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ABSTRACT

Motivation: Protein-protein interactions are vital for protein function

with the average protein having between three and ten interacting

partners. Knowledge of precise protein-protein interfaces comes

from crystal structures deposited in the Protein Data Bank (PDB),

but only 50% of structures in the PDB are complexes. There is

therefore a need to predict protein-protein interfaces in silico and

various methods for this purpose. Here we explore the use of a

predictor based on structural features and which exploits random

forest machine learning, comparing its performance with a number

of popular established methods.

Results: On an independent test set of obligate and transient

complexes, our IntPred predictor performs well (MCC=0.370,

ACC=0.811, SPEC=0.916, SENS=0.411) and compares favourably

with other methods. Overall, IntPred ranks second of six methods

tested with SPPIDER having slightly better overall performance

(MCC=0.410, ACC=0.759, SPEC=0.783, SENS=0.676), but

considerably worse specificity than IntPred. As with SPPIDER,

using an independent test set of obligate complexes enhanced

performance (MCC=0.381) while performance is somewhat reduced

on a dataset of transient complexes (MCC=0.303). The trade-off

between sensitivity and specificity compared with SPPIDER suggests

that the choice of the appropriate tool is application-dependent.

Contact: andrew@bioinf.org.uk –or– andrew.martin@ucl.ac.uk

Supplementary Information: SupplementaryMaterial.pdf;

Datasets.xls.

1 INTRODUCTION

Protein-protein interactions are vital for the function of proteins,

allowing them to carry out fundamental biological processes.

Proteins interact via interfaces, areas of protein surface that are

geometrically and physico-chemically complementary, allowing

energetically favourable interactions to occur. Comparative analysis

of human interaction databases shows that the number of complexes

greatly exceeds the number of interacting proteins in humans

(Futschik et al., 2007) as well as in other species (Missiuro et al.,

2009). In yeast for example, the average number of interacting

partners per protein has been estimated between 3 and 10 (Bork

∗to whom correspondence should be addressed

et al., 2004). Typically, the more advanced the species is, the

more connected the protein network is, indicating advancement in

regulation of processes (Keskin et al., 2008).

The main resource containing data on protein interfaces is x-ray

crystallographic structures of protein complexes deposited in the

Protein Data Bank (PDB). However, determining interfaces in this

manner is costly and time-consuming. Furthermore, only 50% of

structures in the PDB are protein complexes, the remainder being

monomers or complexes with nucleotide chains, small peptides and

ligand molecules. In addition, only a small fraction of true biological

complexes — particularly transient complexes — is present in the

PDB and verifying the presence of protein-protein interactions in a

high-throughput manner is a hard problem. There is thus a need to

predict interfaces in silico, to further the understanding of biological

processes, as well as to inform drug design (Fletcher and Hamilton,

2006).

The nature of x-ray crystallography leads to crystal structures

containing biologically irrelevant crystal contacts, or lacking

relevant contacts. For biologically meaningful interfaces to

be understood, biological contacts must be regenerated, or

distinguished from crystal contacts. The ‘Protein, Interfaces,

Structures and Assemblies’ (PISA) resource derives data from

the PDB using a method based on chemical thermodynamics to

distinguish macromolecular assemblies from non-biological crystal

contacts (Krissinel and Henrick, 2007).

A large number of methods exist for the prediction of protein-

protein interaction sites (for reviews, see de Vries and Bonvin

(2008) and Esmaielbeiki et al. (2016)), the majority of which apply

a machine learning method trained on a set of features derived from

the sequences and/or structures of proteins with known interface

sites. Prediction methods vary in the datasets used for training

and testing, how interface residues are labelled, the nature of

the interface type (i.e. transient and/or obligate), the nature of

the prediction (e.g. patch- or residue-predictions), the selection of

residues for evaluation (e.g. all or just surface residues), the features

used and the machine learning method applied.

One of the biggest challenges in the field of protein-protein

interface prediction is the lack of consensus on how methods

should be evaluated and compared. In particular, benchmarking on

independent test sets has shown that the performance of methods

tends to be over-optimistically reported (Zhou and Qin, 2007;
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Porollo and Meller, 2007), which is most likely due to the common

custom of reporting cross-validated performance on training data

only, rather than testing on an independent dataset.

