
✐

✐

“GraphQL” — 2021/9/16 — 10:24 — page 1 — #1
✐

✐

✐

✐

✐

✐

Bioinformatics Advances

doi.10.1093/Bioinformatics Advances/xxxxxx

Advance Access Publication Date: 16 September 2021

Software

Software

GraphQL for the Delivery of Bioinformatics Web

APIs and Application to ZincBind

Sam M. Ireland 1,∗ and Andrew C.R. Martin 1

1Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Many bioinformatics resources are provided as ‘web services’, with large databases and

analysis software stored on a central server, and clients interacting with them using the hypertext transport

protocol (HTTP). While some provide only a visual HTML interface, requiring a web browser to use them,

many provide programmatic access using a web application programming interface (API) which returns

XML, JSON or plain text that computer programs can interpret more easily. This allows access to be

automated. Initially, many bioinformatics APIs used the ‘simple object access protocol’ (SOAP) and, more

recently, representational state transfer (REST).

Results: GraphQL is a novel, increasingly prevalent alternative to REST and SOAP that represents the

available data in the form of a graph to which any conceivable query can be submitted, and which is

seeing increasing adoption in industry. Here we review the principles of GraphQL, outline its particular

suitability to the delivery of bioinformatics resources, and describe its implementation in our ZincBind

resource.

Availability: https://api.zincbind.net

Contact: sam.ireland.09@ucl.ac.uk, andrew.martin@ucl.ac.uk;andrew@bioinf.org.uk

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Over the past three decades there has been a proliferation of biological

datasets, as well as software for the analysis of these data. Advances

in many disparate areas of biology depend on access to these resources

which are often located in central data-stores managed by large

institutions, with researchers submitting data to these central repositories.

Organisations such as the European Bioinformatics Institute (EBI),

the National Centre for Biotechnology Information (NCBI), and the

Research Collaboratory for Structural Bioinformatics (RCSB) maintain

large databanks, databases and suites of software for processing biological

data. The software is often distributed as source code or compiled

binaries, but to use software with the relevant data, (portions of) those

datasets need to be on the same machine as the software, meaning that

large datasets may need to be moved to the researcher’s local machine.

Thus, one of the central problems of bioinformatics is how to make

these datasets accessible to the research community without researchers

needing to maintain local copies (Stein, 2002). How can researchers

analyze data when the software performing the analysis is located on a

different machine? Early approaches made use of the maturing internet

to use grid-based, peer-to-peer solutions which were effective over local

networks, but did not scale well to the level of the entire internet

(Neerincx, 2005). This resulted in a proliferation of competing protocols

and standards making it tedious and difficult to combine services into a

single pipeline — the so-called ‘interoperability problem’.

The web — which uses the simple hypertext transport protocol

(HTTP) for transferring information in the form of connected documents

(HTML, initially) — became ubiquitous in the 1990s, which led to an

initial solution to this problem. Since most researchers had access to a

web browser, the HTTP protocol (and more recently its encrypted variant,

HTTPS) became the standard transport mechanism, and bioinformatics

service providers created web interfaces to their datasets and tools —

HTML views and forms that could be accessed with a browser. Users

could therefore interact with these central datastores and software using

these interfaces.

While this was a vast improvement, it did not solve the interoperability

problem — the services were standalone web interfaces, with no ability

c© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Page 1 of 8 Bioinformatics Advances



✐

✐

“GraphQL” — 2021/9/16 — 10:24 — page 2 — #2
✐

✐

✐

✐

✐

✐

2 Ireland and Martin.

to communicate with each other, or be chained together into more useful

pipelines. The collection of data from these resources could only be done

using ‘web scraping’ (or ‘screen scraping’): scripts that would download

and process the HTML to extract relevant information. This task could

be eased by using ‘semantic markup’ of the HTML (i.e. semantically

meaningful ‘class’ or ‘id’ attributes in the markup), but generally this

was not done and a change in the HTML display would break such

scrapers. With the advent of more complex websites, where more of the

data display logic is performed within the web browser using JavaScript

rather than on the server, screen scraping becomes almost impossible.

The solution was to provide a web application programming interface

(API), served over HTTP, but with responses that are easily machine

parsable. This allows local computer programs to communicate with

databases and software on central servers in an automated manner, and

for a single local computer program to acquire and process data from

multiple services without laborious manual human intervention.

