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Abstract:1

Background: Zinc binding proteins make up a significant proportion of the proteomes of most2

organisms and, within those proteins, zinc performs rôles in catalysis and structure stabilisation.3

Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the4

mechanism by which it carries out those functions. Computational means of doing so are faster5

than spectroscopic means, allowing for searching at much greater speeds and scales, and thereby6

guiding complimentary experimental approaches. Typically computational models of zinc binding7

predict zinc binding for individual residues rather than as a single binding site, and typically do not8

distinguish between different classes of binding site — missing crucial properties indicative of zinc9

binding.10

Methods: Previously we created ZincBindDB, a continuously updated database of known zinc11

binding sites, categorised by family (the set of liganding residues). Here we use this dataset to12

create ZincBindPredict, a set of machine learning methods to predict the most common zinc binding13

site families for both structure and sequence.14

Results: The models all achieve an MCC≥0.88, recall ≥0.93 and precision ≥0.91 for the structural15

models (mean MCC=0.97), while the sequence models have MCC≥0.64, recall ≥0.80 and precision16

≥0.83 (mean MCC=0.87), with the models for binding sites containing four liganding residues17

performing much better than this.18

Conclusions: The predictors are available online via a web interface and a GraphQL API at19

https://zincbind.bioinf.org.uk/predict/20
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0. Introduction22

Many proteins require a cofactor to function correctly, and present a region of their surface23

which has an affinity for that cofactor. Of the metallic cofactors, zinc is one of the most common.24

Approximately 10% of proteins require zinc to function [1] and so have at least one zinc binding site,25

making it the second-most prevalent metal in biological systems, after iron. In proteins, it typically26

performs either a rôle in catalysis (despite, or more likely because of, its lack of variable redox states),27

or in stabilising a region of the protein [2].28

While there are many proteins which are known to bind zinc because the full three-dimensional29

structure of the protein has been solved in the presence of zinc, leading to the identification of a zinc30

binding site, it would be useful to be able to determine whether a protein binds zinc without needing31

to do this. There are experimental means of doing so, but computational approaches offer a more32

convenient means of performing initial searches at greater scale and speed. These would take either33

the protein’s sequence, or a structure of some kind (either a hypothetical model, an experimental34
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structure generated in the absence of zinc, or an experimental structure solved at low resolution where35

a zinc cannot be identified, perhaps because of the presence of heavy metals used for isomorphous36

replacement) and try to predict whether the protein binds zinc, and if so where.37

There have been numerous studies in this area in the past. Early attempts at predicting zinc38

binding from sequence were largely done manually, such as by identifying the ‘C. . . C. . . H. . . H’39

(cys-cys-his-his) motif as being a characteristic indicator of zinc binding [3,4], or by identifying40

approximate spacing patterns typical of catalytic binding sites — the so-called ‘short and long41

spacers’ [5]. As the number of available sequences grew and this manual approach became infeasible,42

sequence alignment with known zinc binding proteins became a useful tool for discovering new43

zinc binding sites [6,7]. Resources such as PROSITE [8] provide a refinement of manual motif44

searching by providing motifs for zinc binding in a number of homologous families. At the time45

of writing, there are 70 motifs for zinc fingers, one for zinc-containing alcohol dehydrogenases, two46

for copper/zinc superoxide dismutase signature, two for zinc carboxypeptidases and one for the zinc47

import ATP-binding protein znuC family.48

By the early 2000s, machine learning became the typical approach for identifying possible metal49

binding sites — a collection of algorithms which are trained on a dataset of known zinc binding sites50

in order to identify for themselves what the characteristic properties of zinc binding are, rather than51

having a human manually identify what those properties might be. Typical algorithms used in the52

past include Support Vector Machines (SVMs) [9–11] and Random Forests [12,13]. In recent years,53

deep learning, which relies on multi-layer neural networks to represent the inputs at multiple layers54

of abstraction, has been used more widely [14,15].55

Predicting zinc binding from structure has proceeded in a similar fashion, although the nature56

