offs were selected to distinguish straight and non-
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straight (i.e. curved or folded) peptides:

Class =







Straight, if (L > 4) and (D ≤ 1.0 Å),
Straight, if (L ≤ 4) and (D ≤ 0.5 Å),
Non-straight, otherwise.

(1)

where L is the peptide length and D is the linearity descriptor (the mean ab-
solute deviation in projected Cα positions from ideal positions) as defined in
Equation S6 of Supplementary Section ‘Evaluation of Linearity’.

Peptides classified as non-straight, but with L ≥ 6 and (1.0 Å ≤ D ≤ 2.5 Å)
are sometimes essentially straight, but with a ‘hooked’ end. To check for the
presence of a ‘hook’, the N-terminal residue’s deviation from its ideal position
was compared with the C-terminal residue’s deviation. If the deviation of the N-
terminal residue was more than the C-terminal residue then there is potentially
a hook at the N-terminus of the peptide; otherwise there is a potential hook at
the C-terminus. The average deviation of the whole peptide is then recalculated
excluding the possible hooked terminal residue. If the average deviation is still
more than 1.0 Å, then the process is repeated excluding up to three terminal
residues. If, during this process, the average deviation for the peptide falls to
≤1.0 Å, the peptide is defined as having a hook and is reclassified as straight.

Non-straight peptides are further classified into curved and folded on the
basis of the number of contacts among the residues along the peptide using a
‘contact rule’ as described below.

A flow chart of the classification protocol is shown in Supplementary Fig-
ure S5.

The contact rule

Non-straight peptides, identified as described above, are classified into curved or
folded classes using a ‘contact rule’ which counts the number of contacts (defined
as a distance of ≤ 4 Å between any pairs of atom centres) among residues as
we walk along the peptide. The number of contacts is calculated between pairs
of residues defined as:

n− d ⇔ n+ i+ d (2)

where ⇔ represents a contact being made, n is the current reference position
in the peptide, i is the minimum separation between sets of residues making
contact (i ≥ 3) and d is a step along the residues of the peptide (d ≥ 0). Thus
the rule does not just identify local and distant contacts, but identifies sets of
contacts made by residues that are paired with one another as one walks along
the sequence. This equation is iterated over n, d and i as shown in Figure 1.

Local contacts are defined as those where the minimum separation is less
than (or equal to) a ‘contact threshold’, TC (i.e. i ≤ TC), while distant contacts
have i > TC . TC is defined as:

TC =

{

N/2 if (N ≤ 12),
5 otherwise.

(3)

where N is the length of the peptide.
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Figure 1. Contacts in folded peptides are defined between positions n − d
and n+ i+ d where n is a reference position in the peptide to start identifying
contacting pairs of amino acids, i is the minimum separation between residues
making contact (i ≥ 3) and d is a step along the residues of the peptide (d ≥ 0).
Iterations are performed over n, d and i. As defined in Equation 3, when
i ≤ TC , contacts are defined as local while i > TC defines distant contacts.
a) An example of a peptide with 11 residues which has local contacts; at this
stage of the algorithm, i = 4 with d = 1 . . . 4. b) An example of a 12 residue
peptide which has distant contacts; at this stage of the algorithm, i = 9 with
d = 0 . . . 2 c) An example of a 20 residue peptide which has both local and
distant contacts; at the stage of the algorithm in the left-hand panel, i = 3 and
d = 0 . . . 1 identifies two local contacts while in the right-hand panel, i = 17 and
d = 0 . . . 1 identifies two distant contacts.
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Table 1. The number of regions and fragments in the dataset of 488 epitopes

Epitopes Regions Fragments
Single-chain 446 1148 879
Multiple-chain 42 134 139
Combined 488 1282 1018
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Figure 2. Number (black squares) and cumulative frequency (grey circles) of
epitopes having a single region and different number of fragments.

Non-straight peptides are classified as folded or curved based on the number
of local contacts (CL, where i ≤ TC), distant contacts (CD, where i > TC) and
total contacts (CT = CL + CD) as shown in Equation 4.

Class =















Folded, if CL ≥ 3
Folded, if CD ≥ 2
Folded, if CT ≥ 3
Curved, otherwise.

(4)

See also Algorithm 1 in Supplementary Material.

