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Abstract

The packing of VH and VL domains in antibodies can vary, influenc-
ing the topography of the antigen combining site. However, until recently,
this has largely been ignored in modelling antibody structure. We present
an analysis of the degree of variability observed in known structures to-
gether with a machine-learning approach to predicting the packing angle.
A neural network was trained on sets of interface residues and a genetic
algorithm designed to perform ‘feature selection’ to define which sets of
interface residues could be used most successfully to perform the predic-
tion. While this training procedure was very computationally intensive,
prediction is performed in a matter of seconds. Thus, not only do we pro-
vide a rapid method for predicting the packing angle, but also we define a
set of residues that may be important in antibody humanization in order
to obtain the correct binding site topography.

Keywords: Antibody modelling / Antibody structure / Feature selec-
tion / Humanization / Machine learning

1 Introduction

The variability of antibodies is encoded in the variable fragment (or Fv region)
which consists of two protein domains (VH and VL) from the heavy and light
chains respectively. The VH/VL interface, which influences the stability of the
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Fv region, has been shown to affect the binding kinetics of a peptide (Chatellier
et al., 1996). The framework region at the VH/VL interface consists of two β-
sheets (Poljak et al., 1973), the structures of which are conserved across Fv,
Fab and light chain dimers (Chothia et al., 1985a; Novotný and Haber, 1985).
Packing of the VH and VL domains was analyzed in detail by Chothia et al.
(1985b). They recognized that VH/VL packing involved a ‘three-layer packing’
with primarily aromatic sidechains being involved in the interface. However,
this analysis was based on just three antibody structures, a dataset too small
to analyze variability in the packing angle. They simply stated that the angle
is ∼ −50o, although they did not state how this value was calculated.

The contribution of residues in the framework regions to interactions with the
antigen remains poorly understood. It has been demonstrated that modification
of residues relatively distant from the antigen combining site of the antibody
can have a significant effect on the binding affinity for the antigen (Chatellier et
al., 1996; Roguska et al., 1996; Adair et al., 1999). For example, Adair and co-
workers have demonstrated that modification of residue H23 could significantly
affect binding of antibody and antigen (Adair et al., 1999).

Earlier work on antibody modelling has ignored variation in VH/VL packing
(Martin et al., 1989; Martin et al., 1991; Whitelegg and Rees, 2000) though very
recent work has started to consider this as an important factor (Sivasubramanian
et al., 2009; Sircar et al., 2009; Narayanan et al., 2009). However, the work that
has been performed has not included a thorough analysis of the distribution
of packing angles and predictions of the interaction have used computationally
intensive energy calculations.

Here we present an analysis of the distribution of the VH/VL packing angle
and a method to predict the interface angle using machine learning. The trained
machine learning method is able to provide a very rapid prediction of the packing
angle. Knowing the packing angle prior to modelling the variable region light
and heavy chain may help in choosing more appropriate template structures
upon which models may be based.

The process of humanization involves grafting of murine CDRs onto hu-
man framework regions (Jones et al., 1986). Further modification of framework
residues may be required to restore the binding affinity of the mouse antibody
(Riechmann et al., 1988). The Adair patent (Adair et al., 1999) includes VH/VL

interface residues as one of the classes of residues which may need to match
their murine counterparts in order to preserve the topography of the paratope.
However, guidance on precisely which residues are likely to have the greatest
influence is limited.

Thus this work has two main applications: (i) in antibody modelling in or-
der to predict the correct packing angle and (ii) to identify the key interface
residues which are important in determining the packing angle in order to im-
prove antibody humanization.

2 Materials and Methods

In summary, we build a data set of antibody Fv regions and analyzed the dis-
tribution of VH/VL packing angles. We then used artificial neural networks to
predict the packing angle from the interface residues and performed feature se-
lection using genetic algorithms to select the most informative sets of interface
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residues.