of structural data means that it has taken longer for there to be enough data to justify the use of57

machine learning techniques. Early efforts relied on human-observed characteristics of zinc binding58

sites, such as the ‘hydrophobicity contrast function’, which used the fact that metal binding sites59

tend to be composed of an inner shell of hydrophilic atoms such as nitrogen and sulphur, which was60

in turn surrounded by a stabilising shell of hydrophobic atoms [16,17]. As the number of available61

structures grew, geometric patterns were also observed — both by humans and by machine learning62

algorithms [17–20]. As with the sequence prediction models, the complexity of the algorithms, and of63

the zinc binding site features, has grown with the increase in available training data.64

One recurring feature, particularly in the sequence-based predictive models, is the focus on zinc65

binding residues rather than zinc binding sites. In most cases, the entity examined by the predictive66

model is the individual residue, often with a surrounding linear sequence ‘window’ of residues. The67

model then assigns a probability as to whether that residue is a zinc binding residue. As outlined68

above, this approach has had a measure of success, but it is a somewhat artificial concept. There is,69

after all, no such thing as a zinc-binding residue in isolation. The individual residues of a high-affinity70

zinc binding site of the kind considered here are only zinc-binding when the other residues are71

present, and conversely many non-zinc-binding residues could bind zinc if other residues were72

present in the correct locations. It is particular combinations of residues, not individual residues, which73

are zinc binding — an important fact not usually considered in research of this kind.74

Another commonality is the treatment of zinc binding sites as a single category, and the75

presumption of properties that are common to them all regardless of the residues of which they are76

comprised. This may well be sufficient — particularly as there are essentially only four residues that77

make up the vast majority of zinc binding sites — but it is possible that properties used for prediction78

have much tighter distributions within particular sub-categories of zinc binding sites.79

Previously, we created ZincBindDB [21], a database of zinc binding sites. This resource80

continuously collates all zinc atoms found in the Protein Data Bank [22], identifies their binding sites81

(where appropriate), and stores them in a centralised database along with useful properties such as82

their protein sequence and how different sites cluster together. Sites are classified into ‘families’, not83

based on homology, but based on the residue composition of the site — the C4 family contains binding84
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Figure 1. The graphical interface for the predictors is shown on the left. The user can enter a protein
sequence, or upload a structure file. In both cases the user has the option of limiting the zinc binding
families for which the predictor will search which can save a considerable amount of time. Results
of the prediction are shown on the right with the residues predicted to form a binding site shown in
bold. This interface consumes the ZincBindPredict GraphQL API, which is also publicly available.

sites with four cysteines, H3 those with three histidines, and so on. These data are available over the85

web via a web ‘application programming interface’ (API), and using a web interface which provides86

three dimensional graphical representations of all the binding sites. As of July 2020, there were 35,81187

zinc binding sites in ZincBind, originating from 16,635 PDB structures.88

We have now used this single, definitive dataset of zinc binding sites to train predictive models89

of zinc binding. Here we present models which are trained to detect entire zinc binding sites, rather90

than just zinc binding residues, and each predictive model is trained to detect a particular family of91

zinc binding sites. There are distinct models for sequence and for structure, and predictions can be92

made via the ZincBind website, or via the ZincBindPredict GraphQL API.93

1. Results and Discussion94

1.1. Deployment95

The trained predictive models are available via a simple web interface at96

https://zincbind.bioinf.org.uk/predict/ (see Figure 1). This takes a sequence or an uploaded97

PDB file and scans it against each of the models reporting whether any of them suggest a zinc98

binding site. Alternatively the ZincBindPredict GraphQL API may be accessed directly. A GraphQL99

request can be sent with either a protein sequence or protein structure, and a job ID will be returned.100

This can then be polled for results as the protein or sequence is searched using each model in turn,101

with the identified binding sites returned as a list with the associated probability.102

1.2. Training103

For all twenty datasets (sequence and structure sets each with 10 different combinations104

of liganding residues), the ratio of positive samples (actual binding sites) to negative samples105

(combinations of residues matching a zinc-binding site family, but which are known not to bind zinc)106

was approximately 1:1. The dataset sizes ranged from 804 to 15,332 samples for the sequence datasets,107

and from 407 to 3232 samples from the structure datasets.108

https://zincbind.bioinf.org.uk/predict/
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Table 1. Results for structure models, sorted by Matthews Correlation Coefficient (MCC). The
two-residue families’ performance was lower than the others as there is essentially just the
measurements between two centres to perform the classification, but still scored relatively highly.
Four-residue sites in particular were found to have very high performance.

