
BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–6

Mapping PDB Chains to UniProtKB Entries
Andrew C.R. Martin

�

Department of Biochemistry and Molecular Biology, University College London, Gower Street,
London WC1E 6BT

ABSTRACT
Motivation: UniProtKB/SwissProt is the main resource for detailed
annotations of protein sequences. This database provides a jumping-
off point to many other resources through the links it provides. Among
others, these include other primary databases, secondary databases,
the Gene Ontology and OMIM. While a large number of links are pro-
vided to PDB files, obtaining a regularly updated mapping between
UniProtKB entries and PDB entries at the chain or residue level is not
straightforward. In particular, there is no regularly updated resource
which allows a UniProtKB/SwissProt entry to be identified for a given
residue of a PDB file.
Results: We have created a completely automatically maintai-
ned database which maps PDB residues to residues in Uni-
ProtKB/SwissProt and UniProtKB/trEMBL entries. The protocol uses
links from PDB to UniProtKB, from UniProtKB to PDB and a brute-
force sequence scan to resolve PDB chains for which no annotated
link is available. Finally the sequences from PDB and UniProtKB are
aligned to obtain a residue-level mapping.
Availability: The resource may be queried interactively or downloa-
ded from http://www.bioinf.org.uk/pdbsws/

Contact: andrew@bioinf.org.uk –or– a.martin@biochem.ucl.ac.uk

1 INTRODUCTION
The Protein Databank (Berman et al., 2000, PDB) is the primary
resource in which protein structure data are deposited while Swiss-
Prot and trEMBL (Boeckmann et al., 2003) are the major resources
containing protein sequence data. trEMBL is an automatic trans-
lation from the EMBL DNA databank while SwissProt contains a
huge number of carefully maintained manual annotations. A recent
effort has seen the integration of the SwissProt and trEMBL data
with the Protein Information Resource (PIR) to create the UniProt
Knowledgebase (UniProtKB) (Bairoch et al., 2005), designed as
the central access point for extensive curated protein information,
including function, classification, and cross-references.

One might expect that mapping between the PDB and UniProtKB
would be a trivial exercise. However, this is not the case. In some
cases, PDB entries provide cross-links to UniProtKB/SwissProt;
in other cases, UniProtKB/SwissProt provides cross-links to PDB;
in other cases, no link between the resources is supplied. In the
case of cross-links provided from the PDB, this may be to the
UniProtKB/SwissProt accession code or the identifier. These may
become out-dated and are rarely corrected in PDB entries. Clearly,
a mapping between the PDB and UniProtKB/SwissProt is extremely
valuable: the detailed annotations and cross-links to other resources
available in UniProtKB can then be applied to PDB chains. Recent
changes to UniProtKB/SwissProt have improved the mapping and

�
To whom correspondence should be addressed

have added PDB chain information and the range of residues in
the UniProtKB/SwissProt entry which corresponds to a given PDB
chain.

Previously, we developed a mapping between PDB chains
and UniProtKB/SwissProt codes as part of an analysis of pro-
tein fold distributions for different enzyme classes (Martin et al.,
1998). In order to account for supplied links from PDB chain
to UniProtKB/SwissProt, UniProtKB/SwissProt entry to PDB file
and unlinked files, the process was surprisingly complex. More
recently, we developed a system for mapping between PDB
protein chains and enzyme classification (EC) numbers, availa-
ble online at http://www.bioinf.org.uk/pdbsprotec/
(Martin, 2004) and a system for mapping SNP data onto protein
structures (Cavallo and Martin, 2005). In these cases we made use
of a mapping between PDB chains and UniProtKB/SwissProt codes
made available to us by the EBI. However, the downloadable ver-
sion of this resource is not regularly updated leading to a need for
us to develop an automatically updated version.

Links in the PDB to a UniProtKB/SwissProt entry may contain
either the UniProtKB/SwissProt identifier (ID) or the accession code
(AC), and are presented at the chain level. Links in the other direc-
tion (from UniProtKB/SwissProt to the PDB) are updated more
frequently, but until Release 45 of UniProtKB/SwissProt (October,
2004) were at the whole PDB file level. In our previous implemen-
tation, fasta33 (Pearson and Lipman, 1988) was used to resolve
which chain was involved and a brute-force FASTA search against
UniProtKB/SwissProt was used for any unassigned chains. In 1998,
the whole process took some 3–4 days to run and unfortunately was
not designed in a manner that could allow fast easy updates as new
PDB or UniProtKB/SwissProt entries become available.