3 Results and Discussion

Epitopes were analyzed in terms of the number of regions, number of fragments,
region length, longest region length, probability of having other regions given a
region of a certain length, the relationship between region length and either the
number of regions or the number of fragments, the epitope size, the shape and
the secondary structure composition.

In the dataset of 488 epitopes, a total of 1282 regions and 1018 fragments
were observed as shown in Table 1. In describing epitopes, we adopt a nomen-
clature of RxFy where x is the number of regions (three or more contacting
residues with gaps of up to three residues between contacting residues) and y is
the number of fragments (individual contacting residues that are not part of a
region).
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3.1 Distribution of Regions and Fragments

Among the 488 distinct B-cell epitopes most (∼91%) were composed of a single
antigen chain while the remaining ∼9% were composed of multiple chains. Epi-
topes were composed of one to nine regions and zero to sixteen fragments with
the most frequent compositions being R2F0 > R3F2 > R2F2 > R3F0≈R2F1
(See Supplementary Table S1).

Only 20 epitopes out of 488 (4%) were truly linear (R1F0) agreeing with sev-
eral studies that report over 90% of B-cell epitopes are conformational (Van Re-
genmortel, 2001; Haste Andersen et al., 2006; Theisen et al., 2000). However,
approximately 14% are comprised of a single region and up to 9 fragments
(R1F0–R1F9) as shown in Figure 2. This is in agreement with the work of
Sivalingam and Shepherd (Sivalingam and Shepherd, 2012) who found that 12–
15% of epitopes are contain a single region.

The full dataset (Supplementary Table S1) was divided into epitopes contain-
ing only single chains (Supplementary Table S2) and those containing multiple
chains (Supplementary Table S3). A χ2 test shows that the region/fragment
distribution in these datasets is significantly different (p = 0.026). See Supple-
mentary Table S4 for the grouping performed to satisfy the requirements of a
χ2 test (no expected <1 and <20% less than 5).

The statistical analysis from Supplementary Table S4 shows that the sta-
tistical difference between the two datsets stems from the absence of R1 in the
multiple-chain dataset. When R1 is removed from both the single (Supplemen-
tary Table S5) and multiple chain (Supplementary Table S6) dataset, the χ2 test
shows that the data are no longer significantly different (p = 0.08) and we have
therefore combined the datasets for all the further analysis. See Supplementary
Table S7 for the grouping of data.

3.2 Lengths of Regions

In the epitope dataset, the region length ranges from 3–30 residues (mean=8.15,
σ=4.44) with 94% ≤ 16 residues (Supplementary Figure S6a). A similar trend
was observed by Kringelum et al. (2013), where regions of up to 15 residues
were seen, but in the present study, about 7.8% have a length of more than
15 residues. This is likely to be explained by the larger dataset and the fact
that a gap of up to 3 non-epitope residues is allowed in regions in the present
study compared with only one amino acid in the work of Kringelum et al.

The distribution of the longest region was calculated for the epitope dataset
and was found to range from 4–30 residues (Supplementary Figure S6b).

Probability of a Region Being the Longest

Given the scenario that a region of a certain length is being analysed as a
candidate immunogen, one needs to know whether there are likely to be other
longer regions within the same epitope. In other words, for a given region
length, what is the chance of that being the longest region and therefore the
major structural component of the epitope? This would allow us to extrapolate
the results to epitopes where the antigen structure and only the rough epitope
is known (perhaps by alanine scanning mutagenesis). The fraction of epitopes
having region length X and also having regions longer than X was calculated
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Figure 3. Given a region length X, the probability that there are also regions
of length > X in the epitope is plotted against X.

as follows and plotted for each possible length of a region in the observed data
(Figure 3).

F(L>X) =
NRl=X

∩NRl>X

NRl=X

(5)

where F(L>X) is the probability of having a region of length > X given a
region of length X, NRl=X

is the number of epitopes having regions of length
X, NRl>X

is the number of epitopes having regions of length > X, and the
intersection represents the number of epitopes having a region of length X also
having regions of length > X.