2.1 Preparation of the dataset

A list of Fv and Fab structures was extracted from the SACS XML file (Allcorn
and Martin, 2002). This yielded a set of 561 antibody structures including 6
anti-idiotype antibodies (PDB Codes: 1cic, 1dvf, 1iai, 1pg7, 1qfw, and 2dtg)
which each consist of two interacting antibodies, and thus were split into two
files. The final dataset consisted of 567 antibody structures. This set comprised
314 structures for which the sequences of the light chain and heavy chain were
distinct. Conformational changes in the antibody CDRs upon binding with
the antigen have been observed in several studies (Colman et al., 1987; Bhat
et al., 1990; Herron et al., 1991; Rini et al., 1992; Wilson and Stanfield, 1994;
Mylvaganam et al., 1998). Redundancy was retained in the dataset to allow for
variability in a given structure. Thus identical interface residues may result in
different packing angles and it is important that we allow for this. Structural
fitting of antibodies was performed using ProFit (http://www.bioinf.org.uk/
software/profit/) which implements the McLachlan algorithm (McLachlan,
1982). AbNum (Abhinandan and Martin, 2008) was used to apply Chothia
numbering (Al-Lazikani et al., 1997; Chothia and Lesk, 1987) to the PDB files
of antibody structures. All structures were reduced to just the Fv region.

Potential interface residues were defined as positions for which there is any
change in solvent accessibility as a result of VH/VL interaction. Accessibility was
calculated using NACCESS (Simon Hubbard, unpublished) which implements
the algorithm of Lee and Richards (1971).

Programs for analysis were written in C and Perl. Graphs were
created using GNUPLOT (http://www.gnuplot.info/) and GRACE
(http://plasma-gate.weizmann.ac.il/Grace/). The GRASS library
(Team, 2006) was used for calculation of Eigen vectors and values. The Sun
Gridengine was used to distribute jobs across two compute farms consisting of
96 IBM Series 335 nodes and 120 AMD Opteron compute cores respectively.

2.2 Calculation of the packing angle

The packing angle was defined as a torsion angle at the VH/VL interface calcu-
lated as follows:

1. Sets of 8 structurally conserved residues at the VH/VL interface were iden-
tified by fitting five antibody light and heavy chains on all residues in
the variable region using ProFit. Figure 1 shows the fitted structures and
highlights the highly conserved residues which form part of the β-sheet
core of the interface (L35–L38, L85–L88, H36–H39, H89–H92).

2. For a given structure, the Cα coordinates for the sets of residues (SL and
SH) were extracted.

3. The centroid for each set was identified (CL and CH).

4. The best-fit line for each set (SL or SH), passing through the respective
centroid (CL and CH) was calculated using Principal Components Anal-
ysis.



4

a)

b)

Figure 1: Rigid body superposition of the Cα atoms in five antibody Fv struc-
tures a) Light chains highlighting residues L35–L38 and L85–L88 (PDB codes:
12e8, 15c8, 1a0q, 1a3l, 1a3r). b) Heavy chains highlighting H36–H39 and H89–
H92 (PDB codes 1oax, 1yec, 1yef, 2ddq, 8fab).
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5. A point on each line, PL and PH , on the same side relative to the respective
centroid, was identified.

6. The packing angle was calculated as the torsion angle between the points
PL, CL, CH , and PH .

2.3 Neural networks

The total number of variables Nv in a fully connected artificial neural network
is:

Nv = (Si × Sh) + (Sh × So) (1)

where Sh is the number of nodes in the hidden layer, and So is the number of
nodes in the output layer. Si is the number of nodes in the input layer and is
calculated as:

Si = Ni × Se (2)

where Ni is the number of inputs and Se is the size of the encoding vector. As a
general rule of thumb, one should aim for a training set size of 3Nv although, in
practice, smaller training sets are often used. If we were to use the total of 124
potential interface positions identified (see Results) and a standard encoding
vector size of 20 to represent each amino acid, then Si = 2480. If we use 10
hidden nodes and a single output node to represent the packing angle, then
Nv = 24810. This far exceeds the number of structures available for training
the network (567).

To reduce the size of the input space, the normal approach of using a 20-
dimensional encoding vector (where each dimension is a value from a substi-
tution matrix or is zero for 19 of the values and one for the other value to
represent a particular amino acid) was replaced by a 4-dimensional vector de-
scribing physico-chemical properties of the amino acids: (i) the total number of
sidechain atoms; (ii) the number of sidechain atoms in the shortest path from
the Cα atom to the most distal atom; (iii) the Eisenberg consensus hydropho-
bicity (Eisenberg et al., 1982); (iv) the charge (histidine was assigned a charge
of +0.5).