With the exponential growth in the size of the PDB and the
sequence databanks, a complete run now takes of the order of
10 days on a single Athlon XP 2800+ processor. Since the
data resources (UniProtKB/SwissProt, UniProtKB/trEMBL and the
PDB) are typically updated within this period, it becomes essential
either to parallelize the procedure or, more efficiently, to move to a
system which is automatically updateable and does not need to be
re-generated from scratch.

The problem of PDB chain to UniProtKB/SwissProt map-
ping has been partially addressed by the Research Collabora-
tory for Structural Bioinformatics (RCSB). Their beta site provi-
des a mapping of PDB files to associated UniProtKB/SwissProt
entries (ftp://beta.rcsb.org/pub/pdb/uniformity/
derived data/pdb2sp.txt). At the time of writing, this file
had been updated approximately a month earlier providing Uni-
ProtKB/SwissProt accession codes for most PDB chains (some
entries, for example 1a7m, are missing). Chimeric chains such as

c
�

Oxford University Press 2005. 1



Martin

chain A of PDB entry 1gk5 (Chamberlin et al., 2001) are also cor-
rectly handled, though there is no indication of which residues map
to which UniProtKB/SwissProt entry. However, a number of the
cross-links appear to be to other databases even when entries appear
in UniProtKB/SwissProt. For example, chain N of PDB entry 1a02
is given a cross-link to an entry simply termed ‘1353774’ (presu-
mably an EMBL or Genbank identifier), but this entry should map
to UniProtKB/SwissProt entry Q13469. Prior to recent updates, the
file had not been updated for almost two years when it had appeared
in a different format listing the entries without chain information
and providing both UniProtKB/SwissProt identifier and accession
for most entries (although the accession was missing from approxi-
mately 20% of entries). Clearly the file format is in a state of flux
and contains a number of inconsistencies and missing entries where
mappings should be possible.

The new XML format files containing PDB data (available at
ftp://beta.rcsb.org/pub/pdb/uniformity/data/
XML/) now provide a mapping between ‘entities’ and
UniProtKB/SwissProt entries where an entity corresponds to a
unique gene segment. However, this is a beta release; over the
course of this work, the format of these files has been in a state of
flux and there have been relevant changes. Like the original PDB
files, the XML files still suffer from inconsistencies in the use of
UniProtKB/SwissProt identifiers and accession codes.

In addition to including cross-links provided in the standard
PDB files, the RCSB mapping (in both the flat file and the XML
files) includes per-entity mappings derived from cross-links in Uni-
ProtKB/SwissProt entries. Thus, while a large amount of infor-
mation is available, extracting the UniProtKB/SwissProt accession
code together with the associated PDB chain and residue range
on a regular automated basis remains a complex task. One must
either parse all the XML files, or one must use the flat file (assu-
ming it is regularly updated) and resolve cases which are not correct
UniProtKB/SwissProt cross-links.

The problem has also been addressed by the Macromo-
lecular Structure Database (MSD) group at the European
Bioinformatics Institute (EBI). They have created a map-
ping between PDB chain and UniProtKB/SwissProt acces-
sion code at the individual residue level which is used in
the MSDlite search system (http://www.ebi.ac.uk/msd-
srv/msdlite/). The mapping is not restricted to cross-links
found in the two source databases and internally, their mapping cor-
rectly handles chimeric chains and provides a complete per-residue
mapping. However, this information is not available on the web ser-
ver version. The data are also available for download (complete with
information on chimeras), but the downloadable version is currently
only updated on an occasional basis, or on request. While more
complete than the mappings provided by the RCSB, it is still incom-
plete and a number of mappings (particularly those related to viral
proteins and antibodies) are absent.