Family Dataset Size Recall Precision F1 MCC
C2H2 702 1.00 1.00 1.00 1.00
C4 2825 1.00 1.00 1.00 1.00
C3H1 3232 1.00 0.99 1.00 0.99
E1H2 1287 1.00 0.99 1.00 0.99
C2H1 506 1.00 0.98 0.99 0.98
H3 3078 1.00 0.98 0.99 0.98
D1H2 982 1.00 0.98 0.99 0.98
C3 407 1.00 0.98 0.99 0.98
D1H1 522 1.00 0.91 0.95 0.91
E1H1 416 0.93 0.95 0.94 0.88
Mean 0.99 0.98 0.99 0.97

Table 2. Results for sequence models, sorted by Matthews Correlation Coefficient (MCC).

Family Dataset Size Recall Precision F1 MCC
C4 15332 1.00 0.98 0.99 0.98
H3 4524 0.98 0.99 0.98 0.97
C2H2 3715 0.97 0.99 0.98 0.95
C3H1 9158 0.98 0.96 0.97 0.94
E1H2 2574 0.95 0.97 0.96 0.92
D1H2 2406 0.94 0.95 0.94 0.90
C2H1 1926 0.93 0.95 0.94 0.88
C3 2591 0.95 0.89 0.92 0.84
D1H1 804 0.80 0.93 0.86 0.74
E1H1 812 0.81 0.83 0.82 0.61
Mean 0.93 0.94 0.94 0.87

1.3. Models109

Model effectiveness was measured using recall, precision, F1 score, and Matthews Correlation110

Coefficient (MCC) for all twenty models (10 structural and 10 sequence).111

For the structural models, the lowest MCC score was 0.88 (for the E1H1 model). This, and the112

D1H1 model (MCC=0.91), relies on the geometry between just two residues, which makes creating a113

distinct separation between the two classes somewhat more difficult — though their performance is114

still very close behind that of the three- and four-residue family models. The structure models had an115

average MCC of 0.97 (see Table 1).116

The sequence models also had high scores, though were more variable. The four residue sites117

in particular had highly conserved patterns of residue spacing and flanking hydrophobicity despite118

being from several homologous families. The average MCC for the sequence models was 0.87, with119

the lowest MCC being 0.61 for the E1H1 model and 0.74 for the D1H1 model — again the two120

two-residue models were somewhat behind the MCC of 0.84 for the C3 model (see Table 2).121

While the training is affected by dataset size, this does not appear to be a significant limiting122

factor for most of the models. Figure 2 shows the model performance (as MCC) for the sequence123

and structure models. The performance of the sequence models falls off as the training set size falls124

below ∼4000 while the performance of the structural models falls off below around 1000 data points.125

The lowest three performing structural models were also the lowest three in dataset size (C3, E1H1,126

D1H1), but two of these have only two residues so, as discussed above, the performance might not be127
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Figure 2. Model Performance (MCC) as a function of training set size. Below ∼4,000 rows,
performance declines sharply, though above this threshold there ceases to be a strong correlation
between performance and training set size.
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Figure 3. Learning curves for all 20 models (10 structural and 10 sequence). Each model was trained
on increasing subsets of the overall training set using five-fold cross-validation. Sequence models
improved with increasing dataset size whereas, above a low threshold, structure models did not
improve with more data.
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Figure 4. MCC as a function of dataset size for 160 different sequence-based models. For each of the
ten zinc-binding site families, 9 classifiers were trained using 20–100% of the original, unclustered data
(10×9 models); additional classifiers were trained using sequences clustered at 40–100% sequence
identity (10×7 models). The performance (MCC) is plotted against the size of the training dataset.
The two modes of dataset reduction are shown by different shades and it can be seen that the curves
are not significantly different. This suggests that homology between training and test sets does not
influence a model’s performance; rather performance is a function of training dataset size.