Some of the most commonly-used features that have been shown

to differ significantly between interface and non-interface residues

include amino acid propensity scores (Lo Conte et al., 1999),

secondary structure (Neuvirth et al., 2004), solvent accessibility

(Jones and Thornton, 1997) and sequence conservation (Zhou and

Shan, 2001). Generally these preferences have been exploited for

prediction of protein-protein interfaces by using machine learning

methods, including support vector machines (Koike and Takagi,

2004; Bordner and Abagyan, 2005; Bradford and Westhead, 2005;

Chung et al., 2006; Wang et al., 2006) and neural networks

(Fariselli et al., 2002; Ofran and Rost, 2003; Chen and Zhou,

2005; Porollo and Meller, 2007). However, the random forest

algorithm (Breiman, 2001) has been relatively underused for this

purpose, despite its success in a range of biological problems,

including activity prediction from chemical structure (Svetnik et al.,

2003), renal tumour classification (Shi et al., 2005), detection of

multiple-sclerosis-linked gene candidates (Goldstein et al., 2010)

and prediction of disease associated mutations (Al-Numair and

Martin, 2013; Al-Numair et al., 2016).

Here, the IntPred method for prediction of protein-protein

interaction sites is presented. For a given PDB structure, IntPred

uses sequence and structure information to create features that are

the input to a random forest machine learning predictor, which will

output a prediction label at either the surface patch- or residue-level.

IntPred is cross-validated on a large set of structures obtained from

PISA, as well as tested and compared with existing popular methods

on an independent test set.

2 MATERIALS AND METHODS

2.1 Datasets

In order to create a training dataset, 58,397 biological units available

in PISA were downloaded and both transient and obligate interfaces

were included. Viral capsids and NMR entries were first removed,

as were structures with resolution worse than 3 Å or R-factor

greater than 30%. Peptide chains (<30 amino acids) were also

removed and then any structure with more than one chain was kept,

leaving 25,876 structures formed from 87,738 chains. To remove

redundancy, these chains were clustered at 25% sequence similarity

using PISCES (Wang and Dunbrack, 2003), culling ‘by chain’

and all other parameters set to their defaults. From each cluster, a

representative chain was selected by choosing the chain with the

best resolution or, if tied, the best R-factor. The final training set

contained 4,345 chains.

In order to create an independent test dataset, all the new

biological units made available from the PISA resource over the

following 5 months were obtained and filtered using the same

procedure as described for the training set, with the exception that

no clustering to remove redundancy was performed. This resulted in

4,204 chains.

A dataset of obligate and transient interfaces was built from the

independent test set using NOXclass (Zhu et al., 2006), a high

performance prediction method that predicts protein interactions

as either obligate, non-obligate (transient) and/or crystal packing

contacts. As NOXclass is run on a pair of interacting chains, a list

was first created of all interacting chain pairs in the PQS files of the

independent test set. NOXclass was run using all features except

the ‘ConSurf score’ in multi-stage mode, where an interaction

is first given percentage scores for the ‘biological’ and ‘crystal

contacts’ labels and then another set of scores for the ‘obligate’ or

‘non-obligate’ labels (the ‘biological’ and ‘crystal contacts’ scores

were ignored since PQS files should already have eliminated non-

biological crystal contacts). Each pair was labelled ‘obligate’ if the

‘obligate’ score was higher than 50% and as ‘transient’ otherwise.

Any PQS file that was predicted to contain both obligate and

transient interfaces was discarded, leaving 916 obligate and 149

non-obligate PQS structures.

The content of the datasets is described in supplementary file

‘Datasets.xls’.

2.2 Surface patch creation

In order to calculate the properties of subsets of a protein surface,

it has to be divided into fragments. The program pdbmakepatch

from the BiopTools tool set (Porter and Martin, 2015) was used to

form overlapping surface patches from the protein surface.

Before introducing the algorithm implemented by

pdbmakepatch, the following terms must be introduced:

• Patch centre atom is the central atom that is input to

pdbmakepatch around which the patch is built. The residue

to which the atom belongs is termed the ‘patch centre residue’.

• Patch radius is the threshold distance from the patch centre

atom used to select candidate residues for inclusion within the

final patch.

• Contact radius is defined for a pair of atoms as the sum of

their van der Waals radii, plus a tolerance (here set to 0.2 Å).

Two atoms are in contact if the distance between their centres

is less than the contact radius.

• Residue geometry vector is a vector defined for a given

residue with its initial point at the Cα and its terminal point at

the centre of geometry of the 10 spatially closest neighbours.

