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Abstract

The Fv region of the antibody (comprising VH and VL domains) is the area responsible for target binding and thus the
antibody’s specificity. The orientation, or packing, of these two domains relative to each other influences the topography
of the Fv region, and therefore can influence the antibody’s binding affinity. We present abYpap, an improved method
for predicting the packing angle between the VH and VL domains. With the large data set now available, we were able
to expand greatly the number of features that could be used compared with our previous work. The machine-learning
model was tuned for improved performance using 37 selected residues (previously 13) and also by including the lengths
of the most variable ‘complementarity determining regions’ (CDR-L1, CDR-L2, and CDR-H3). Our method shows large
improvements from the previous version, and also against other modelling approaches, when predicting the packing angle.
Supplementary information: Supplementary data are available at Protein Engineering Design and Selection online.
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Introduction

Antibody variability is encoded in the variable fragment (or Fv), which is composed of two protein domains (VH and VL)

from the heavy and light chains respectively. The VH and VL domains are responsible for antigen binding and are each

composed of a framework (two β-sheets relatively conserved in sequence) and three hypervariable loops (Amzel and Poljak, 1979;

Chothia and Lesk, 1987; Chothia et al., 1985; Vargas-Madrazo and Paz-Garćıa, 2003). Altering the orientation of the variable

domains relative to each other modifies the relative orientation of the CDR loops and thus alters the shape of the binding

site (Davies and Metzger, 1983; Novotný et al., 1983; Naranayan et al., 2009); these changes can also affect the elbow-angle

(Fernández-Quintero et al., 2020). The VH/VL interface interaction can therefore have a direct impact on the affinity with which

the antigen is bound (Masuda et al., 2006; Ben Khalifa et al., 2000). Furthermore, the VH/VL interaction geometry can determine

which of the specificity-determining residues are exposed (and to what degree), and therefore, with what type of antigen the

antibody is capable of interacting (e.g. haptens, proteins, or peptides) (Almagro, 2004; Raghunathan et al., 2012). Thus accurately

predicting the interaction geometry of the VH/VL interface allows us to get a better picture of the topography of the binding site and

potentially modify it during therapeutic design (e.g. during grafting for humanization or for a specific target) (Foote and Winter,

1992).

To date there have been several attempts to tackle the challenge of modelling this interface. Abhinandan and Martin (2010)

used residues L35–L38, L85–L88, H36–H39, H89–H92 to define two vectors (one in each domain) from which the VH/VL packing

angle was determined. A torsion angle between the two vectors was then calculated, averaging -46◦ with a range of -31◦ to -61◦.

A genetic algorithm was used to identify residues L38, L40, L41, L44, L46, L87, H33, H42, H45, H60, H62, H91, and H105 as the

best predictors of this packing angle. A simple encoding (using four physical properties) of the amino acids at these positions was

used to build the machine learning model using a small neural network, with the final result predicting this packing angle with a

relative root mean squared error of 0.056. This predictor is referred to as ‘PAPA’ (Predict Antibody Packing Angle). Chailyan et

al. (2011) also attempted to identify the residues having the most effect on the packing angle. They used a global distance test

to calculate the similarity between two structures when a set of VH/VL interface residues (L34, L36, L38, L43, L44, L46, L87,

L89, L98, L100, H35, H37, H39, H44, H45, H47, H91, H93, H103 and H105) are superimposed within a certain distance threshold.

They looked at 101 VH/VL structures and found that their samples clustered into two groups. They then extracted data relating to

residues most strongly conserved within their groups and identified a group of residues which they believed to be most important

in discriminating between the groups (L8, L28, L36, L41, L42, L43, L44 and L66).