expected to be very good. Learning curves (Figure 3) using fractions of the datasets show a correlation128

with dataset size for the sequence models, but above around 1000 sequences, the structure models do129

not improve with larger datasets.130

The level of abstraction used to describe both sequences and structures (see Methods, Table 5)131

made it unlikely that any homology between data in the training and testing sets would artificially132

improve the performance. The features are largely calculated from residues around the binding133

residues, rather than the sequence in which they occur. Nonetheless, we confirmed that this was134

true.135

Different sequence identity thresholds were used for clustering with CD-HIT and, where136

possible, a dataset of the same size was selected at random from each set of resulting clusters. No137

significant effect on performance was seen. When clustering at 40% sequence identity, there was138

slightly lower performance (see Supplementary file clustering.txt), but clustering at this level139

did result in much smaller datasets. As indicated previously, this is a major determinant of the140

performance of the sequence models.141

In order to identify whether this lowered performance was because the models performed worse142

without the possibility of homologous sequences between the training and test sets, or whether it143

was a result of the smaller training set, for each zinc-binding site family a classifier was trained on144

20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of the original, unclustered data, and additional145
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Table 3. Predictive ability of BLAST to indentify zinc binding sites in protein sequences using
homology alone.

Family Dataset Size Recall Precision F1 MCC
C2H2 3960 0.99 0.95 0.97 0.94
C3H1 9710 0.29 0.87 0.44 0.33
C2H1 2154 0.24 0.88 0.37 0.30
D1H1 818 0.05 0.80 0.09 0.11
C3 2868 0.13 0.61 0.21 0.07
E1H1 828 0.06 0.62 0.11 0.06
D1H2 2470 0.03 0.53 0.06 0.01
H3 5058 0.01 0.19 0.02 -0.10
E1H2 2648 0.02 0.33 0.04 -0.06
Mean 0.18 0.58 0.23 0.17

classifiers were trained on data with sequences clustered at 40%, 50%, 60%, 70%, 80%, 90% sequence146

identity and with no clustering. The performance of the models was then plotted against the resulting147

dataset sizes as shown in Figure 4. This demonstrates that it is dataset size that determines model148

performance, regardless of any similarity of the sequences between the training and testing datasets.149

For reference, the sequence models were compared with using BLAST for predicting150

zinc-binding sites. For each zinc-binding site family, a BLAST database was created using 80% of151

the available zinc-binding sequences, and BLAST’s ability to identify zinc binding sites from the152

remaining 20% was compared against an equivalently sized negative set. Results are shown in Table 3.153

With the exception of C2H2, using BLAST to find zinc binding based on homology performs much154

worse than the models presented here. Even in the case of C2H2, which seems to have much more155

similar sequences in its dataset, the ZincBindPredict model still narrowly outperforms BLAST.156

The performace scores here compare favorably with recent comparable predictive models based157

on structure and sequence — most notably the ‘SVM and Sample-weighted Probabilistic Neural158

Network’ (MCC=0.80) [11], the ‘meta-zinc predictor’ (MCC=0.79) [23] and ZincExplorer (MCC=0.78)159