The centre of geometry is calculated as the average of the

neighbours’ Cα coordinates.

• Residue solvent vector is also defined with its initial point at

the Cα of a given residue, but points in the opposite direction

to the residue geometry vector.

• Solvent angle is defined between two residues and is the angle

between the two residue solvent vectors.

For a given PDB file and a patch centre atom, pdbmakepatch

iteratively builds a patch using the following procedure:

1. Define P as the initially empty set of atoms in the patch and

add the patch centre atom to P .

2. Determine all residues with at least one atom centre within the

patch radius from the patch centre atom. These are the set of

residues C that are candidates for inclusion within the patch.

3. For each member of P , test if any of the members of C are in

contact. If a member of C is in contact with a member of P and

the solvent angle between them is less than 120◦ then move it

to P .
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Fig. 1. Residue geometry and solvent vectors. A candidate atom (red) is

within the contact distance of a patch atom (purple). The residue geometry

vectors (white) are used to calculate solvent vectors (black) and the angle

between them is calculated. Because the angle is > 120◦, the candidate atom

is not included in the patch.

4. Repeat step 3 until no more members of C are moved to P .

5. Label any residue with an atom in P as a patch residue.

The solvent angle test is used to avoid including residues from

opposite sides of a pocket in the same patch, preventing the creation

of discontinuous patches (see figure 1) (Jones and Thornton, 1997;

Pettit et al., 2007).

Generating patches from a structure

For all of the structures used in this study, a set of overlapping

patches was created to represent its surface. In order to create such a

set, residues with relative solvent accessibility (RASA) >25% were

identified. This is the set of patch centre residues. For each patch

centre residue, the atom with the highest absolute solvent accessible

area (ASA) is found. Each of these highly-solvent accessible atoms

is a patch centre atom that is input into pdbmakepatch.

Two different patch radii were tested: 9 and 14 Å. A 9 Å patch

radius corresponds to the smallest biological interface found in the

training set, whilst 14 Å corresponds to the minimum patch size

needed for an interface to occur, according to Bogan and Thorn

(1998).

Assigning class labels

The class label of a patch is calculated by assessing the fraction of

its total relative solvent accessible area (RASA) that is contributed

by residues that have been defined as interface residues. A residue i

is defined as interface if the following holds

RASA
n
i − RASA

c
i ≥ 10% (1)

Fig. 2. An example interface site (bordered in yellow), an interface patch

(cyan) and a rim patch (magenta). The fraction of the rim patch’s surface

involved in the interface is not high enough for the patch to be labelled as

interface. See Equation 3.

where RASAn
i and RASAc

i are the non-complexed and complexed

RASA values of i respectively. The ‘interface fraction’, fASAp, for

a patch p containing a set of residues rp and subset of interface

residues rintf is calculated as

fASAp =

∑

j∈rintf

RASAn
j

∑

i∈rp

RASAn
i

(2)

A class attribute value Cp is then assigned for the patch as

Cp =







I, if fASAp ≥ 0.5,
S, if fASAp = 0,
U, otherwise.

(3)

where the value U corresponds to unlabelled and is assigned to

patches that are on the rim of the interface (see figure 2). Patches

with class attribute value U are excluded from training and testing

at patch level to ensure that classification remains a binary problem,

but are included during testing when patch predictions are mapped

to residue predictions (see ‘Mapping from patch to residue-level

prediction’, below).

2.3 Features

IntPred uses 11 features for learning and prediction (summarised

in table 1) which can be divided into sequence features and

structural features. The distributions of the residue-level features

on which these patch-level features are based were all found

to differ significantly between interface and non-interface (see

supplementary figures 1–5).
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Table 1. Summary of IntPred features. See text for description of how these

features are calculated.

Feature Description Type

Sequence

prop propensity score Continuous numeric

hpho hydrophobicity Continuous numeric

homology homology conservation score Continuous numeric

FEP FEP conservation score Continuous numeric

Structural

SS disulphide bonds Continuous numeric

Hb hydrogen bonds Continuous numeric

helix (H) α-helix secondary Structure Binary categorical

sheet (E) β-sheet secondary Structure Binary categorical

mix (EH) mixed secondary Structure Binary categorical

coil (C) coil secondary Structure Binary categorical

pln planarity Continuous numeric

intf class label Binary categorical

Sequence features

The following features only take sequence-based properties into

account. As these features are based on residue scores, the score

of a patch is simply the average of the scores of its residues.