2 METHODS
Here we describe a new, completely automated mapping which we
have performed and which is updated automatically as new data
become available from the PDB or UniProtKB (containing both
UniProtKB/SwissProt and UniProtKB/trEMBL).

sprot

date
sequence

*ac

acac
ac
*altac

idac
ac
*id

pdbac
*pdb
*ac
done

pdbsws
*pdb
length
date
source
*chain
start
aligned
*ac
identity
stop
fracoverlap
overlap
valid

alignment

pdbaa
*chain
swscount

resnam
ac
swsaa
resid

*pdb

*pdbcount

Fig. 1. Entity-relationship diagram for the database used for processing
the mapping data. A simple line represents a one-to-one relationship while
a ‘crow’s foot’ represents a one-to-many relationship. For example, one
UniProtKB accession in the ‘sprot’ table can link to several secondary acces-
sions in the ‘acac’ table. Primary keys are indicated with asterisks. The
‘pdbsws’ table is the main table linking PDB chains to UniProtKB entries
while links at the residue level are in the ‘alignment’ table.

The derivation of the mapping occurs in several stages each of
which is described below. The mapping is created within a Post-
greSQL relational database which may be queried via our web site
and is dumped to a flat file which may be downloaded. Each stage
of the mapping procedure is designed to be ‘updateable’. In other
words, re-running the procedure will only perform the necessary
updates. All processing is performed using a set of Perl scripts
which interface to PostgreSQL via Perl/DBI.

2.1 Mirroring the data
The UniProtKB data (‘full’ data files incorporating updates on
top of official releases) are mirrored from the Expasy FTP site
(ftp://ftp.expasy.org/databases/uniprot/
knowledgebase/) while the PDB
files are mirrored from the EBI
(ftp://ftp.ebi.ac.uk/pub/databases/rcsb/pdb/
data/structures/all/pdb). A modified version of the
well-known Perl mirror script is used which is capable of storing a
local de-compressed version of a remote compressed archive
(http://www.bioinf.org.uk/software/mirror/).

2.2 Extracting data from UniProt
PostgreSQL (http://www.postgresql.org/) is used to
store all the data during processing. The overall schema is illustrated
in Figure 1. The first processing stage is to extract data from Uni-
Prot. A Perl script is run on the UniProtKB/SwissProt data and again
on the UniProtKB/trEMBL data. The ‘sprot’ table is populated with
the accession code, the sequence and the date of the latest modifi-
cation. A second ‘acac’ table is populated with mappings between
primary and secondary accession codes. A third ‘idac’ table is popu-
lated with mappings between identifiers and accession codes. A
fourth ‘pdbac’ table is populated with mappings between an acces-
sion and a PDB code where these are provided. Since development
was started before UniProtKB/SwissProt introduced chain informa-
tion, these data are currently not stored. For updating, the database
table is then scanned for any entries which contain a primary acces-
sion code which is now present as a secondary accession code in the
‘acac’ table. These are deprecated entries and are deleted from the
database as the data have now been replaced by the new entry.

2



Mapping PDB Chains to UniProtKB Entries

To allow updating, before an entry is placed in the database, we
check whether it exists already. If it does not exist, we proceed as
above. If it does exist, then we compare the stored date with the date
read from the file. If the date is the same then we simply skip this
entry. If the date in the file is newer, then we update the sequence and
the date and replace all associated entries in the ‘acac’ and ‘pdbac’
tables.

2.3 Extracting chain information and mappings from
PDB files

Each PDB file is processed in turn to extract a list of the chains
it contains. For each chain, we store the PDB code, the chain,
an accession code of ‘?’, a flag to say the entry has not yet been
validated, the source of the information (‘pdbchain’ — simply an
indication that this is a chain in the PDB which has not yet been
mapped to UniProtKB/SwissProt), the date at which the entry was
processed, a flag to say that the entry has not yet been aligned and
four zero values which will later be replaced by percentage identity,
overlap, length and fraction-overlap when the chain is mapped to a
UniProt entry. All these data are stored in a single ‘pdbsws’ table.
This table is the main table which will provide all the mappings from
PDB chains to UniProtKB/SwissProt entries.