A fully connected artificial neural network using an input layer of 20×4
nodes, a single hidden layer of 10 nodes and an output layer consisting of a sin-
gle real-valued node was constructed using the Stuggart Neural Network Sim-
ulator (SNNS, http://www.ra.cs.uni-tuebingen.de/SNNS/). The Resilient
Backpropagation (RProp) learning function (Riedmiller and Braun, 1993) was
used for training the network. RProp is a modification to the standard back-
propagation algorithm, which implements dynamic learning-rate constants, and
has been shown to be superior to other learning algorithms in terms of both
speed and quality of learning (Schiffmann et al., 1993). Training used early-
stopping after 150 cycles, or a sum-of-squares error <= 1.5. Magnitude pruning
and input shuffling were also found to be beneficial.

Output values (packing angles) were scaled to the range 0 to 1 using:

θf = 1 −

(

θ − θmin

θmax − θmin

)

(3)

where θf is the interface angle fraction, θ is the interface angle, θmax is the
maximum observed interface angle, and θmin is the minimum observed interface
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angle.

2.4 Genetic algorithms

Genetic algorithms use a population of individuals and iteratively repeat 3 steps:
(i) evaluation and selection of the fittest individuals as parents for the next
generation, (ii) crossover of two selected parents, (iii) mutation to make random
changes to alleles in the offspring.

Individuals in the population consisted of binary vectors of length 124 or 64
(representing the total number of potential interface positions or the framework
positions respectively). Each allele was either 1 or 0 to indicate whether the
interface position is included in training the neural network. Any individual
was only allowed to have a maximum of 20 alleles set to 1 at a time.

Initially a random population of individuals was created and the quality of
each individual was assessed using the result of training and validating a neural
network using 5-fold cross-validation. A new population was generated by cross-
over of high-scoring individuals followed by random mutation at a specified rate
(µ) with a default of µ = 0.0001. Evaluation and generation of new populations
was repeated as required.

A ‘generational replacement’ strategy was used in which the entire popula-
tion of parents was replaced by children to allow rapid exploration of the inter-
face position space. The best individual from every generation was recorded in
case the fitness of the best individual decreased in future generations.

Two of the most common strategies for selecting parents were evaluated:
Roulette-wheel selection and Rank-based selection. Roulette wheel selection is
a fitness-proportionate selection method where the likelihood of a particular
parent being selected is given by the fitness of the parent divided by the average
fitness of the population. In Rank-based selection (Baker, 1985) the population
is ranked by fitness, with selection performed in a similar way to the Roulette-
wheel scheme, but with absolute scores replaced by ranks. In either case, a
crossover point is chosen randomly within the selected parents and the two
parts of the parents are combined to yield offspring.

One problem with these schemes is premature convergence of the popula-
tion. Initially, the population is quite diverse, but parents that score signifi-
cantly better than others are selected more frequently and can therefore result
in identical children. When the number of redundant individuals in the popu-
lation increases, the chances of choosing two identical individuals randomly for
crossover also increases. Crossover of identical individuals would clearly yield a
child identical to the parents. Since the mutation rate applied to the offspring
individual is very low (µ = 0.0001), the final offspring are likely to be unchanged.
However, a higher mutation rate (µ = 0.001) did not help curb the exponential
rise in the number of redundant individuals. (See Results, Figure 5.)

We therefore developed a method in which parent individuals were selected
using Rank-based selection, but the mutation rate was varied dynamically, de-
pending on the similarity of the parents selected for crossover. The method,
which we term Intelligent selection, is described below:

1. For every child individual to be created, select 2 parents P1 and P2 based
on Rank-based selection.
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2. Randomly choose a crossover point and splice P1 and P2 to create a child
Oi.

3. Calculate the degree of similarity SP1,P2 between parents P1 and P2:

SP1,P2 = 2 ×
|P1 ∩ P2|

|P1| + |P2|
(4)

where |P1 ∩P2| is the number of active alleles (i.e. with value = 1) shared
between P1 and P2 while |Pi| is the number of active alleles in P1 or
P2. When the two parents are completely identical, the similarity is 1.0
whereas when they have no common alleles, the similarity is 0.

4. if (0.9 <= S(P1,P2) <= 1.0), then swap five 0s and 1s in Oi.

5. if (0.7 <= S(P1,P2) < 0.9), then µ = 0.01

6. if (0.5 <= S(P1,P2) < 0.7), then µ = 0.008

7. if (0.3 <= S(P1,P2) < 0.5), then µ = 0.005

8. if (0 <= S(P1,P2) < 0.15), then µ = 0.001

2.5 Evaluation of prediction performance

During development and training of the GA, the performance of the neural
network was assessed using five-fold cross validation and the overall performance
was averaged over the five folds. The final performance was evaluated using full
leave-one-out jack-knifing.