After a brief exploration of CORBA, the earliest well-established

standard used by bioinformatics APIs was SOAP (Simple Object Access

Protocol). SOAP packages function calls and data using XML and allows

one to write code that calls a function as if it were available locally,

while it is actually present on a remote server. The server can have a

schema to describe the format of messages it expects and returns using an

XML format known as WSDL (Web Service Definition Language), which

allows the client to validate requests before sending. Together with UDDI

(Universal Description, Discovery and Integration — a specification for

a distributed registry of web services), this allowed client software to

discover and use web services without the programmer knowing where

they are or how they are called. Many of the early bioinformatics web

APIs used SOAP and by 2005 included those provided by the EBI (Pillai

et al., 2005). The RCSB started work on a similar service the same year

(Deshpande, 2005), and many other smaller resources developed SOAP

interfaces around the same time.

This went a long way towards solving the interoperability problem,

but while SOAP was popular in the 2000s, it suffered from rigidity and,

despite the word ‘simple’ in the name, was over complex. It required the

client to generate and properly format an XML message in a specific way,

meaning each programming language needed its own SOAP library. It

was also somewhat complex to develop and maintain from the server-side

perspective, and its XML responses tended to be needlessly large.

REST (REpresentational State Transfer) is a very simple alternative

to SOAP that was proposed in 2000 (Fielding, 2000), and had largely

replaced SOAP by the early 2010s. Rather than complex packaging of

data and requests using XML, a REST API simply accepts HTTP requests

and returns HTTP responses — but responses containing computer

parsable data rather than HTML. The client indicates what it wants using

HTTP verbs (GET, POST, DELETE, etc.) and by specifying the location

of the resource it wishes to access using a URI such as /gene?id=100.

Since this uses existing HTTP concepts, it requires no specialised ‘REST

library’ for the client, only a standard HTTP library of the kind that is

often in the standard library of modern programming languages. The API

exposes a number of endpoints corresponding to the different resources,

and the client makes requests to whatever endpoint it requires. Responses

can be in any machine-readable form, such as keyword/value pairs, but are

typically XML or, more commonly, JSON (JavaScript Object Notation).

By 2010, many large bioinformatics institutions were offering REST

services alongside their earlier SOAP interface (Rose et al., 2010; Lopez

et al., 2014) and, over the course of the 2010s, many of these SOAP

APIs were deprecated and removed (Yates et al., 2014). By 2020, REST

became the dominant style for bioinformatics web APIs.

2 GraphQL — a better web API standard

GraphQL is an alternative architecture for web APIs. In a GraphQL API,

as with SOAP, a single endpoint is exposed, typically /graphql. The

client sends HTTP requests to this endpoint and specifies what it requires,

not through the choice of URI or HTTP verb (as is done with REST),

but by sending a GraphQL message in the request body, structured in a

particular way, which describes precisely what data it would like.

A GraphQL backend is defined with a schema, which is a list of

‘types’. These can be primitive types such as integer, string etc., or object

types which have attributes, or ‘fields’. These fields also have a type,

which must correspond to a type elsewhere in the schema. For example,

the schema might contain the ‘Gene’ object type, with a field for ID

(integer type), name (string type), and annotations (a list of Annotation

types). The schema can therefore be viewed as a graph, with the types

acting as nodes, and their fields the edges between the nodes as illustrated

in Figure 1. All schemas have a Query object which acts as a starting

point; this query object has fields that give access to other types, from

which the rest of the graph is accessible.

The task of taking a valid GraphQL query and actually populating it

with data is done by functions called resolvers, which are written by the

developer and, in simple cases such as this, simply need to fetch data from

a database, though any logic is possible here. For example, one can use

additional fields not present in the database, but which are calculated from

them during the execution of the resolver function, or modify the database

values before sending them.

Fields, the edges between object types, can represent a one-to-

one relationship or a many-to-one relationship. For example, a gene

object type might have a many-to-one field ‘annotations’ which points

to the annotation object type, signifying that genes can have multiple

annotations associated. Conversely, the annotation object type might have

a one-to-one field ‘gene‘, signifying that an annotation object will be

associated with one gene object. In the JSON output, this is represented

as a list of objects. A common, slightly more complex pattern, is to have

a specific ‘edge’ object type which represents the list, and which itself

has the many-to-one relationship with the object type in question. So

there might be an ‘AnnotationEdge’ object, which represents a collection

of annotations, and which will have a many-to-one field for the list

of annotations themselves. This allows the edges in the graph to have

properties themselves (‘count’ being a useful and very common example)

that can be requested without needing to request the list of objects itself.