Hydrophobicity: The hydrophobicity of a residue is simply its

hydrophobicity value on the Kyte and Doolittle hydrophobicity

scale (Kyte and Doolittle, 1982).

Propensity: The propensity of a residue i of type X is calculated

as

Pr(i,X) =

(

ln
Fintf(X)

Fsurf(X)

)

× ASA(i)

ASAsurf(X)
(4)

where Fintf(X) and Fsurf(X) are the interface and surface fractions

(defined below) of residue type X , ASA(i) is the non-complexed

absolute solvent-accessible area of residue i and ASAsurf(X) is

the average absolute ASA for all surface residues of type X . The

inclusion of ASA(i) means that the empirically-obtained ASA of

residue i is incorporated, rather than treating the contribution of

every residue of type X as identical. Additionally, the inclusion of

ASAsurf(X) controls for the difference in amino acid size, avoiding

over-representation of bulky residues.

A positive propensity value indicates over-representation of

residue type X in the interface set, while a negative propensity value

indicates an under-representation.

For residue type X , the interface fraction Fintf is calculated as

Fintf(X) =

∑

ASAn
intf(X)

∑

ASAn
intf

(5)

where the numerator is the total non-complexed absolute solvent

accessibility for all training set interface residues of type X

and the denominator is the total non-complexed absolute solvent

accessibility of all interface residues.

Similarly, the surface fraction Fsurf(X) is calculated as

Fsurf(X) =

∑

ASAn
surf(X)

∑

ASAn
surf

(6)

with corresponding values for the set of non-interface surface

residues of the training set.

Conservation scores. For each residue, two conservation scores

are calculated: a functionally-equivalent protein (FEP) score and

a homologue score. Each score is calculated on the basis of an

alignment produced using the matches generated from two different

resources.

In order to calculate FEP scores, PDBSWS (Martin, 2005) is used

to determine an associated UniProtKB/SwissProt entry for a given

PDB chain. The FOSTA resource (McMillan and Martin, 2008) is

then used to find the family of functionally-equivalent orthologues

of which the entry is a member. If this family contains at least nine

other members, then it is taken forward for alignment.

In order to calculate a homologue score, a BLAST search

(Altschul et al., 1990) against the UniProtKB/SwissProt database

using the sequence of the PDB chain is undertaken, using default

parameters. Matches containing any of the terms putative, predicted

or hypothetical are discarded, as are matches with an E-value >

0.01. If a minimum of 10 sequence matches are retained, then up to

200 of the top hits (ranked by lowest E-value) are taken forward for

alignment.

For each set of matches, Muscle Version 3.7 (Edgar, 2004) is used

with default parameters to produce an alignment. Each alignment is

used to calculate residue conservation scores using the ‘Valdar01’

method (Valdar and Thornton, 2001), implemented in our in-house

program scorecons, part of the BiopTools package (Porter and

Martin, 2015). For both conservation scores, the score of a patch is

the average of the score of its residues.

Structural features

The following features require structural information in order to be

calculated.

Averaged features: Again, these features are calculated at the

residue level and calculated for a patch by averaging the scores of

its residues.

Intra-chain disulphide bonds are identified by using the

pdblistss tool from BiopTools. pdblistss identifies

disulphide bonds by searching for Sγ-pair distances of less than

2.25 Å. This distance measure is based upon the average disulphide

Sγ distance determined by Hazes and Dijkstra (1988), with an

additional 10% tolerance for structure inaccuracy. A residue is

given a score of 1 if it forms a disulphide bond or 0 otherwise.

Intra-chain hydrogen bonds are identified using the pdbhbond

tool from BiopTools. pdbhbond identifies hydrogen bonds using

the rules of Baker and Hubbard (1984). Given a donor atom D

(to which the hydrogen is bound) and an acceptor atom A, where

hydrogen positions can be calculated, a hydrogen bond is formed

if the H. . .A distance is ≤2.5 Å and the angle at the hydrogen is

90–180◦; where the hydrogen position cannot be calculated, the

D. . .A distance must be ≤3.35 Å and the angle between the donor

antecedent, D and A is 90–180◦. A residue is given a score of 1 if

it is involved in a hydrogen bond and 0 otherwise.