The data show that epitope regions of length 3 or 4 will almost always be
accompanied by longer regions. This falls off gradually as region length increases
and it becomes statistically unlikely to see longer regions accompanying regions
of 14 amino acids or more (F(L>X) falls below 0.05). However there is an
unexpected peak at length 19 showing that epitopes of this length do tend to be
accompanied by a longer region. Looking at these examples, it was found that
the dataset contains 2 such examples (Supplementary Figure S7). In general,
however, it can be concluded that if an epitope has a region of length 14 residues
or more, it is most likely that this is the longest region and it is likely to be a
linear epitopes.

The Relationship Between the Length of Regions and the Number of

Regions and Fragments

It was hypothesized that the length of a region would be inversely correlated
with the number of regions. In other words, given the limited dimensions of
an epitope, if it includes a long region, it is less likely that there would be
other regions present. Thus, again, with the aim of identifying regions that are
likely to be dominant within epitopes, the correlation between region length
and either the number of regions or of fragments was investigated. For RXmax

,
a given maximum region length X, the fraction of epitopes also having NR

regions (F(RXmax
,NR)) and the fraction of epitopes also having NF fragments

(F(RXmax
,NF )) was calculated as:



10

3-5 6-8 9-11 12-14 15-17 18-20 21-23 24-26 27-30

0

1

2

3

Longest Region Length

F
(R

X
m

a
x
, 
N

R
)

R1

R2

R3

R4

R5

R6

R7

R8

R9

F11

F12

F13

F14

F15

F16

3-5 6-8 9-11 12-14 15-17 18-20 21-23 24-26 27-30

0.0

0.5

1.0

1.5

Longest Region Length

F
(R

X
m

a
x
, 
N

F
)

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10
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,NR)) and

b) NF fragments (F(RXmax
,NF )), for a given length maximum region length
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) in the epitope dataset. R1–R9 represent the number of regions (NR)

while F1–F16 represent the number of fragments (NF ). The peaks for region
length ≥24 in the dataset are artefacts of the very small number of epitopes
having such long regions.
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F(RXmax
,NR) =

NRXmax

∩NR

NRXmax

(6)

and

F(RXmax
,NF ) =

NRXmax

∩NF

NRXmax

(7)

where NRXmax

is the number of epitopes having maximum region length Xmax

while NR and NF are the number of regions and fragments respectively (1 ≤

NR ≤ 9 and 0 ≤ NF ≤ 16). The intersection is thus the number of epitopes
with maximum region length Xmax also having NR regions or NF fragments
respectively.

In the epitope dataset, epitopes having smaller maximum region lengths
(NRXmax

) tend to have more regions, while epitopes having longer maximum
region lengths (12–23 residues) generally have one to three region (Figure 4a).
Epitopes having a maximum region length of 15–20 generally have no fragments
(Figure 4b). In other words, truly linear epitopes (R1F0) mostly have a region
of length 15–20 amino acids while those with a single region and potentially a
small number of fragments have a length of 12–23 amino acids. Thus epitopes
identified by methods such as alanine scanning mutagenesis that appear to con-
tain a region of these lengths are likely candidates for linear, or near-linear,
epitopes.

3.3 The Relationship Between the Number of Regions and

the Number of Fragments

It was hypothesized that an epitope with fewer regions may be expected to have
more fragments and vice versa. Similarly, the length of regions and the number
of residues comprising an epitope might have a relationship with the number of
fragments in an epitope. Pearson correlation coefficients were calculated for the
dataset of 488 epitopes (see Supplementary Figure S8), but no evidence for a
correlation was observed.

3.4 Epitope Size

The size of an epitope was defined as the total number of residues that consti-
tute regions and fragments. In the combined dataset, the mean size was 23.36
residues (σ = 8.52) with a minimum observed size of 5 and maximum of 83
(Figure 5).

These results are similar to a study conducted by Rubinstein et al. (2009a)
on a dataset of 53 epitopes which concluded that 75% of epitopes are 15–25
residues. This compares with 80% of epitopes containing 15–35 residues in
the current study. Another analysis of 107 epitopes (Kringelum et al., 2013)
calculated the average size of an epitope to be 15 residues. Presumably the
differences result in part from our 5-times larger dataset, but mostly from our
different definition of epitope residues which include the non-contacting residues
contained within our regions.
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Figure 5. Distribution of epitope size in the dataset of 488 epitopes.

Table 2. Classification of regions into the three shape classes and sub-
classification on the basis of secondary structure. The analysis is based on
1282 regions from 488 epitopes.