This pattern is not part of the GraphQL specification itself, but is a widely

used pattern when representing large datasets. See the ZincBindDB

schema in the Supplementary Materials for a practical example.

Figure 2 demonstrates an example of a simple bioinformatics dataset,

comprising genes, gene annotations, and gene product structures, and

shows how an API might be built for this using both REST and GraphQL.

In the latter case, a single GraphQL query is sent which asks for a specific

instance of the Gene type and, because the schema defines the relationship

between the three object types, the user can request information about

these related objects in the same query, without the backend developer

needing to anticipate any particular use case.

GraphQL has three fundamental operations. The first of these is the

‘query’, mentioned previously, which obtains data from the server without

modifying anything on the server. The second is the ‘mutation’, a request

for data which (where allowed) also alters something on the server,

similar to REST verbs such as POST, PUT and DELETE. The third is

the ‘subscription’, a long-lived connection between client and server in

which the server can push data back to the client when it is ready, rather

than the client having to request it. This can be used for large data or

where the process of generating the data takes a long time and cannot be

done in a single request/response cycle.

Page 2 of 8Bioinformatics Advances



✐

✐

“GraphQL” — 2021/9/16 — 10:24 — page 3 — #3
✐

✐

✐

✐

✐

✐

GraphQL for Web APIs 3

Query Gene

Annotation

Structure

String

Int

starte
n

d

structures (list)

gene

annotations (list)

gene

description

Float

re
so

lu
ti

o
n

n
am

e

se
q

u
e

n
ce

Query {

gene(id: ID!): Gene
genes: [Gene]

}

Gene {

name: String
sequence: String

structures(resolution: Float): [Structure]
annotations: [Annotation]

}

Structure {

resolution: Float
gene: Gene

}

Annotation {

start: Int
end: Int
description: String

gene: Gene
}

genes (list)

gene

Fig. 1. An illustration of a simple Bioinformatics GraphQL schema and its representation as a graph. On the left, the schema is shown in the standard

GraphQL schema format. Here the four object types are shown, with their name and the fields each object has (along with any arguments those fields

might have in brackets). In this notation, if the field type is enclosed in square brackets, it signifies that the field represents an array (or list) of the

specified type, not a single object. On the right, this same schema is shown in graph form, including the primitive types (those without fields, shaded

in grey). Here the nodes are the types and the edges are the fields that link those object types. The Query object is required in all GraphQL schemas,

and acts as the starting point for all GraphQL query requests.

The advantages of GraphQL are its flexibility, and the power it grants

to the client. With REST and SOAP, the kinds of responses that can

be returned are fixed, finite, inflexible, and chosen by developers in an

attempt to anticipate the needs of the client. The client combines this

small number of possible responses to obtain the required data. However,

the client generally ends up also obtaining data that were not asked for

(for example, only one attribute of an object may have been needed). If the

client is requesting data about different related object types, it has to make

multiple requests to retrieve them. These problems are referred to as over-

fetching and under-fetching respectively, and result from the fundamental

limitation of both REST and SOAP — they force API developers to

try to anticipate the use cases of the API and design for those. Even if

they anticipate correctly, these will still be a small subset of the possible

requirements of the client. In contrast, with GraphQL, the API developer

simply defines the relationships between the different object types and

gives the client the ability to request precisely what it needs. The API

developer does not need to anticipate the needs of the client — the client

requests what it needs, and nothing more.

It should be noted however, that the ‘graph’ in GraphQL refers to the

graph of object types — the data themselves are returned as JSON, a tree-

like structure which is not especially well suited to representing datasets

which are themselves cyclic graphs, such as those from graph databases

like neo4j. There have been recent attempts to define a standard language

for representing these graphs using GraphQL (Hartig and Hidders, 2019).