Secondary structure: Secondary structure is assigned to a

residue using the pdbsecstr tool from BiopTools, which assigns

secondary structure according to the method of Kabsch and Sander

(1983). The secondary structure assignment of a patch SSp follows:

SSp =















H if α > 20% and β ≤ 20%,

E if α ≤ 20% and β > 20%,

EH if α > 20% and β > 20%,

C if α ≤ 20% and β ≤ 20%

(7)
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where α and β are the percentages of residues assigned as α-helix

and β-sheet respectively.

Planarity: Patch planarity is calculated by finding the root mean

squared distance of all atoms of the patch from a plane of best fit.

The plane of best fit is found by centring the (x, y, z) coordinates

of the atoms of the patch and then undertaking PCA. The first and

second primary components of the PCA define the plane of best fit.

2.4 Machine Learning

All machine learning was performed using WEKA version 3.6.3

(Witten et al., 2011; Hall et al., 2009).

All supervised classifiers implemented in WEKA 3.6.3 were

trained on the training data set with a patch radius of 9 Å and

evaluated using 10-fold cross-validation. It was found that no

available machine learning method significantly outperformed the

others (see supplementary figure 6) and thus two models were

carried forward for further testing: neural networks and random

forests. Neural networks were chosen owing to their previous

successful application in the field and random forests because of

their success in other biological problems.

Neural networks were implemented using the

‘MultilayerPerceptron’ method in WEKA. Models with 5 hidden

layer nodes (H=5) and 50 hidden layer nodes (H=50) were tested,

but no improvement in performance was seen using H=50, while a

10-fold increase in the time to build the model was required.

The random forest algorithm implemented in WEKA was trained

using 100 trees. 150 trees was also tested, but the improvements

seen were too small to justify the increased time taken to train the

forest. When there are p input features, it is recommended to use a

feature bag size (Mtry) of
√
p (Hastie et al., 2009) and thus a feature

bag size of 3 was chosen. Additionally, a range of feature bag sizes

from 2 to 9 were tested but no improvement was seen.

Because SSp (equation 7) is a nominal value that has four

possible values, WEKA converts it into four binary attributes.

For both FEP and homologue scores, if insufficient sequences are

available for the alignment to be performed, then missing values

will be passed to the machine learning. WEKA deals with missing

values for neural networks by imputing a value based on the mean

of the distribution, while for random forests it uses the ‘fractional

instances’ method. When a feature is used to split instances, any

instances with missing features are sent to all child nodes, but

weighted at each node according to the proportion of the number of

instances at that node without a missing value and the total number

of instances with no missing values across all child nodes.

The effect of using patch radii of 9 Å and 14 Å was tested, as well

as different combinations of feature types.

2.5 Method Performance Measures

In order to evaluate the performance of a binary classifier, a number

of different measurements can be used (see supplementary table 1).

Overall, the Matthews’ Correlation Coefficient (MCC), which

describes the correlation between the predicted and actual labels, is

the most comprehensive measure since it is calculated using all four

outcomes. However, MCC can hide an important trade-off between

Sensitivity (the fraction of positive cases correctly labelled as

positive) and Precision (the fraction of positively labelled cases that

are actually positive, also known as the Positive Predictive Value)

or Specificity (the fraction of negative cases correctly labelled as

negative).

2.6 Mapping from patch to residue-level predictions

In order to compare the IntPred method with existing methods,

residue-level predictions must be produced. This is done by

mapping the prediction label of a patch to its central residue.

Because only those residues that have an RASA > 25% are defined

as patch centre residues, those surface residues with an RASA

between 10 and 20% will have no prediction label. Thus, in order to

predict across all surfaces residues, these low-RASA surface residues

are always predicted as non-interface.

2.7 Running Existing Methods

Interface predictions using IntPred were then performed using the

independent test dataset described in the Materials and Methods.

Several previously published protein-protein interface prediction

tools were also assessed using this dataset: ProMate (Neuvirth

et al., 2004) was accessed through the web page (bioinfo.

weizmann.ac.il/promate/) for batch queries using the

default combination of scores and extracting amino acids coloured

according to their probability of comprising an interface (set as the

temperature factor in the PDB file). SPPIDER (Porollo and Meller,

2007) predictions were obtained from sppider.cchmc.org/,

using the SPPIDER II classifier. PIER (Kufareva et al., 2007)

predictions were obtained from abagyan.ucsd.edu/PIER/

pier.cgi as downloadable comma-separated value files. meta-

PPISP (Qin and Zhou, 2007) and PINUP (Liang et al., 2006) scores

used within meta-PPISP were both obtained from pipe.scs.

fsu.edu/meta-ppisp.html.