Further work has been performed since those initial studies. Dunbar et al. (2013) expanded the analysis of VH/VL packing by

using principal component analysis implemented in their ABangle software. The first principal component is similar to the angle
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Fig. 1. Summary of the file preparation method. The files available from the PDB in July 2022 were used to start. If a file contained multiple antibody

structures, the structures were extracted into individual files. Each file then had all the residues of interest summarised with the angle. Redundancy

was removed by keeping one file for each set of unique residue-angle pairs. This nonredundant set was then split into test and train sets. Files available

from the PDB after July 2022 and until September 2022 were processed in the exact same way, which created the independent validation set.

defined by Abhinandan and Martin while the variations in the remaining principal components are fairly small. Consequently,

while the approach of Dunbar et al. provides a more complete description of the potential variability in packing, the simple single

angle defined by Abhinandan and Martin gives a good representation of all major variability. Prediction of packing angle is now

part of a number of antibody modelling programs. Bujotzek et al. (2015) developed a predictor based on the ABangle descriptor

of VH/VL packing and this is now part of ABodyBuilder2 (Leem et al., 2018). More recently, Weitzner et al. published a paper on

RosettaAntibody3 (Weitzner et al., 2017), which also incorporates VH/VL packing into its predictions. Currently our own abYmod

software (Manuscript in preparation) inherits the packing angle from one of the parent structures, but the packing angle predictor

described in this paper is now being integrated into the software.

In this paper, we present an improvement on the Abhinandan and Martin method, using an expanded list of residues and loop

lengths as features, as well as improved machine learning methods.

Methods

Angle calculation
The packing angle was calculated from Chothia-numbered PDB files using ‘abpackingangle’ available from

github.com/ACRMGroup/abpackingangle, which Abhinandan and Martin described in their paper (Abhinandan and Martin, 2010).

In summary, the Cα positions of eight structurally conserved residues in the light chain (L35–L38, L85–L88) were used to define

a vector, with an equivalent vector defined in the heavy chain using residues H36–H39 and H89–H92. A torsion angle is then

calculated between the two vectors (about a third vector between the projection of the centroids of the residues onto the light

and heavy chain vectors) as a representation of VH/VL region geometry.

Data preparation
Files containing antibodies were obtained from recent local updates to AbDb (Ferdous and Martin, 2018) in July and September

2022. AbDb takes files containing antibodies from the Protein Databank (PDB) and splits them into individual antibodies (with the

antigen, if present). Files are then numbered according to the Kabat, Chothia and Martin numbering schemes and redundant clusters

are identified. For the analysis performed here, the Chothia numbered files were used. Those that are not VH/VL heterodimers,

those having missing residues, those not solved by crystallography, and those having resolution worse than 3Å, were removed.

Starting from this dataset, data preparation is summarized in Figure 1. The dataset contains both bound and unbound antibodies

on the basis that high-affinity antibodies would be expected to show a lock-and-key type iteraction where the packing angle does

github.com/ACRMGroup/abpackingangle
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Fig. 2. Interface of an antibody Fv (PDB code 5W9K) showing the VH on the left and the VL on the right. One domain should be rotated 180◦ about

the y-axis in order to place it in the orientation that it would adopt when forming an interaction with the other domain. The expanded 37 residue

positions used in the predictor (L32, L34, L36, L38, L40, L41, L43, L44, L46, L50, L86, L87, L89, L91, L96, L98, H33, H35, H39, H42, H45, H47, H50,

H60, H62, H91, H99, H100, H100A, H100B, H100C, H100D, H100E, H100F, H100G, H103 and H105) shown in a lighter grey.

not change significantly: if binding with antigen has to stress the packing angle away from its unbound optimum, then some of the

binding energy will be ‘wasted’ in changing the angle.

To prevent test and training set overlap, but to keep samples where the same key residues produce different angles, the set

was non-redundantised based on the residues used as features and the packing angle. Packing angles were rounded to two decimal

places and if the residues used as features, and the rounded angle, were identical for multiple structures, only the first sample was

kept. This type of non-redundantisation was chosen to preserve flexible angles, where the same antibody may have different angles

depending on its binding status or crystallization conditions. This was done for tests with both 13 and 37 feature residues. From

the data available in July 2022, these structures make up the ‘Nonredundant’ set.

The ‘Nonredundant’ set was then split into ‘Training’ and ‘Test’ sets, the test set being selected as a random 10% of the data

and the remaining 90% being used as the training set. (Supplementary Files ‘TestSet.txt’ and ‘TrainingSet.txt’.)