GraphQL was developed by Facebook in 2012 (Facebook, 2015), in

response to REST’s inability to represent the complex interconnected and

recursive objects used in the social network properly and efficiently. It

was publicly released as a specification in 2015 (Facebook, 2018), and has

seen gradual and sustained adoption. GitHub chose to employ GraphQL

for version 4 of its web API in 2016, alongside its older REST API,

citing its ‘powerful advantages over REST’ (GitHub, 2018). Since then,

Twitter has rebuilt its public API in GraphQL, as have a number of other

prominent technology companies. Just as there was a shift from SOAP to

REST, recent years have seen the beginnings of a move away from REST

to GraphQL. In addition to the reference implementation in JavaScript,

there are libraries for quickly generating GraphQL backends in Python

(graphene (Akbary, 2020)), Perl, Java, C, C++, C#, Julia, and others

(https://graphql.org/code/).

2.1 GraphQL and Bioinformatics

To date however, GraphQL has seen limited use in Bioinformatics

contexts. This is surprising, not only because of the advantages

already outlined here, but also because, in many respects, GraphQL

is particularly well suited to the needs and typical characteristics of

Bioinformatics resources. There are currently just a small number of

examples. gnomAD (Wang et al., 2020), a database of genome sequences

aggregated from multiple sources, has recently implemented a GraphQL

API and the RCSB has provided a GraphQL endpoint since early 2020

in addition to its REST API (https://www.rcsb.org/pages/

webservices). Generally however, REST APIs remain by far the most

common.

Of particular interest for Bioinformatics is the GraphQL subscription

operation. Computationally intensive jobs (asynchronous tasks that

cannot be completed within the time-frame of an HTTP request/response

cycle) are a common feature of bioinformatics (Stockinger et al., 2008).

Web interfaces often use page redirection or AJAX (asynchronous

Page 3 of 8 Bioinformatics Advances



✐

✐

“GraphQL” — 2021/9/16 — 10:24 — page 4 — #4
✐

✐

✐

✐

✐

✐

4 Ireland and Martin.

/genes/

/gene/<ID>

/gene/<ID>/annotations/

/gene/<ID>/structures/

/graphql

/genes/

/gene/12/

/gene/12/annotations

/gene/12/structures?res=2

{

genes {

name

}

gene(id: 12) {

name

annotations {

start end description

}

structures(resolution: 2) {

pdbID resolution

}

} 

}

GENE

id

name

sequence

ANNOTATION

id

start

end

description

geneID

STRUCTURE

id

pdbID

resolution

Datastore Endpoints HTTP Request

Fig. 2. An example of a simple bioinformatics dataset served using REST and GraphQL. Here the underlying dataset is comprised of genes (each with a

name and a sequence), each of which can have zero or more associated annotations and structure files. With REST, there are different endpoints offering

access to different pre-structured datatypes, such as all genes, the annotations for a particular gene, and the structures for a particular gene. To build

up a complete picture of all the annotations and structures for the genes, the client is forced to submit four requests. The API could be restructured

to reduce this, but it would then have this particular use case in mind, and would be ill-suited for some other situation. The GraphQL implementation

by contrast does not try to anticipate the clients’ needs. There is a single endpoint, from which the client can obtain precisely the information it needs

in one request. Note also that in REST the client is forced to download the sequence information for each gene, whether it needs it or not.

JavaScript and XML) while APIs typically require the client to be sent

a job ID of some sort as a response, with which the client must then poll

the server continuously to obtain the status of the job and, when complete,

obtain the results. If the amount of data being requested is large, this is

wasteful of network resources and, depending on the interval between

requests, means there will usually be a delay between the job completing

and the client learning of this and obtaining the output. With GraphQL,

the client can initiate the job using a subscription, and a connection

between server and client is then maintained using a WebSocket rather

than HTTP. No constant back and forth chatter is required as the server

will immediately push the output to the client once ready. This could

greatly simplify the way bioinformatics services are accessed in a web

browser, where APIs for using websockets are already available, though

outside the browser they do require additional libraries that can support

this separate protocol.

The often-complex nature of bioinformatics datasets, particularly their

complex internal relationships, is also well-served by modelling them

as a graph. Any hierarchy and any level of nesting, can be explored

and requested in a single GraphQL request, rather than the multiple

requests to different REST endpoints that would be required otherwise, as

demonstrated in Figure 2. Rather like SOAP, the GraphQL schema makes

GraphQL APIs explorable and self-documenting in a way that REST APIs

are not. This is of considerable importance in a Bioinformatics context,

where entities tend to be numerous and interconnected, and the structure

of the corresponding API that describes those data is not intuitive or

predictable in the absence of documentation. An example is given below

of our own ZincBindDB API, which has ten distinct object types with

fields pointing to each other, and many Bioinformatics resources have

much more complex hierarchies of entities than this. Representing these

relationships as an arbitrarily queryable GraphQL schema rather than a

rigid REST API makes the dissemination of biological data easier.