Each surveyed classifier provided residue-level predictions as

numerical values. The same thresholds used in the original papers

were used for all the methods to indicate a positive prediction

(residue predicted as interface): p > 70 for ProMate; predicted

by ≥ 5 neural networks for SPPIDER; score ≥ 30 for PIER; and

p > 0.34 for meta-PPISP.

3 RESULTS

3.1 Overall Performance

Cross-validated performance was evaluated using different patch

sizes and with different subsets of feature types. Table 2 shows the

performance of the random forest which significantly out-performed

the neural network (see supplementary table 2). In particular, a

random forest trained on patches with a radius of 14 Å, with all

features as input, performs best and this random forest model was

titled ‘IntPred’ and carried forward for further testing.

The predictive performance of IntPred on the surface residues

of the independent test set in comparison with existing methods is

shown in table 3. IntPred gives the highest precision of all methods,

and thus one can be more confident that residues predicted as

interface by IntPred are likely to be correct. Though SPPIDER has a

lower precision and specificity than IntPred, its higher sensitivity

leads to it having the highest MCC score of all the methods

tested. However, SPPIDER also has the lowest specificity of all the

methods tested. Thus, when comparing IntPred and SPPIDER, there

is an obvious trade-off between sensitivity and precision/specificity:

5



Northey et al.

Table 2. Random forest performance.

CFEP=conservation score calculated over functionally equivalent proteins

from FOSTA, CHOM=conservation scores calculared from homologues

collected by a BLAST search of UniProtKB/SwissProt. Structural attributes

were used in all instances. SR=single-residue patches, ACC=accuracy,

PREC=precision, SPEC=specificity, SENS=sensitivity, MCC=Matthews’

correlation coefficient, F=F-measure. The highest score in every column is

shown in bold. Mtry (the number of randomly chosen attributes in every

split) was set to 3 and T (the number of trees) was set to 100 in all cases,

these having been found to provide the best performance (data not shown).

All scores are averages over 10-folds of cross-validation.

Patch Attributes Performance

radius CFEP CHOM ACC PREC SPEC SENS MCC F

SR X X 0.755 0.537 0.944 0.194 0.208 0.285

SR X 0.749 0.502 0.939 0.184 0.184 0.269

SR X 0.737 0.453 0.913 0.213 0.170 0.290

SR 0.710 0.370 0.875 0.218 0.114 0.274

9 X X 0.760 0.679 0.906 0.439 0.398 0.533

9 X 0.752 0.665 0.906 0.413 0.373 0.509

9 X 0.750 0.651 0.894 0.433 0.374 0.520

9 0.733 0.608 0.881 0.405 0.327 0.486

14 X X 0.795 0.747 0.894 0.604 0.528 0.668

14 X 0.780 0.725 0.888 0.573 0.492 0.640

14 X 0.780 0.718 0.882 0.582 0.492 0.643

14 0.764 0.691 0.871 0.555 0.453 0.616

Table 3. Benchmarking of IntPred and other previously published

general PPI methods using an independent test set. ACC=accuracy,

PREC=precision, SPEC=specificity, SENS=sensitivity, MCC=Matthews’

correlation coefficient, F=F-measure. The highest score in every column

is shown in bold. IntPred refers to the random forest model trained on all

features and 14 Å-radius patches mapped to a residue-level prediction while

IntPred (patch) refers to performance at the patch level.

Method ACC PREC SPEC SENS MCC F

ProMate 0.780 0.401 0.987 0.031 0.058 0.057

PIER 0.754 0.511 0.932 0.214 0.207 0.302

SPPIDER 0.759 0.472 0.783 0.676 0.410 0.556

PINUP 0.772 0.459 0.927 0.220 0.199 0.298

meta-PPISP 0.755 0.499 0.902 0.300 0.245 0.375

IntPred 0.811 0.564 0.916 0.411 0.370 0.473

IntPred (patch) 0.771 0.803 0.922 0.522 0.500 0.633

IntPred is more likely to miss a true interface residue than SPPIDER,

but is more likely to be correct when it does predict a residue as

interface. In contrast, SPPIDER over-predicts interface residues,

leading to more true interface residues being correctly labelled, but

also more non-interface residues being incorrectly labelled.

Table 3 also shows the patch-level performance of IntPred on the

independent test set. In comparison with residue-level prediction,

patch-level performance is markedly better: specificity is similar,

but precision is much higher. However, for patch-level predictions,

only non-interface and interface patches were used to calculate

evaluation statistics, ignoring predictions on U -labelled (rim)

patches.