An independent validation set was prepared by following the same procedure using files available in September 2022 to create

the ‘Nonredundant-New’ dataset (AbDb codes are listed in Supplementary File ‘Nonredundant-New.txt’). Structures available in

‘Nonredundant-New’ (September 2022), but which were not available in ‘Nonredundant’ (July 2022) were extracted to create the

‘independent validation’ set (Supplementary File ‘ValidationSet.txt’).

Features
Abhinandan and Martin (2010) analyzed the residue positions involved in VH/VL packing and created 4 sets of positions likely

to be the most important on the basis of: (i) highest change in solvent accessible surface area (ASA), (ii) highest average change

in ASA, (iii) most frequently occurring positions with highest change in ASA and (iv) most frequently occurring positions with

highest average change in ASA. Combining these sets identified a total of 37 residue positions (L32, L34, L36, L38, L40, L41, L43,

L44, L46, L50, L86, L87, L89, L91, L96, L98, H33, H35, H39, H42, H45, H47, H50, H60, H62, H91, H99, H100, H100A, H100B,

H100C, H100D, H100E, H100F, H100G, H103 and H105, Chothia, Kabat or Martin numbering), highlighted in Figure 2. They

then used a genetic algorithm (where the fitness function was the result of training and testing a neural network) to select the most

informative 13 residues (L38, L40, L41, L44, L46, L87, H33, H42, H45, H60, H62, H91 and H105). These two sets (13 residues and

37 residues) were also used in this work.

Encoding
Abhinandan and Martin encoded the amino acids using a four-physical-parameter encoding scheme (Supplementary File

‘encoding.txt’) which encodes each amino acid using the number of side chain (non-hydrogen) atoms, compactness (number of

atoms in the shortest path to the most distal atom), charge (using +0.5 for histidine) and hydrophobicity (using the Eisenberg

consensus scale (Eisenberg et al., 1982)). The same encoding was used for all work performed here.

Re-training the PAPA model (PAPA-Retrained)
The ‘Training’ dataset was used to re-train an identical neural network to that used by Abhinandan and Martin with the feature

set of 13 residues as described above. As before, output values were scaled to a range of 0–1. The neural network consists of a

fully connected artificial neural network using an input layer of 13×4 nodes, a single hidden layer of 10 nodes and an output layer
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parameter value

alpha 0.01

learning rate 0.1

max depth 2

min samples leaf 10

n estimators 50000

random state 100

Table 1. The hyperparameters that were applied when training the gradient boosted regression (GBR) model, these were determined by

running a grid search training and testing on the ‘Training’ and ‘Test’ datasets (see text) respectively.

parameter value

learning rate 0.1

max depth 2

min samples leaf 10

n estimators 50000

random state 100

warm start TRUE

Table 2. Gradient Boosting Classification (GBC) hyperparameters, determined by running a grid search training and testing on the ‘Training’

and ‘Test’ datasets (see text) respectively.

consisting of a single real-valued node. Training was performed using Resilient Backpropagation (RProp) (Riedmiller and Braun,

1993) with early-stopping after 150 cycles or a sum-of-squares error <= 1.5, magnitude pruning and input shuffling. For direct

comparison, as before, this was constructed using the Stuttgart Neural Network Simulator (SNNS, www.ra.cs.uni-tuebingen.de/SNNS

available at github.com/GunterMueller/SNNS).

Gradient Boosting Regression model for packing angle prediction
Gradient Boosting Regression (GBR) was implemented using the ‘GradientBoostedRegressor’ estimator of the Python module

‘scikitlearn’. Hyper-parameters are described in Table 1 and were determined by running an extensive grid-search, training on the

‘Training’ dataset and testing on ‘Test’.

The same four-physical-parameter encoding was used, but here four different feature sets were employed:

• GBR1: The 13 residue feature set used by Abhinandan and Martin,

• GBR2: The 13 residue feature set plus the lengths of CDR-L1 (L24–L34), CDR-H2 (H50–H58), and CDR-H3 (H95–H102),

• GBR3: The full 37 residues identified by Abhinandan and Martin,

• GBR4: The full 37 residues plus the lengths of CDR-L1, CDR-H2, and CDR-H3.

The remaining CDR loops have much less variability in length across antibody structures and it was concluded that their lengths

are unlikely to add to the predictive ability.