Thus while GraphQL can offer an improved API experience for web

resources in general, Bioinformatics web resources would be particularly

well served by increased adoption.

2.2 A GraphQL interface to ZincBind

ZincBind, the database of zinc bindinge sites (Ireland and Martin,

2019), comprises ZincBindDB (the continuously-updated database itself,

containing zinc binding sites collected from the Protein Data Bank

and organised into groups and families) and ZincBindPredict (Ireland

and Martin, 2021) (predictive models of zinc binding for structure and

sequence). Recently we replaced ZincBind’s initial REST API with a

GraphQL API, using the Python library Graphene (Akbary, 2020). This

was a straightforward task, as the existing Django database objects

translate well to GraphQL object types — in most cases the GraphQL

types are generated automatically from the database tables using

Graphene’s plugins for mapping Django tables and fields to GraphQL

types and fields respectively. The same plugins also automatically

generate resolvers for populating queries with data using database

lookups. Consequently, these automatically generated types do not need

Page 4 of 8Bioinformatics Advances



✐

✐

“GraphQL” — 2021/9/16 — 10:24 — page 5 — #5
✐

✐

✐

✐

✐

✐

GraphQL for Web APIs 5

ZincSite

Pdb

Residue

Group

Atom

Metal

Chain

Chain

Cluster

Chain

Interaction

Coordinate

Bond

Fig. 3. A graph of the object types in ZincBind, as represented by

GraphQL. Each circle is an object type node, and the arrows are the edges

between them. Here a circle at the end of an edge represents multiple

object types, and an arrow represents a single object type — for example,

one chain has many residues, one residue has many atoms, etc. Such a

complex network of inter-related object types is typical of bioinformatics

resources, and is poorly served by a REST API. Not shown here are the

primitive types, the Query object type which has edges with all object

types, or the Connection object types used to facillitate pagination. The

complete schema is shown in Supplementary File 1.

to have resolvers written for them, unless custom logic is required. This

allows a GraphQL schema to be generated from the database schema,

without having to define the fields and resolver functions manually for

each type.

The ZincBindDB API is available at https://api.zincbind.

net, and is a read-only data access portal for the database, supporting

only queries. The user submits GraphQL queries, for which the different

object types of PDB, ZincSite, Residue, Atom, Chain, etc. are all

accessible, with their relationships defined, such that any combination

of relationships can be explored in a single query. The object types are

related to each other in a reasonably complex network of one-to-many

relations, as shown in Figure 3. Such a network of object types is difficult

to represent using REST, as we had to select what we imagined to be the

most common object pairs and create specific endpoints for representing

those. With GraphQL, no such assumptions need to be made — the user

can create a single request to explore any set of relationships they wish.

(The full schema is available in text form in Supplementary File 1).

We found that the sheer flexibility of GraphQL required certain

minimal precautions be taken with regard to nesting. GraphQL allows

recursive nesting of object types (e.g. requesting all the zinc sites within a

PDB entry, every chain associated with each of those zinc sites, every zinc

site associated with each of those chains, and so on) which, by default,

can increase the number of underlying SQL queries made on the server

exponentially with every layer. This can be ameliorated by imposing a

limit on nesting, or (as is the case in our implementation) using intelligent

caching of database calls to ensure needless duplicate SQL queries are not

made.

ZincBindPredict, our associated zinc binding site prediction tool,

accepts jobs in the form of a GraphQL mutation. The client can

submit a protein sequence using the searchSequence mutation or

a protein structure using the searchStructure mutation, with the

latter using the GraphQL Multipart Request Specification for uploading

the coordinate file (an extension to the GraphQL specification that allows

files to be sent over HTTP requests alongside the query/mutation).

Coordinates can be contained in any filetype supported by the atomium

protein structure Python library (Ireland and Martin, 2020). As with long-

running REST calls, the API will return a job ID, which the client can

then use to submit queries to obtain the status of the job and, when

complete, the list of rejected or predicted residue combinations for a given

binding site family. Given the asynchronous model employed here, using

a subscription rather than a mutation would also have been a valid design,

but we opted for a mutation owing to the relatively small amount of data

being delivered to the client. The use of a mutation avoids the need for

the client to use a websocket library making client implementation more

straightforward.