Initially the Pearson’s correlation coefficient (r) was used to compare the
output of the neural network and the actual scaled packing angle (between 0
and 1):

rxy =

n
∑

i=1

(xi − x̄)(yi − ȳ)

(n − 1)sxsy

(5)

where rxy is the Pearson’s correlation coefficient between two sets of variables x
and y, n is the number of data points and sx and sy are the standard deviations
of the two distributions x and y.

However, Pearson’s r is not a very intuitive measure of the actual perfor-
mance of the neural network in terms of prediction accuracy and does not reflect
the presence of outliers very well. The relative RMS error (RELRMSE) (Mas-
ters, 1993) calculates the RMS value of the error and takes the ratio of this
value with respect to the sum of the squares of the actual values:

RELRMSE =

√

√

√

√

√

√

√

n
∑

i=1

(xi − pi)
2

n
∑

i=1

x2
i

(6)
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where xi is the actual interface angle fraction, and pi is the predicted interface
angle fraction. Since RELRMSE is a ratio, it is a dimensionless value. REL-
RMSE is calculated over five folds for every individual and the score for an
individual is calculated as:

SCORE = 1 − RELRMSE (7)

From initial performance statistics (data not shown), it appeared that REL-
RMSE was much more sensitive to errors in predictions of small and large pack-
ing angles than the Pearson’s r or other measures such as RMSE:

RMSE =

√

√

√

√

n
∑

i=1

(xi − pi)2/n (8)

RELRMSE was therefore used to assess the quality of prediction in the main
GA runs.

3 Results

A dataset of 567 PDB files of antibody Fv regions was prepared and pre-
numbered using the Chothia numbering scheme. The packing angle was defined
and calculated for each structure as described in the Materials and Methods.
Potential interface residue amino acid types and packing angles were extracted
and tabulated.

3.1 Distribution of packing angles

The distribution of packing angles was plotted and was found to follow an ap-
proximately normal distribution with a mean of −45.6o and a standard deviation
of 3.36o (Figure 2). The observed packing angle varies quite considerably across
different structures ranging from −31.0o to −60.8o in 1fl3 (Simeonov et al.,
2000) and 1bgx (Murali et al., 1998) respectively as shown in Figure 3. We had
expected that one or both of these might come from single-chain Fv fragments
(which may have different constraints on packing), but this proved not to be the
case and Figure 2 shows that the eight single-chain Fv fragments in our dataset
have evenly distributed packing angles.

3.2 Initial prediction of packing angle from interface

residues

On the basis of a change in solvent accessibility, a total of 124 Chothia-numbered
amino acid positions (63 in the light chain and 61 in the heavy chain) were
identified as contributing to the interface in at least one of the 567 structures.

As described in the Materials and Methods, a process of ‘feature selection’
was required to choose a subset of these 124 potential interface positions in
order to train the neural network. Initially, manual selections of 20 interface
residues (10 light and 10 heavy) most likely to influence packing angle were
made based on an analysis of the change in solvent accessible surface area and
the frequency of occurrence in the interface (Figure 4). Owing to the variability
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Figure 2: Frequency distribution of the packing angle. Bars with an asterisk
at the top indicate the presence of one or more of the eight single-chain Fv
structures in our dataset.

Table I: Manually chosen interface positions and performance of neural nets
trained on those positions.

Method† Interface positions Cp

Method I L34, L36, L44, L46, L50 0.32
L87, L89, L91, L96, L98

H35, H47, H91, H100B, H100C
H100D, H100I, H100G, H100M, H103

Method II L34, L36, L43, L44, L46 0.38
L86, L87, L89, L91, L98

H35, H47, H91, H100B, H100C
H100D, H100G, H100I, H100M, H103

Method III L32, L34, L36, L44, L46 0.40
L50, L87, L91, L96, L98

H45, H47, H50, H91, H99
H100, H100A, H100B, H101, H103

Method IV L34, L36, L38, L43, L44 0.30
L46, L87, L91, L96, L98

H39, H45, H47, H91, H99
H100, H100A, H100B, H101, H103

†Interface residues were chosen as the top 10 light and heavy chain residues using four