Combining Gradient Boosting Classification Regression and Classification
The observed packing angles follow an essentially normal distribution with poorly populated tails. 94% of structures have an angle

which is between -40◦ and -50◦ and, consequently, predictors can do well by just predicting in this range.

We therefore took an approach of defining this range (-40◦ to -50◦) as the ‘normal’ range with anything above that being

considered a maximum outlier and anything below considered a minimum outlier.

Thus, an approach which combined classification and regression was tested where these three classes were used to train a

Gradient Boosted Classification (GBC) model using the ‘Training’ set. Hyper-parameters were optimized by running an extensive

grid-search on the ‘Training’ set and testing on the ‘Test’ set (Table 2). Three separate GBR models were then trained (using

hyperparameters in Table 1) on the three separate classes within the ‘Training’ set.

For prediction, the test example was first run through the GBC ‘gatekeeper’ to identify the class (‘maximum outliers’, ‘minimum

outliers’ and ‘normal’) and the example was then run though the corresponding regression model.

Cross validation
As an alternative test of the performance, ten-fold cross validation was performed using the scikitlearn module ‘RepeatedKFold’

on the larger ‘Nonredundant-New’ dataset and with features and hyperparameters from GBR4. For each of the ten folds,

hyperparameters remained unchanged, but each time the model would be retrained on 90% of the data and tested on the remaining

10%.

Testing on an independent validation set
To validate results, the tests of the trained models were repeated on the independent validation set. The GBR4 model was retrained

on the full ‘Nonredundant’ dataset (i.e. ‘Training’ plus ‘Test’) tested on the ‘Validation’ set. For the classification-regression

approach, the models were not retrained before testing on the independent validation set.

www.ra.cs.uni-tuebingen.de/SNNS
github.com/GunterMueller/SNNS
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(a) (b) (c)

Fig. 3. Performance of the original PAPA method on the new test set. (a) The relationship between the predicted and the actual angle. (b) The

distribution of errors in packing angle prediction. (c) The squared error for each angle.

(a) (b) (c)

Fig. 4. Performance of the gradient boosted regression model (GBR1) trained on our ‘Training’ set and tested on out ‘Test’ set using the 13 residue

feature set (see legend to Table 3). (a) The relationship between the predicted and the actual angle. (b) The distribution of errors in packing angle

prediction. (c) The squared error for each angle.

Extracting angles from AlphaFold2 generated models
Antibody models were generated for sequences (listed in Supplementary File ‘AF2-test.txt’) using the AlphaFold2 software. Since

this evaluation was performed before AlphaFold-Multimer was available, the software only takes single protein chains. Consequently

the VH and VL domains were linked using a (Gly4Ser)n linked to form a single-chain Fv (scFv). ‘abpackingangle’ was then used to

calculate the packing angle of the AlphaFold2 models.

Results and Discussion

Antibody structure data available up until September 2022 were used in our experiments. The data were divided into train, test,

and independent validation sets as described in the Methods, and Supplementary Material.

PAPA
Abhinandan and Martin’s ‘Predict Antibody Packing Angle’ (PAPA) method (Abhinandan and Martin, 2010) was used as a basis

for comparisons. The results of using the PAPA model to predict packing angles in the test set are shown in Figure 3. While

Abhinandan and Martin obtained very good performance (RELRMSE=0.056; see Abhinandan and Martin (2010) for the definition

of RELRMSE), Figure 3a shows that, with the new test set, the model tends to predict values close to the mean (∼-45◦) regardless

of the true angle and, as shown in Table 3 (PAPA), on this larger independent test set, the RELRMSE increases to 0.085. With a

Pearson’s R of 0.244, the Abhinandan and Martin model is only slightly better than predicting the mean value in all cases.

Retrained PAPA
As a result, we retrained the PAPA neural network using the much larger ‘Training’ dataset described in the Methods and using

the same larger test set. Surprisingly, the results were marginally worse than the original PAPA. See Table 3 (PAPA-Retrained)

and Supplementary Figure S2. We therefore decided to explore different machine learning approaches.