Shape Structure Number of Regions
Straight (s) Total 508

Helix 152
Strand 127
Coil 229

Curved (c) Total 626
Helix 40
Strand 32
Coil 554

Folded (f) Total 148
Helix 23
Strand 33
Coil 92

Total 1282
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3.5 Shapes of Regions

Our dataset of 1282 regions was investigated on the basis of region shapes
and secondary structures. The shape of each region was classified as either
straight (s), curved (c) or folded (f). Each of the shapes was then further clas-
sified by secondary structure content as shown in Table 2.

Lengths of Each Region Shape

Most straight and curved regions are 4–9 residues long, whereas folded re-
gions are comprised of 11–17 residues (Figure 6a). The data shows that the
folded regions tend to be longer than the other shapes of regions. The differ-
ence in lengths of the folded with straight and curved was found to significant
(p < 0.0001). However the difference between straight and curved was found
insignificant (p < 0.933)

Correlation of Multiple Region Shapes

The distribution of each of the shapes in the region dataset is shown in Supple-
mentary Figure S9. 66 epitopes (≈ 14%) had only straight regions (up to 6); 87
epitopes (≈ 18%) had only curved regions (up to 5); 35 epitopes (≈ 7%) had
only folded regions (up to 2).

In order to investigate all combinations of region shapes, a 3D contingency
table was generated. The significance of particular combinations of straight,
curved and folded regions was then calculated using a 3-way (2x2x2) χ2 test
as described in Supplementary Section ‘Calculation of 3D χ2’. A Bonferroni
correction was applied to all p-values shown in this section (i.e. the p-values
were multiplied by the number of tests rather than dividing the threshold for
significance (α = 0.05) by the number of tests).

A total of 126 (7 × 6 × 3) combinations were formed resulting from epi-
topes having 0–6 straight, 0–5 curved and 0–2 folded regions (Supplementary
Table S8). The null hypothesis for this 3 way test is that there is no correlation
between any of the shapes. For a χ2 test to be valid, there should be no more
than 20% of the expected values below five and no expected values below one
(Dytham, 2010). Since the contingency table had many very low expected val-
ues, data were grouped as shown in Supplementary Table S9. A 3-way χ2 test
on the complete grouped table showed a p-value ≈ 0 indicating a strong corre-
lation among the shapes. Below, the notation sx is used to indicate x straight
regions, f x to indicate x folded regions and cx to indicate x curved regions.

The observed and expected values of different combinations showed clear
trends. For example, the chance of having a single straight region (s1 )
when there are no curved or folded regions is much less likely than expected
(p = 2.07×10−14). Straight regions are more frequently α-helix or β-strand
secondary-structure elements (Table 2) and these are rarely observed alone.
When there is a single straight region it is accompanied by one or two
curved regions much more frequently than expected by chance (f0/c1/s1 ,
p = 4.77×10−3; f0/c2/s1 , p = 1.47×10−3).

On the other hand, when there are two straight regions, these occur in the
absence of any curved or folded regions much more frequently than expected
(p ≈ 0). In other words, when two straight regions occur in an epitope they
tend to be present without the contribution of regions of any other shape. As
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topes.
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noted above, straight regions are more frequently α-helix or β-strand secondary-
structure elements and these are often observed as two parallel or anti-parallel
strands or helices. Two examples are shown in Supplementary Figure S10. Sim-
ilarly epitopes having more than three straight regions, have zero or one curved
regions much more frequently than expected (f0/c0/s3–s6, p ≈ 0; f0/c1/s3–s6,
p = 0.0069). In the context of creating peptide vaccines, such straight regions
could be coupled by peptide stapling (Fairlie and Dantas de Araujo, 2016) or
using a suitable presentation scaffold (Gururaja et al., 2000; Tiede et al., 2014).