methods - see text. Cp is the averaged Pearson’s correlation coefficient (r) over 5-fold

cross-validation.
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Figure 3: Extreme packing angles in a) 1fl3, −31.0o b) 1bgx, −60.8o. The
images show the light chain (in yellow) in approximately the same orientation,
with the heavy chain shown in cyan. The conserved residues used to define the
packing angle are shown with thicker lines. The regression lines, fitted though
these coordinates, are shown in red for the light chain and blue for the heavy
chain.
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Figure 4: Frequency of occurrence of residues in the interface a) light chain and
b) heavy chain.
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in the VH/VL packing angle, the interface residues in any given structure will be
a subset of the total set identified in all the observed structures. Table I shows
the four manual selections of interface residues on the basis of: (I) Highest
change in solvent accessible surface area (ASA), (II) Highest average change in
ASA, (III) Most frequently occurring positions with highest change in ASA, and
(IV) Most frequently occurring positions with highest average change in ASA.

Table I also shows the result of training and validating the neural network
based on the manual selection of interface positions. None of the methods to
select interface residues manually worked particularly well as the 5-fold cross-
validated Pearson’s correlation coefficient (r) for all methods was low. However,
from examination of individual folds, correlation coefficients as high as 0.6 were
observed giving us confidence that the data did have useful predictive power.
Thus a new strategy was devised in order to improve the training feature selec-
tion.

3.3 Using a genetic algorithm for feature selection

Rather than selecting interface residues for use in predicting the packing angle
based on accessibility and occurrence in the interface, it was decided to use a
genetic algorithm (GA) to perform feature selection. The GA was designed to
select a maximum of 20 interface positions that were optimal in training the
neural network.

In generating an offspring population from parents, selection is biased to-
wards parents with high scores. There are many selection methods for choosing
parents, the aim of the selection procedure being to keep the population diverse
in order to avoid local minima, while achieving progression towards a global
minimum in a reasonable number of generations. We used small test popu-
lations over limited iterations to compare two approaches: Rank-based and
Roulette-wheel based selection (see Materials and Methods). For this applica-
tion Rank-based selection was found to out-perform Roulette-wheel selection
(results not shown).

However, we found that the population tended to converge quite rapidly
even with higher mutation rates. Figure 5 shows a high degree of convergence
after around 40 generations with a mutation rate (µ) of 0.0001 (population of
5000) where the best individual had a Pearson’s r of 0.638. With a mutation
rate of 0.001 (population of 1000), the population converged after around 60
generations.

We implemented a modification of Rank-based selection which we term ‘In-
telligent selection’ (see Materials and Methods) which was used for all future
GA runs. This alters the mutation rate dynamically during crossover.

By varying the mutation rate using our Intelligent selection procedure, it be-
came possible to keep the population diverse avoiding local minima and therefore
sampling many different combinations in the possible ‘interface position space’.
Figure 5 also shows the results for Intelligent selection for the GA using a popu-
lation of 5000 individuals over a limited run of 50 generations. At the end of this
period, while Rank-based selection showed a very high degree of redundancy,
Intelligent selection showed almost no convergence. The best individuals had a
Pearson’s r of 0.638 and 0.630 in Rank-based and Intelligent selection respec-
tively. Thus, in this limited number of generations, Intelligent selection was
able to find as good a best solution as Rank-based selection while maintaining
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Figure 5: Percentage of redundant individuals in GA runs using Rank-based
and Intelligent selection. The dashed line shows Rank-based selection with
5000 individuals and µ=0.0001; the dotted line shows Rank-based selection with
1000 individuals and µ=0.001; the solid line shows intelligent selection with 5000
individuals. Note that the Intelligent selection strategy results in virtually no
redundancy in the population.
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a diverse population to avoid local minima. Intelligent selection was used for
all further GA runs.

3.4 Results of the main GA runs

After the above preliminary experiments designed to optimize parameters for the
neural network and the genetic algorithm, large scale GA runs were performed
using thousands of individuals over several thousand generations. Scoring of
each individual in the GA involves training and 5-fold cross-validation of a
neural network and typically took about 25 seconds per individual. The runs
were performed on large compute farms over a period of several months.