Gradient boosted regression
In an attempt to improve the performance, the best performance was achieved using gradient boosted regression (GBR). The

same 13 residues used by Abhinandan and Martin were employed, together with the same four-physical-parameter encoding. A

huge improvement in performance was observed, with the Pearson’s correlation coefficient increasing to 0.672 and the RELRMSE
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Method set set Residues lengths Pearson’s R error RMSE RELRMSE Slope Intercept Figure no.

PAPA Original PAPA Test 13 no 0.244 2.843 3.871 0.085 0.169 -37.387 3

GBR4-P Original PAPA Test 37 yes 0.316 2.825 3.786 0.083 0.242 -34.269 S1

PAPA-Retrained Training Test 13 no 0.244 2.844 3.874 0.085 0.168 -37.408 S2

GBR1 Training Test 13 no 0.672 1.920 2.688 0.059 0.523 -21.871 4

GBR2 Training Test 13 yes 0.685 1.884 2.643 0.058 0.534 -21.351 5

GBR3 Training Test 37 no 0.813 1.427 2.142 0.047 0.766 -10.731 6

GBR4 Training Test 37 yes 0.816 1.433 2.126 0.046 0.766 -10.767 7

GBC/GBR Training Test 37 yes 0.807 1.425 2.185 0.048 0.770 -10.512 S3

GBR-X Nonredundant-New x-val 37 yes 0.780 1.498 2.380 0.052 0.687 -14.370 8

GBR-V Training Validation 37 yes 0.585 2.385 3.265 0.070 0.529 -21.226 9

GBC/GBR-V Training Validation 37 yes 0.567 2.294 3.243 0.070 0.474 -23.772 S4

AF2 AlphaFold2 AF2-test N/A N/A 0.371 2.766 3.952 0.086 0.161 -36.760 10

IgFold IgFold IgFold-test N/A N/A 0.164 2.322 4.232 0.092 0.180 -38.670 S5

MLP Training Test 37 yes 0.534 2.293 3.109 0.068 0.331 -31.149 S6

Table 3. Summary of the main metrics for the combinations of methods and features that were tested. The ‘method’ is an identifier used to refer to the approach in the text. Training and test sets are described in the Methods.

‘Residues’ refers to the number of residues used as features. For models using 13 residues, these are positions L38, L40, L41, L44, L46, L87, H33, H42, H45, H60, H62, H91 and H105 as used by Abhinandan and Martin (2010) in the

original PAPA predictor. For models using 37 residues, these are positions L32, L34, L36, L38, L40, L41, L43, L44, L46, L50, L86, L87, L89, L91, L96, L98, H33, H35, H39, H42, H45, H47, H50, H60, H62, H91, H99, H100, H100A,

H100B, H100C, H100D, H100E, H100F, H100G, H103 and H105. Where ‘Loop lengths’ is ‘yes’, the lengths of CDR-L1, CDR-H2 and CDR-H3 were used as additional features. Optimal models will have ‘Pearson’s R’ and ‘Slope’ close

to 1, with all other metrics close to zero.
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(a) (b) (c)

Fig. 5. Performance of the gradient boosted regression model (GBR2) trained on our ‘Training’ set and tested on out ‘Test’ set using the 13 residue

feature set (see legend to Table 3) together with the lengths of CDR-L1, CDR-H2 and CDR-H3. (a) The relationship between the predicted and the

actual angle. (b) The distribution of errors in packing angle prediction. (c) The square error for each angle.

(a) (b) (c)

Fig. 6. Performance of the gradient boosted regression model (GBR3) trained on our ‘Training’ set and tested on out ‘Test’ set using the 37 residue

feature set (see legend to Table 3). (a) The relationship between the predicted and the actual angle. (b) The distribution of errors in packing angle

prediction. (c) The squared error for each angle.

(a) (b) (c)

Fig. 7. Performance of the gradient boosted regression model (GBR4) trained on our ‘Training’ set and tested on out ‘Test’ set using the 37 residue

feature set (see legend to Table 3) together with the lengths of CDR-L1, CDR-H2 and CDR-H3. (a) The relationship between the predicted and the

actual angle. (b) The distribution of errors in packing angle prediction. (c) The square error for each angle.

dropping to 0.059 (Table 3 (GBR1), Figure 4). In an attempt to improve the model further, the lengths of CDR-L1, CDR-H2,

and CDR-H3 (the CDRs which vary most in length) were used as additional features. This resulted in a small improvement in

performance, both in better correlation and lower error metrics (Table 3 (GBR2), Figure 5).