Supplementary Table S9 also shows that epitopes containing single curved
regions (c1 ), in the absence of straight or folded regions, occur much less fre-
quently than expected by chance (p = 1.85×10−9). Unlike linear regions (that
are more frequently α-helices or β-strands, often occurring in pairs in epitopes)
and folded regions, both of which are internally stabilized, curved regions need
other elements to stabilize their conformation. However a single curved region
accompanied by a single straight region (c1 with s1 ) occurs much more than
expected by chance (p = 4.77×10−3). Similarly, when there are two curved
regions, these are most likely to be present together or in the presence of a
single straight region. Again, it is likely that two curved regions stabilize each
other or with the help of a single straight region (f0/c2/s1, p = 1.47×10−4;
f0/c2/s2, p = 1.26×10−4; f0/c2/s3–s6, p = 3.71×10−8). When there are
three or more curved regions, it is unusual to see any straight or folded regions
(p = 6.88×10−14).

When there are either one or two folded regions, it is rare to see any curved
or straight regions (p = 0), implying that one or two folded regions are enough
to form an epitope without the contribution of other region shapes. The signifi-
cance of any two shapes occurring together in one epitope was further evaluated
using a 2x2 χ2 test (with Yates correction) and shows that one or two folded
regions (f1 or f2 ) tend not to occur with straight regions (p = 1.87×10−10)
or with curved regions (p = 6.88×10−14). Such folded regions tend to be self-
stabilizing and are normally longer than the other two region shapes (Figure 6a)
explaining why they are generally present in the absence of other region shapes.

14 of the epitopes in the dataset contain all three shapes (i.e. s1/c1/f1 ),
but this is much less than expected by chance (p = 4.7×10−3). As noted above,
folded regions tend not to be accompanied by any curved or straight regions.

3.6 Secondary Structures of Epitopes

Epitope regions were classified into helix, strand and coil. Helical regions tend to
be longer than strand regions (p < 0.0001) and are also longer than coil regions
(p < 0.0001). This may be a result of the gaps of 3 amino acids allowed between
contacting residues (Figure 6b). Strand regions were found to be marginally
shorter than coil regions (p < 0.041).

Table 2 shows that, in general, regions are predominantly formed from coil
(68% of regions). This agrees with previous studies where it was reported that
epitopes are enriched in loops and depleted of helices and strands (Rubinstein et

al., 2008; Ofran et al., 2008). Supplementary Figure S11 shows the distribution
of secondary structures across the epitopes (i.e. the number of epitope regions
having predominantly a given secondary structure type). In the whole dataset,
nearly 39% of epitopes (191 of 488) had only coil (from 1–8 regions) while nearly
10% had only helical regions (49 of 488 epitopes, 1–3 regions) and only 3.8% had
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only β-strand regions (19 of 488 epitopes, 1–6 regions). The remaining ∼47% of
epitopes contain a mixture of regions with different secondary structure classes.

A three-way χ2 test confirmed that the presence of one type of secondary
structure element influences the presence of the others. A three-way contingency
table (4x7x9) was calculated to include each combination of helix, strand and
coil (Supplementary Table S10) grouped as shown in Supplementary Table S11.
The notation Hx is used to indicate x α-helical regions, Ex to indicate x β-
strand regions and Cx to indicate x coil regions. A Bonferroni correction was
applied to all p-values shown in this section (i.e. the p-values were multiplied by
the number of tests).

The data showed that the chances of having 3–8 coiled regions in the absence
of any helical or strand regions (i.e. C3–C8/H0/E0 ) is much more likely than
expected by chance. (2x2x2 χ2 test, p ≈ 0). In other words, epitopes consisting
only of coil regions occur much more frequently than expected by chance.

Similarly, helical regions tend to occur without the presence of regions having
other secondary structure classes. The probability of having 1–3 helical regions
in the absence of any coiled and strand region is much more likely than expected
by chance (p ≈ 0). In summary, most epitopes tend to have regions with the
same type of secondary structure element. While combinations of regions with
different secondary structure classes are seen, this occurs less frequently than
expected by chance.