Cross-references to UniProtKB/SwissProt are also extracted from
DBREF records if they are present. These are generally indica-
ted by a database identifier of ‘SWS’; however a few cases use
‘UNP’ to indicate UniProt. If no DBREF records are found then
the procedure looks for REMARK 999 records. Where present,
these cross-references generally provide one UniProtKB code (ID
or accession), but in the case of chimeric chains, there may be more
than one code. Thus if there is only one code, we update the exi-
sting record in the ‘pdbsws’ table; if there are more entries, then
additional records are inserted into ‘pdbsws’. Where an accession
code was provided in the PDB file, we change the source of infor-
mation from ‘pdbchain’ to ‘pdb’ indicating that an accession code
has been assigned from information in the PDB file.

Currently, we assume that any changes made to a PDB file will not
affect the data in which we are interested. Updates to PDB files are
rare and tend to be minor in nature. More significant changes such
as corrections to the sequence are accommodated by removing a
PDB file (making it obsolete), replacing it by a new entry. Therefore
updating is handled simply by not re-processing any entry which
already exists in the database.

2.4 Fixing PDB cross-references and patching
information from UniProtKB for single-chain
entries

At this stage we implement a number of corrections to the informa-
tion extracted from PDB files. First some entries will have provided
UniProtKB/SwissProt IDs rather than accession codes. IDs always
contain an underscore character, so we replace these entries in the
‘pdbsws’ table with the accession obtained from the ‘idac’ table.

A further problem is that while outdated accession codes are
maintained in UniProtKB/SwissProt entries as ‘secondary accessi-
ons’, some UniProtKB/SwissProt IDs also change, but no reference
to these is maintained in the downloadable UniProtKB/SwissProt
files. For example, LYS CHICK recently changed to LYSC CHICK.
The UniProtKB/SwissProt cross-references in the PDB files are
therefore invalid. Such invalid entries are identified and the cross-
reference is replaced by an accession of ‘?’.

During testing, one PDB file was identified which contained both
the ID and the accession as separate DBREF records. Since the
‘pdbsws’ table enforces the constraint that the pdb code, chain and
accession must form a unique triplet (a compound primary key),
the updates will have failed and we can simply drop the entries for
which the code appearing in the ‘pdbsws’ table is an ID in the ‘idac’
table and the ID is not the same as the accession. In a few cases, the
PDB code appears in the DBREF cross-reference where one expects
to find the UniProtKB/SwissProt code. These entries are replaced
by accessions of ‘?’. All such ‘problem’ entries will be fixed during
the brute-force scan.

At this stage, the ‘pdbsws’ table will contain UniProtKB acces-
sion codes for all chains that have cross-references provided in the
PDB file even if these had been provided as identifiers. Howe-
ver, some of the accessions may be deprecated secondary accession
codes. We therefore replace these with the primary accession code
using the data stored in the ‘acac’ table. If a mapping between a
PDB chain and a UniProt primary accession exists, it is possible
that the entry with this primary accession will be removed from
UniProtKB in a future release. This accession will now become a
secondary accession code and a new accession will become the cor-
rect primary accession for this PDB chain. The update procedure
will automatically correct the accession should this situation arise.
It will also ensure that the entry is marked as unaligned, so that the
alignment between a PDB chain and the entry will be updated later
in the pipeline.

We then validate the accession codes to ensure that they are all
valid UniProtKB primary accessions. Once validated, the ‘valid’
flag in ‘pdbsws’ table is set.

Some mappings will appear both in PDB files and Uni-
ProtKB/SwissProt entries, so we now mark entries in the ‘pdbac’
table as done wherever we already have a mapping from the PDB.
PDB thus takes precedent over UniProtKB/SwissProt because,
when development was started, only the mapping in the PDB files
was provided at the chain level.

2.5 Adding cross-links from UniProt
In the next stage, we add cross-references supplied by UniProtKB
which were not supplied in the PDB files. In the case of single-chain
PDB files, this is easy since we can simply transfer the data from the
‘pdbac’ table to the ‘pdbsws’ table. The source field is updated to
indicate that the information came from UniProtKB/SwissProt.