Gradient boosted regression with 37 residues
As described above, the small size of the dataset available at the time of Abhinandan and Martin’s publication meant that the size

of the training set was limited and the number of input features in the neural network had to be restricted. A genetic algorithm

was used to limit the system to use the 13 most informative residues. However, since the data available are now over twenty times

larger, there is room for adding potentially beneficial additional features. Consequently all 37 residues identified by Abhinandan

and Martin as likely to influence the packing angle (prior to using the genetic algorithm to select the most influential positions)

were used as features. These additional residues again dramatically improved the metrics when compared with PAPA, and show

significant improvement when compared with using GBR with the 13 original residues (Table 3 (GBR3), Figure 6.) Adding the loop
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(a) (b) (c)

Fig. 8. Performance of the gradient boosted regression model (GBR-X) using 10-fold cross-validation on the full larger ‘Nonredundantnew’ dataset (i.e.

the ‘Training’ plus ‘Test’ datasets) using the 37 residue feature set (see legend to Table 3) together with the lengths of CDR-L1, CDR-H2 and CDR-H3.

(a) The relationship between the predicted and the actual angle. (b) The distribution of errors in packing angle prediction. (c) The squared error for

each angle.

(a) (b) (c)

Fig. 9. Performance of the gradient boosted regression model (GBR-V) on an independent validation set using the 37 residue feature set (see legend

to Table 3) together with the lengths of CDR-L1, CDR-H2 and CDR-H3. (a) The relationship between the predicted and the actual angle. (b) The

distribution of errors in packing angle prediction. (c) The square error for each angle.

lengths as three additional features also provides a small improvement in the performance, as it did with the smaller residue set.

This provided the best GBR performance with the Pearson’s coefficient reaching a maximum compared with all other combinations

tested, and the RELRMSE its minimum (Table 3 (GBR4), Figure 7). To test the effect of training set size, we also trained a

GBR model with 37 residues and loop lengths as features (equivalent to GBR4) using the same dataset on which the PAPA model

was trained. The predictions on the test set showed that the model was essentially making random guesses around the mean

(Table 3 (GBR4-P), Supplementary Figure S1). This clearly demonstrates that it is both the much larger training set and the use

of GBR that improves the performance.

Multi-layer perceptron
The original PAPA software was a standard artificial neural network multi-layer perceptron (MLP). While retraining the original

PAPA using the larger dataset (but the same set of features) did not improve the performance, we decided to look at using an

MLP with the expanded feature set (37 residues plus loop lengths) as a comparison with the more modern GBR methods.

For this implementation we used scikitlearn’s MLPRegressor with default hyperparameters, with the exception of hidden layer

sizes adjusted to 15 and the maximum iterations set to 1200. The architecture was comprised of an input layer with 151 inputs

(37 residues positions, encoded by 4 vectors, plus 3 loop lengths), one hidden layer with 15 neurons, and an output layer with 1

neuron for the final angle. Other parameters were set to default (notably using activation function ‘ReLu’ and an alpha value of

0.0001). The MLP yielded a Pearson’s R of 0.534 and RELRMSE of 0.069 which is considerably better than the retrained PAPA

(with fewer features), but not as good as GBR4 on the same training and testing sets. (Table 3 (MLP), Supplementary Figure S6).

Combining regression and classification
Although the results achieved by the GBR model were very good, some of the outliers can be observed to have poorer predictions. In

an attempt to mitigate this, a two-step method was developed, in which a gradient boosted classifier (GBC) acts as a ‘gatekeeper’

to funnel the sequence into one of three regression models trained specifically on outliers or ‘normal’ values (-40◦ to -50◦) in

the hope of improving outlier performance. However, the performance metrics were marginally worse than the GBR4 model

(Table 3 (GBC/GBR), Supplementary Figure S3). Thus, including a classifier increases the computational cost, but produced no

significant improvement in performance. The Matthews’ Correlation Coefficient (MCC) for the GBC classification step was 0.620

(with 743 out of 816 test samples classified correctly, i.e. an accuracy of 0.911).
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(a) (b) (c)

Fig. 10. Performance of AlphaFold2 (AF2) in predicting the packing angle of antibodies. (a) The relationship between the predicted and the actual

angle. (b) The distribution of errors in packing angle prediction. (c) The squared error for each angle.