[24].160

However the models presented here are not intended to be general purpose zinc binding161

predictors that detect common properties of all zinc binding sites — they are zinc-binding site162

family-specific predictors based on the principle that common, specific types of zinc binding site163

have more identifiable, consistent properties than do zinc binding sites in general. As a result, they164

will not readily detect binding sites of uncommon zinc-binding families. This abstract predictiveness165

has been deliberately discarded to create highly effective models for specific, common families of166

zinc binding sites. It is also noteworthy that the binding site itself is a useful unit of prediction using167

this methodology — even for sequences — rather than individual binding residues. The models are168

therefore identifying something biologically real (a zinc binding site) rather than something which169

does not actually exist in isolation (a single zinc binding residue), but which is a useful heuristic in170

some circumstances.171

A demonstration of this can be seen by applying the sequence models to bacterial genomes to172

measure the proportion of typical genomes that the models predict to be zinc binding, as shown for173

a range of bacterial genomes in Table 4. For most genomes, fewer than 10% of proteins are flagged as174

zinc binding, with the average for the genomes examined being 8.46%. Given that the zinc-binding175

families for which predictors have been generated represent 67.0% of binding sites in ZincBindDB176

(the others being unusual sites), this would imply a ‘true’ predicted proportion of 12.6% which is a177

little higher than the widely cited figure of 10%.178
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Table 4. Percentage of protein sequences encoded in the genome predicted to be zinc binding by
ZincBindPredict for an assortment of bacterial genomes. Genomes were acquired from ensembl [25] in
the form of translated polypeptide sequences, with a sequence labelled as zinc binding if any of the ten
models finds at least one zinc binding site for that sequence/family combination. See Supplementary
file genomes.zip for the full results.

Species Percentage of Genome
Predicted Zinc Binding

Campylobacter jejuni 6.4%
Clostridioides difficile 5.8%
Enterococcus faecalis 7.5%
Listeria monocytogenes 7.9%
Mycobacterium tuberculosis 11.3%
Salmonella enterica 11.1%
Shigella flexneri 10.1%
Streptococcus pneumoniae 7.6%

Table 5. Details of how features are calculated for residue combinations in structure and sequence
models. Hydrophobicity of sequence residues is defined using Wimley and White’s scale [26], charge
is the count of charged residues (aspartate, glutamate, arginine, histidine and lysine).

Model type Feature
Sequence

Inter-residue distance (one per gap)
Average hydrophobicity around residues (window 1)
Average hydrophobicity around residues (window 3)
Average hydrophobicity around residues (window 5)
Average number of charges around residues (window 1)
Average number of charges around residues (window 3)
Average number of charges around residues (window 5)

Structure
Mean Inter-Cα distance
Maximum Inter-Cα distance
Minimum Inter-Cα distance
Inter-Cα distance standard deviation
Mean Inter-Cβ distance
Maximum Inter-Cβ distance
Minimum Inter-Cβ distance
Inter-Cβ distance standard deviation
Hydrophobic contrast (radius 4 Å)
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2. Materials and Methods179

2.1. Dataset creation180

The datasets used to train the predictive models were derived from ZincBindDB.181

For the sequence models, for each family of zinc binding sites, all examples were downloaded182

with the associated sequences, and those with more than one sequence (those sites split across183

multiple chains) were discarded. The resulting sequences were turned into feature vectors which184

contained the number of residues between each pair of binding residues, the average hydrophobicity185

of residues either side of the binding residues, using the features described in Table 5. This created186

a dataset of positive samples. For the negative samples, for each zinc-binding site family a sequence187

was chosen at random from the set of all unique sequences in UniProtKB and a combination of188

residues within that sequence matching the zinc-binding site family (e.g. C2H2), but not a known189

binding site, was selected — this was done repeatedly until a list of negative samples was built up190

equal in size to the positive dataset. The two datasets were combined into a single dataset for each191

zinc-binding site family.192

For the structural data, for each zinc-binding site family, all relevant zinc binding sites belonging193

to a PDB structure with resolution better than 2 Ångströms were downloaded, and grouped by the194

PDB entry to which they belonged. For each PDB entry, the structure was downloaded and parsed195

using the Python library atomium [27], assembled into the correct biological assembly, and then196

each binding site was turned into a feature vector using the features described in Table 5. Since197

the distances used are all the pairwise combinations of the atoms involved, the number of distances198

depends on the number of liganding residues: H3 sites will have three inter Cα distances, C4 sites199

will have six, and so on. The ‘hydrophobicity contrast function’ is calculated at the centre of the Cβ200

atoms with a radius of 4 Ångströms as described in the original paper by Yamashita et al. [16]. This201

algorithm is a measure of how much outer atoms in a sphere are more hydrophobic than inner atoms,202

with higher values previously shown to be associated with centres of metal binding [16,17].203