Table 4. Comparison of the performance of methods (assessed by MCC) on

obligate and transient complexes. Overall performance is show in table 3.

MCC

Method Obligate complexes Transient complexes

ProMate 0.037 0.166

PIER 0.288 0.217

SPPIDER 0.426 0.311

PINUP 0.205 0.235

meta-PPISP 0.257 0.268

IntPred 0.381 0.303

Examples of predictions for the light chain of mouse antibody

HyHEL-5 (PDB code 1yqv chain L), Bos taurus actin-related

protein 2/3 complex subunit 3 (PDB code 3dxk chain E),

Felis silvestris catus hemoglobin-β chain (PDB code 3d4x,

chain B) and a poorer prediction for Salmonella typhimurium

uridine phosphorylase (PDB code 3dps, chain A) are shown in

supplementary figures 7–10.

3.2 Obligate and Transient Complexes

The dataset used in training and evaluating IntPred was derived from

the protein databank. Consequently it could be argued that many

of these structures are obligate complexes, whose interface may be

rather different from those in transient complexes (obligate complex

interfaces tend to be more hydrophobic, dominated by aromatic

residues, more conserved and larger). Indeed obligate interfaces

are of less interest to a predictor that relies on structure since

information on the interaction is already available in the crystal

structure.

Consequently, a dataset derived from the independent test set,

separated into obligate and transient complexes was evaluated using

MCC with IntPred and the other five popular predictors (table 4).

IntPred does slightly better on obligate complexes than it

did overall (MCC=0.381 on obligate; MCC=0.370 overall) and

performs somewhat worse on transient complexes (MCC=0.303).

Notably, using MCC as an evaluator, IntPred maintains its second-

ranked position on both obligate and transient complexes while

SPPIDER again performs best. The performance of SPPIDER

shows a similar trend to IntPred, being better on obligate

complexes than overall (MCC=0.426 on obligate; MCC=0.410

overall) and somewhat worse on transient complexes (MCC=0.311).

Interestingly the drop in performance for SPPIDER on transient

complexes is rather larger than that seen for IntPred closing the gap

in their MCC performance.

In our evaluation, ProMate performs particularly badly overall,

but has been trained specifically for use on transient complexes.

As expected, its performance is even worse when tested only on

obligate complexes, but increases by a factor of > 2.8 when

tested only on transient interfaces. Nonetheless, it remains the worst

performing method in this evaluation.

4 DISCUSSION

In this study, we have presented IntPred, a random forest machine

learning predictor for the prediction of protein-protein interface
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sites. The method can predict at both the surface-patch level and the

residue level. Testing of IntPred, as well as five popular methods,

on an independent test set showed that IntPred outperformed all

existing methods except SPPIDER, using MCC as a comparator.

However, there is a sensitivity vs. precision/specificity trade-off

between IntPred and SPPIDER such that one may be more suitable

than the other given the problem in hand. If false positives are less

tolerated than false negatives, then IntPred is preferable, whilst

SPPIDER is more suitable for the converse. As with SPPIDER,

IntPred performance assessed by MCC on a dataset of obligate

complexes is slightly better than the overall performance, while

on transient complexes it is somewhat worse. Nonetheless, the

performance of IntPred on transient complexes is greater than the

performance of all other methods (with the exception of SPPIDER)

on obligate complexes or overall.

While the overall prediction performance is comparable

with SPPIDER (trading sensitivity for precision/specificity), the

comparison of random forests with neural networks (shown in

supplementary table 2) illustrates the higher performance of random

forests on this type of problem. Random forests are robust to over-

prediction when non-orthogonal features (such as the two measures

of conservation) are used as inputs.

Performance may be improved in the future by combining both

IntPred and SPPIDER, along with other methods, in order to a

produce a meta-predictor. The fact that the gap in MCC between

IntPred and SPPIDER on transient complexes is much reduced

suggests that, as the datasets increase in size, we should be able to

train a version of IntPred solely on transient complexes and achieve

better performance than SPPIDER. We also hope to exploit larger

functional families (FunFams) developed by the Orengo group to

improve the conservation score calculation (Das et al., 2015).

The source code for IntPred is available at github.com/

ACRMGroup/intpred/ and IntPred is available to run via a

web-server at www.bioinf.org.uk/intpred/.
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