The flexibility of GraphQL responses is particularly useful here. In

predicting zinc binding sites, there tends to be a very large number

of rejected residue combinations, and a small number of combinations

which are predicted to be binding sites. Having options to obtain the

list of rejected sites, not to include these in the response, or just to

request their count, all without having to define separate endpoints as

one would with REST, eases the burden on the network. For example,

the ZincBindWeb frontend to both ZincBindDB and ZincBindPredict

consumes the GraphQL APIs and does not request the rejected sites.

Practical examples of ZincBindDB API queries are given in Figure 4,

which illustrates the general principles of GraphQL queries, as well as the

specifics of how this API is structured. Figures 4a and 4b illustrate how

one would obtain multiple instances of an object (in this case PDB entry

objects with resolution < 2.0Å) and a single object (a PDB object with a

specific identifier). Both pdbs and pdb are fields of the top-level Query

object, with the latter representing a single PDB object, specified with an

id argument, and the former representing a list of PDB objects which can

be filtered by property. Figures 4c and 4d demonstrate how queries can be

nested, requesting information about three interconnected objects (PDB,

ZincSite and Residue). In the case of Figure 4d, this is information

that would be likely to require multiple requests with REST.

The job system for the ZincBindPredict API is illustrated in Figure 5.

Figure 5a shows how a sequence prediction job is submitted to

ZincBindPredict using a GraphQL mutation — these are similar to queries

except that their resolver functions will have side effects of some kind. In

this case, that side effect is to start a job running on the server. Structure

prediction jobs work in much the same way, except that a file is uploaded

using the GraphQL Multipart Request specification instead. Figure 5b

shows a more straightforward query using the previously obtained job ID

to fetch information about the job — crucially, only the information the

client needs. As described above, this could also be implemented using a

GraphQL subscription.

3 Conclusions

Bioinformatics resources have followed, and often led, trends in the

computing world generally in the consolidation of web services around

SOAP and REST, with the latter coming to predominate. The recent

development of an alternative mode of supplying web services, the

graph-oriented GraphQL specification, offers unique advantages to

bioinformatics web services such as a subscription model for updating

the result of complex operations, and response-size management through

specifying particular fields and relations to return. Here we have also

Page 5 of 8 Bioinformatics Advances



✐

✐

“GraphQL” — 2021/9/16 — 10:24 — page 6 — #6
✐

✐

✐

✐

✐

✐

6 Ireland and Martin.

a)

{

pdbs(resolution__lt: 2, sort: "title") {
edges {

node {
id
title

resolution
organism

}
}

}

}

{

"data": {
"pdbs": {

"edges": [
{
"node": {

"id": "3W7Y",
"title": "0.92A structure of 2Zn human insulin at 100K",

"resolution": 0.7,
"organism": "Homo sapiens"

}

},
{

"node": {
"id": "4EGU",
"title": "0.95A Resolution Structure of a Histidine Triad",

"resolution": 0.95,
"organism": "Clostridium difficile"

}
},
...

b)

{
pdb(id: "3W7Y") {
title

rvalue

depositionDate
}

}

{

"data": {
"pdb": {

"title": "0.92A structure of 2Zn human insulin at 100K",
"rvalue": 0.16105,
"depositionDate": "2013-03-11"

}
}

}

c)

{
pdb(id: "3W7Y") {

title

rvalue
depositionDate
zincsites {
count

edges {

node {
id
family

}

}

}
}

}

{

"data": {
"pdb": {

"title": "0.92A structure of 2Zn human insulin at 100K",
"rvalue": 0.16105,
"depositionDate": "2013-03-11",

"zincsites": {
"count": 1,

"edges": [
{
"node": {

"id": "3W7Y-1",
"family": "H3"

}
}

]

}
}

}
}

d)

{
pdb(id: "3W7Y") {
title

rvalue
depositionDate
zincsites {
count
edges {

node {
id
family
residues(primary: true) {
edges {

node {
atomiumId
name

}
}

}
}

}
}

}

}

{

"data": {
"pdb": {

"title": "0.92A structure of 2Zn human insulin at 100K",
"rvalue": 0.16105,
"depositionDate": "2013-03-11",

"zincsites": {
"count": 1,

"edges": [
{
"node": {

"id": "3W7Y-1",
"family": "H3",

"residues": {
"edges": [
{

"node": {
"atomiumId": "B.10",

"name": "HIS"
}

},

{
"node": {

"atomiumId": "B.10",
"name": "HIS"

}

},
{

"node": {
"atomiumId": "B.10",
"name": "HIS"

}
},

...