For example, given a C2H2 site, in a sequence model there would be three inter-residue gaps for204

which the number of residues per gap would be used together with the mean hydrophobicity and205

charge of the 4 interacting residues (i.e. a window of 1), the 4 interacting residues plus one sequence206

neighbour on each side (window of 3) and the 4 interacting residues plus two sequence neighbours207

on each side (window of 5). For the structural model, there would be 6 inter-Cα and 6 inter-Cβ208

distances, from which the mean, maximum, minimum and SD would be calculated as well as the209

hydrophobicity contrast function.210

To generate the negative samples, for each positive sample, a random arrangement of211

residues matching the zinc-binding site family in question was obtained from a randomly chosen,212

non-zinc-binding PDB structure, and a feature vector created from that non-binding combination. In213

this case, only residue combinations that could feasibly form a binding site (those where there are no214

inter-Cα distances greater than 30 Ångströms) were used.215

While the abstraction of sequence and structure suggests that homology is unlikely to influence216

the results (i.e. homologues between training and testing sets is unlikely to over-rate the performance),217

this was tested using datasets with similar sequences removed. CD-HIT [28] was used with sequence218

identity cutoffs ranging from 100% down to 40% (the lowest identity threshold for the standard219

version of CD-HIT).220

2.2. Predictive model training221

The Random Forest algorithm [29] was used to train the predictive model for each of the 20222

datasets (a dataset of sequence features and a dataset of structural features for each of the ten zinc223

binding site families), which provided superior results to K-Nearest Neighbours, and vastly superior224

results to Support Vector Machines even when the dataset was balanced. Random Forests apply the225
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bagging concept (where multiple models are trained on random sub-samples of the data to avoid226

over-fitting to the training data) to decision trees (classification algorithms which divide the input227

space into the categories based on sequential binary splits).228

The hyper-parameters for each model were selected separately using 5-fold cross validation of229

the training set. The hyper-parameters explored were the impurity measure (gini vs. entropy — the230

algorithm used to split individual trees at each node), the maximum depth that the component trees231

could have (4, 6, 8 or no maximum), the number of trees in the forest (10, 100 or 1000), and the232

means of determining the best number of features at each split (either the square root of the number233

of features, or the log2 of the number of features). Once optimal hyper-parameters were identified234

(determined by which combination produced the best F1 score in the cross-validation), the models235

were trained with those hyper-parameters using the entire training dataset.236

For the trained model, the metrics recall (how effective at finding true binding sites the models237

are), precision (how effective at ignoring non-binding sites they are), the F1 score (the harmonic mean238

of recall and precision) and Matthews Correlation Coefficient (another summary of the true positives,239

true negatives, false positives and false negatives generally considered the best overall metric [30])240

were calculated using the separate test datasets (the test-train split being 20:80). The accuracy metric241

was not used as it is not relevant for unbalanced datasets. Training was performed using the Python242

scikit-learn library [31].243

For performance comparison, homology searching was performed using the NCBI BLAST244

program [32] using an expectation value threshold of 0.1.245

3. Conclusions246

Zinc binding sites can be divided into distinct families based on the residues of which they are247

comprised. These zinc-binding site families follow a power law distribution, with a small number of248

families being highly represented. By training models for individual zinc-binding site families rather249

than for zinc binding sites in general, very high recall and precision levels can be achieved. It is worth250

noting that a zinc-binding site family is a completely different concept from a homologous family as251

it is the result of convergent evolution potentially spanning many different homologous families. The252

high performance suggests that, for both sequence and structure, zinc binding properties are more253

tightly distributed within zinc binding site families than for zinc binding sites generally. The resulting254

predictor outperforms other general zinc binding predictors.255
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