4 Conclusions

Peptide vaccines have numerous potential advantages over conventional vaccines
produced from killed or attenuated pathogens or pathogen proteins. However,
the majority of natural B-cell epitopes (sites where antibodies bind) are discon-
tinuous making it more difficult to create peptide vaccines. We define ‘regions’
(R) as stretches of at least three amino acids making contact with antibody
with gaps of up to three residues between contacting residues and ‘fragments’
(F) as other contacting residues. In our analysis, only 4% of epitopes are truly
linear and consist of just a single region with no other ‘fragments’ (R1F0 in our
nomenclature). However, ∼14% have only one region with up to 9 individual
residue fragments (R1F1–R1F9) and these may also make suitable immunogens.
This analysis (‘Distribution of Regions and Fragments’ and Supplementary Ta-
ble S1) broadly agrees with previous analyses of smaller datasets (Rubinstein et

al., 2008; Sivalingam and Shepherd, 2012).
In addition ∼38% of epitopes have 2 regions with up to 16 fragments (R2F0–

R2F16) and it is possible that these regions could be artificially coupled to
produce more complex peptide immunogens. For example, peptides can be
stapled (Fairlie and Dantas de Araujo, 2016) or presented on a suitable scaffold
(Gururaja et al., 2000; Tiede et al., 2014). Thus, development of peptide-based
vaccines may be possible for ∼51% of antigens.

MacRaild et al. (2016) have shown that linear epitopes are enriched in disor-
dered and flexible antigens and since these proteins cannot be crystallized, the
protein databank has an inherent bias against these linear epitopes and thus
our analysis will under-estimate the number of linear epitopes. However this is
also a problem with all previous structural analysis of epitopes. It could also
be argued that excluding peptides of <30 amino acids in curating the dataset
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may exclude proteins with disordered regions which have been truncated in or-
der to aid in crystallization. Only 10 of the 153 antigen structures (∼6.5%)
rejected for being <30 amino acids in length have complete sequences longer
than 30 amino acids (34–108 residues). While these might represent truncation
of intrinsically disordered regions, we do not believe that this will further bias
the dataset because, if such regions represented epitopes, these would stabilized
by their interaction with an antibody and thus would not be flexible in the
complex.

If one does not have a structure of a protein of interest, computational
prediction of immuno-dominant B-cell epitopes would be valuable. However,
this is a very hard problem and prediction of such regions is difficult even when
one does have a structure. Two factors contribute to this difficulty: (i) the
discontinuity described above and (ii) the fact that immuno-dominant B-cell
epitopes are generally protein surfaces that are not normally involved in protein-
protein interactions and are therefore difficult to distinguish from the rest of a
protein surface. Increasing our understanding of the structure of these regions
may help in improving B-cell epitope prediction software.

From the perspective of vaccine development, where the structure of an
antigen of interest is not known, techniques such as alanine scanning mutagenesis
can be used to define a functional epitope given an antibody that binds to the
protein. If one identifies an epitope that appears to be largely continuous, it
would then be useful to know whether this is likely to be the only region. Our
analysis of region lengths showed that, in general, if an epitope has a region of
at least 14 residues, there are unlikely to be longer regions and consequently
such regions are likely be the dominant component of the epitope.

Another problem is that a peptide epitope, taken out of the context of the
whole protein, will not necessarily adopt the same conformation as it does in
the whole protein. Consequently it may fail to induce an immune response
which generates antibodies that cross-react with the native protein. If a peptide
adopts a conformation more similar to the conformation that it has in the native
protein, it is more likely to activate a B-cell response that generates specific
antibodies that will bind to whole antigen. We classified the shape of the 1282
epitope regions and found that nearly 40% are straight in shape and 11% are
folded. While regions mostly adopt coil conformations rather than ordered
secondary structure, nearly 30% of straight regions are α-helical and 25% are
β-strand (Table 2). Helical straight regions and folded regions are more likely
to adopt the same conformation as an isolated peptide as they are more often
internally stabilized. 49% of regions are curved in shape and would be unlikely
to adopt the same conformation when isolated. Again presentation scaffolds
may help with this problem.

94% of regions were seen to be up to 16 residues long, but ranged from 3
to 30 residues with an average size (i.e. total number of residues in regions and
fragments) of 23. There was no correlation between the number of fragments
and the number of regions, the longest region, the total region residues or the
average number of regions. Nonetheless, regions of 13 residues or fewer tend to
be accompanied by additional regions while regions of ≥14 residues are generally
predominantly-continuous epitopes having only one region and, perhaps, some
additional fragments.

In summary, we have provided a comprehensive structural analysis of 488
B-cell epitopes encompassing epitopes formed both by single chains and across
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multiple-chains. We expect this analysis to be helpful in the design of peptide-
based vaccines and in improving the prediction of B-cell epitopes.
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