Fig. 4. a) A query requesting a list of PDB objects with a resolution better than 2, sorted by title. These qualifiers are given as arguments to the pdbs

field of the root query object. Note that while it is possible to return lists as direct children of the parent object (Query in this case), here the common

convention of having pdbs be a connection object containing meta-information about the list (such as count), which in turn has a list of edge objects

with pagination cursors, which each map to a single PDB object. This model, though more complex for a beginner, is a common way of representing lists

in web applications. Note also that the structure of the JSON response matches the structure of the query. b) A query requesting a single PDB object,

by an ID given as an argument. Here a different subset of fields is requested, which in this case are all primitive types. While these examples all use

this PDB object, other objects in the schema can also be requested in this way — see Supplementary File 1 for the full schema. The rvalue here is a

‘nullable’ field, in that it can return null in some cases. c) A query for the same PDB object, but here requesting all the zinc binding sites within that

PDB — there is one in this case. In this case the fields id and family are requested for each, though they also have other fields. d) The same query, but

this time requesting all primary residues for every binding site (rather than all residues, which would include second shell residues). GraphQL queries

can be nested indefinitely, though care should be taken when implementing resolvers such that recursive queries do not create large numbers of database

queries.

Page 6 of 8Bioinformatics Advances



✐

✐

“GraphQL” — 2021/9/16 — 10:24 — page 7 — #7
✐

✐

✐

✐

✐

✐

GraphQL for Web APIs 7

a)

mutation {
searchSequence(sequence: "INVGHSFHVNFEDNDNRSVL...") {
jobId

}
}

{

"data": {
"searchSequence": {

"jobId": "1601810985030"
}

}

}

b)

{
sequenceJob(id: "1601810985030") {
predictedSites {

residues probability family
}

}
}

{

"data": {
"sequenceJob": {

"predictedSites": [
{
"residues": 

"maedldelldeveskfctpdllrrgmveqpkgcgggthssdrnqakaketlrstetfkkeddldslineile
epnldkkpsklkskssgntsvrasieglgkscspvylggssipcgigtniswracdhlrciacdflvvsyddy

mwdkscdylffrnnmpefhklkaklikkkgtrayaCqCswrtieevtdlqtdhqlrwvCgkh",
"probability": 0.945,
"family": "C3"

},
{

"residues": 
"maedldelldeveskfctpdllrrgmveqpkgcgggthssdrnqakaketlrstetfkkeddldslineile
epnldkkpsklkskssgntsvrasieglgkscspvylggssipcgigtniswracdhlrciacdflvvsyddy

mwdkscdylffrnnmpefhklkaklikkkgtrayaCqCswrtieevtdlqtdhqlrwvCgkH",
"probability": 0.912,

"family": "C3H1"
},
{

"residues": 
"maedldelldeveskfctpdllrrgmveqpkgcgggthssdrnqakaketlrstetfkkeddldslineile

epnldkkpsklkskssgntsvrasieglgkscspvylggssipcgigtniswracdhlrciacdflvvsyddy
mwdkscdylffrnnmpefhklkaklikkkgtrayaCqcswrtieevtdlqtdhqlrwvCgkH",

"probability": 0.9,

"family": "C2H1"
},

...

Fig. 5. a) A mutation from the ZincBindPredict API. Mutations begin with the mutation identifier to indicate that the top level Mutation object is what

the searchSequence mutation belongs to — queries can begin with query too but this is optional. Here the sequence is being given as an argument,

and the ID of the job is returned. b) A query for the results of a ZincBindPredict job. The ID of the job is supplied, and this particular query requests

the status of the job, as well the predicted sites. The rejected sites can also be requested, but since they are quite numerous, typically the flexibility of

GraphQL in allowing one to choose to omit them is useful in conserving network resources.

shown two concrete examples of such an implementation for both

traditional data dissemination, and for running time-consuming jobs for

predicting zinc binding. Changing from REST to GraphQL in ZincBind

has made the ZincBind web site (which consumes its own API) much

easier to develop and will make future enhancements considerably easier.