Verification
In all cases described above, a fixed training set and test set were used. To confirm that there was no bias between the train and

test sets resulting from human optimization of parameters of the machine learning for the fixed test set, ten-fold cross-validation

was performed using the full larger ‘Nonredundant-New’ set and the features used in GBR4. The performance only decreased a

small amount from the optimum results with the GBR4 model test set (Table 3 (GBR-X), Figure 8). The distribution around the

predicted=actual line in Figure 8a remains tight and most angle outliers are predicted within a range of 5◦.

As further validation of the performance, and to determine whether hyperparameter tuning had overly favoured the ‘Test’ set,

performance on the independent validation set (completely separate from the training and test sets used elsewhere) was evaluated.

The GBR4 model was retrained on the whole ‘Nonredundant’ dataset (i.e. the combination of ‘Training’ and ‘Test’ sets) and tested

on the independent validation set. As seen in Table 3 (GBR-V) and Figure 9, the performance of the model was not as good as the

GBR4 model, but performance was still good. The independent validation set also confirmed no improvement in angle prediction

when using a classifier in addition to the regressor (Table 3 (GBC/GBR-V), Supplementary Figure S4).

AlphaFold2 and IgFold comparison
Recently, AlphaFold2 (Jumper et al., 2021) has become the state-of-the-art in general protein modelling. However, AlphaFold2

relies on evolutionary information gained from multiple sequence alignment and its performance on antibodies is questionable

because of the unique manner in which affinity and specificity are refined through somatic hyper-mutation. To assess the performance

of AlphaFold2 in predicting VH/VL packing, we built models using the standard AlphaFold2 (AlphaFold-Multimer was not available

at the time this work was performed) on a subset of the available known structures (listed in Supplementary File ‘AF2-test.txt’)

and compared these with our predictors.

The results (Table 3 (AF2) and Figure 10) show that AlphaFold2 is relatively poor at predicting antibody VH/VL packing angles.

The RELRMSE (0.086) is higher than all other methods tried (including the original PAPA), while the Pearson’s R is 0.371. This

is better than PAPA and PAPA-Retrained, but significantly worse than any of the methods which made use of gradient boosted

regression (Table 3).

We have also looked at results obtained by using IgFold (Ruffolo et al., 2023). IgFold is a deep learning method which uses a

pre-trained language model (trained on natural antibody sequences). After calculating the packing angles within the models build

by IgFold, we observed that they tend to predict packing angles at around the mean of 48 degrees. The Pearson’s R is 0.164, while

the RELRMSE is 0.915, which is higher than other methods we looked at (Table 3 (IgFold), Supplementary Figure S5).

Conclusion

Gradient boosted regression (GBR) provides a significant improvement from the simple feed-forward neural network used in PAPA.

Further improvements are achieved by exploiting the larger available dataset which allows the use of additional features in the

machine learning. Our best predictor (GBR4), which we now refer to as abYpap, uses 40 features (37 residue positions and three

loop lengths). All the methods tested are better than AlphaFold2 at predicting the packing angle. In addition we compared our

results to those presented by Bujotzek et al. (2015). The most comparable of their parameters (HL) was predicted with an RMSE of

2.64 (compared to our RMSE of 2.13 for GBR4). However, our packing angle and HL cannot be compared directly as they describe

slightly different angles and the datasets used are significantly different. It should also be noted that abYpap is a standalone

easy-to-use open-source predictor, while Bujotzek et al.’s predictor is part of a larger modelling system.

As with our previous work, the applications of this work are 2-fold. First, we have shown that increasing the set of VH/VL
interface residues used increases the performance of the predictor. This implies that these additional residues are important in

defining the packing angle and therefore may also be of importance in antibody humanization. Second, this much-improved ability

to predict the packing angle may be useful in improving antibody modelling: the packing angle can be imposed on the model or

used in selecting a single parent structure with light and heavy chains paired in the correct orientation.
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