Two types of runs were performed. In the first, all 124 potential interface
positions were considered. This included a number of CDR residues as it was
initially felt that these could influence the VH/VL packing angle. In the second,
only the 64 framework residues were considered. For this purpose, the CDRs
were defined as the structurally variable regions as used by Chothia (Al-Lazikani
et al., 1997). Overall performance was better when only framework residues
were considered suggesting that CDR residues have only a small influence on
VH/VL packing (data not shown). Consequently only results using the framework
residues alone are reported here.

A genetic algorithm run was performed using a population of 15000 individ-
uals for a total of 2166 generations over a wall-clock period of approximately
4 months. Results were assessed on the basis of (i) the score of the best indi-
vidual at the end of each generation and (ii) the average score of individuals in
each generation.

Results of the run are shown in Figure 6. The average and best scores
increase sharply for the first 150 generations and then stabilize for the remaining
generations. The best score of 0.833 (i.e. RELRMSE = 0.167, see Materials and
Methods) was first seen after 146 generations. The interface positions defined
by the best individual were: L38, L40, L41, L44, L46, L87, H33, H42, H45, H60,
H62, H91, H105.

3.5 Jackknifing and analysis of errors of the best individ-

uals

Having identified the optimum set of interface residues using the GA, a full
jackknifed (leave-one-out) evaluation of the neural network was performed. Re-
sults are shown in Figure 7 where the predicted packing angle is plotted against
against the actual packing angle. Perfect predictions would lie on the diagonal.
Figure 8 shows the distribution of the errors and shows an approximately normal
distribution with a strong peak at an error of 0o. Figure 9 shows the squared
error plotted against the actual packing angle indicating that the most signifi-
cant errors are for the outlying structures which have unusually large (or small)
packing angles and are under-represented in the training data (See Figure 2).

4 Discussion

In this paper, we have defined and analyzed the VH/VL packing angle across a
panel of 567 antibody structures. The packing angle is approximately normally
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Figure 6: GA runs involving non-CDR interface positions. a) Average score in
each generation b) Best score in each generation.
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Figure 7: Predicted vs. actual packing angle results for jackknifing of the best
individual from the GA run. Perfect predictions would lie on the dashed line.
The solid line shows the best-fit regression line for the data points although it
should be noted that the errors are not evenly distributed such that regression
is not very accurate.
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dicted and actual interface angle for the best individual from the GA run.
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18

distributed with a mean of -45.6o, but ranges from −60.8o to −31.0o. Such a
variation can have a significant effect on the topography of the combining site.

Using a genetic algorithm for feature selection, we have identified a set of
interface residues which appear to have the largest predictive power and are
therefore most likely to influence the packing angle. In antibody humanization,
where a set of non-human (typically murine) CDRs are grafted onto a human
framework region, it is generally necessary to ensure that some additional hu-
man framework residues match the donor mouse residues in order to recover
good binding. It had previously been suggested that these residues may include
interface residues (Adair et al., 1999) and this work suggests a key set of such
positions which may prove important.

Using the identified set of interface residues we have performed a full jack-
knifed analysis of the predictive ability of a neural network trained using these
locations and a physico-chemical representation of the amino acids at those
locations. The results show an approximately normal distribution of errors
centred around 0o. The RELRMSE on the packing angle is just 0.056. It is well
known that neural networks make poorer predictions on data that are sparsely
represented. This appears to be the case for predicting packing angles that
are less than −50o or greater than −43o (Figure 9). Application of boosting
techniques (Haykin, 1994) or simple multiple presentation of outliers to the
neural network may improve performance.

A web-server which takes a light and heavy chain sequence and imple-
ments the prediction method described has been made available at http://

www.bioinf.org.uk/abs/paps/ The neural-network used in the final server
was trained on the complete dataset and results are similar to those obtained
from the full jack-knifed evaluation.

It is hard to make a direct comparison of the performance of our method
with the energy-based methods described by Sivasubramanian et al. (2009) or
Narayanan et al. (2009) since these report performance in terms of the RMSD
of one domain when fitting is performed on the other domain. We feel that our
method gives a more direct measure of the results which is not dependent on the
similarity of the domains and hence the quality of fitting. Because predictions
made using our trained machine learning method are very fast (taking a matter
of seconds), the evaluation of our method is much more extensive than the work
presented in these earlier papers.

The applications of this work are two-fold. First, the set of interface residues
may be useful in humanization work. Second, our ability to predict the packing
angle can be used in improving antibody modelling: either by improving the
selection of a framework consisting of both light and heavy chains or in imposing
a packing angle on individually selected light and heavy chains.
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