Funding

This work was supported by a Wellcome Trust PhD Studentship to SMI

(reference: 203756/Z/16/A).

Conflict of interest: none declared.

References

Akbary, S. (2020). Graphene python. https://docs.

graphene-python.org/projects/django/en/latest/.

Deshpande, N. (2005). The RCSB protein data bank: a redesigned query

system and relational database based on the mmCIF schema. Nucleic

Acids Research, 33(Database issue), D233–D237.

Facebook (2015). GraphQL: A data query language. https:

//engineering.fb.com/2015/09/14/core-data/

graphql-a-data-query-language/.

Facebook (2018). GraphQL specification. https://spec.

graphql.org/June2018/.

Fielding, R. T. (2000). Architectural styles and the design of network-

based software architectures.

GitHub (2018). About the graphQL API. https://docs.github.

com/en/free-pro-team@latest/graphql/overview/

about-the-graphql-api.

Hartig, O. and Hidders, J. (2019). Defining schemas for property graphs

by using the GraphQL schema definition language. In Proceedings

of the 2nd Joint International Workshop on Graph Data Management

Experiences & Systems (GRADES) and Network Data Analytics (NDA)

— GRADES-NDA’19. ACM Press.

Ireland, S. M. and Martin, A. C. R. (2019). ZincBind—the database of

zinc binding sites. Database, 2019, baz006.

Ireland, S. M. and Martin, A. C. R. (2020). atomium—a python structure

parser. Bioinformatics, 36(9), 2750–2754.

Ireland, S. M. and Martin, A. C. R. (2021). Zincbindpredict—prediction

of zinc binding sites in proteins. Molecules, 26(4), 966.

Lopez, R., Cowley, A., Li, W., and McWilliam, H. (2014). Using EMBL-

EBI services via web interface and programmatically via web services.

Current Protocols in Bioinformatics, 48(1).

Neerincx, P. B. T. (2005). Evolution of web services in bioinformatics.

Briefings in Bioinformatics, 6(2), 178–188.

Pillai, S., Silventoinen, V., Kallio, K., Senger, M., Sobhany, S., Tate,

J., Velankar, S., Golovin, A., Henrick, K., Rice, P., Stoehr, P., and

Lopez, R. (2005). SOAP-based services provided by the european

bioinformatics institute. Nucleic Acids Research, 33(Web Server),

W25–W28.

Rose, P. W., Beran, B., Bi, C., Bluhm, W. F., Dimitropoulos, D., Goodsell,

D. S., Prlic, A., Quesada, M., Quinn, G. B., Westbrook, J. D., Young,

J., Yukich, B., Zardecki, C., Berman, H. M., and Bourne, P. E. (2010).

The RCSB protein data bank: redesigned web site and web services.

Nucleic Acids Research, 39(Database), D392–D401.

Stein, L. (2002). Creating a bioinformatics nation. Nature, 417(6885),

119–120.

Stockinger, H., Attwood, T., Chohan, S. N., Cote, R., Cudre-Mauroux,

P., Falquet, L., Fernandes, P., Finn, R. D., Hupponen, T., Korpelainen,

Page 7 of 8 Bioinformatics Advances



✐

✐

“GraphQL” — 2021/9/16 — 10:24 — page 8 — #8
✐

✐

✐

✐

✐

✐

8 Ireland and Martin.

E., Labarga, A., Laugraud, A., Lima, T., Pafilis, E., Pagni, M., Pettifer,

S., Phan, I., and Rahman, N. (2008). Experience using web services

for biological sequence analysis. Briefings in Bioinformatics, 9(6),

493–505.

Wang, Q., , Pierce-Hoffman, E., Cummings, B. B., Alföldi, J., Francioli,

L. C., Gauthier, L. D., Hill, A. J., O’Donnell-Luria, A. H., Karczewski,

K. J., and and, D. G. M. (2020). Landscape of multi-nucleotide

variants in 125, 748 human exomes and 15, 708 genomes. Nature

Communications, 11(1).

Yates, A., Beal, K., Keenan, S., McLaren, W., Pignatelli, M., Ritchie, G.

R. S., Ruffier, M., Taylor, K., Vullo, A., and Flicek, P. (2014). The

ensembl REST API: Ensembl data for any language. Bioinformatics,

31(1), 143–145.

Page 8 of 8Bioinformatics Advances