Since development of this method was started before Release 45
of UniProtKB/SwissProt (the first one to have per-chain mappings
to the PDB), the process is more complex in the case of multi-chain
PDB files. In this case, we create a file in FASTA format contai-
ning the sequences from the PDB file. The UniProtKB sequence
is then extracted from the ‘sprot’ table into a FASTA file and ali-
gned with each sequence in the PDB-derived FASTA file using the
Smith-Waterman algorithm as implemented in ssearch33 (Pear-
son and Lipman, 1988). The best sequence identity is recorded and
all chains having this sequence identity are found. Entries in the
‘pdbsws’ table are updated to link the chain to the UniProt accession
and again, the source field is updated to indicate that the information
came from UniProt. Future development of the software may make
use of the per-chain information from UniProtKB/SwissProt.

For updating, we only transfer accessions from UniProtKB if
they do not already exist as valid accessions in the ‘pdbsws’ table.

3



Martin

In addition, we mark entries in ‘pdbac’ as used once the acces-
sion codes have been transferred to the ‘pdbsws’ table. Thus when
the processing code is run again, only un-used entries will be
considered.

2.6 Brute-force scan
At this stage, all cross-links between PDB files and UniProtKB ent-
ries that are available in the source data files have been inserted into
the main ‘pdbsws’ table.

Remaining entries in the table will fall into one of the following
categories: (1) Chains with entries in UniProtKB which do not have
cross-links listed in the source files; (2) Chains which do not have
corresponding entries in UniProt; (3) non-protein, or short-peptide
chains.

The next stage, therefore, is to perform a ‘brute-force’ scan of
remaining PDB chains against the combined UniProtKB (SwissProt
and trEMBL) database. First a combined UniProtKB FASTA file is
created if either the UniProtKB/SwissProt or UniProtKB/trEMBL
FASTA file has been modified since a concatenated version of the
two files was last created.

Any PDB chains which have not yet been assigned a valid
accession are scanned against the combined UniProtKB data using
fasta33. The sequence used for the PDB chains is that found
in the ATOM records. Any non-standard amino acids are simply
ignored (see, for example, the MSE residue at I113, I116 and I182
in PDB entry 487d). While it could be argued that the sequence
from the SEQRES records would be more appropriate for this scan,
this decision was made for consistency and simplicity since it is the
sequence from the ATOM records which must be used in the later
alignment stage. The best match is found and is accepted if either
(1) the overlap is at least 30 residues and the identity is at least 90%,
(2) the overlap is at least 15 residues with at least 93% identity (i.e.
14 out of 15 residues), or (3) the whole of the PDB chain is matched
with 100% identity. The ‘pdbsws’ table is updated with the acces-
sion code for the best match, together with the percentage identity,
the overlap, the length of the PDB chain and the fractional overlap.

Whether or not a match was found, the ‘pdbsws’ table is updated
to indicate that the entry has been processed with a brute-force scan
and the date on which this was performed is recorded. When running
an update, we need to find out whether PDB chains, which pre-
viously did not match a UniProtKB entry, match any new or updated
entries. Using the date stored for the last processing of an entry,
we create a FASTA database containing only those UniProtKB ent-
ries that have been added or updated since the PDB chain was last
processed and scan using fasta33 against only those entries.

When updating, we also check PDB chains where the sequence
identity was less than 100% or where less than 90% of the PDB
chain was matched. This is done to see if there are more recent
entries with a better match. Since this is somewhat more time-
consuming, it is only done on entries that were last processed at
least one month ago.

2.7 Perform alignments
The final stage of the processing is to align PDB chains with UniProt
entries. This is slightly inefficient in that alignments may well have
been performed already (during the brute-force scan) without sto-
ring the alignment data, but it makes the processing much simpler if
it is performed as an isolated step. The UniProtKB entry is extracted
from the ‘sprot’ table and written in FASTA format. The sequence

Approximate wall-clock
time (hours)

Processing Stage Initial population Updating
Processing SwissProt 0.5 0.5
Processing trEMBL 1.5 1.5
Processing PDB files 2.0 0.1
Fixing cross-references, etc 0.5 0.2
Brute Force Scan 216.0 13.0
Performing Alignments 13.5 0.6
Dumping Results 0.3 0.3
Database data analysis 0.5 0.5
Total 234.8 16.7

Table 1. Approximate times required to populate and update the database
shown in hours. Timings were on a system using an Athlon XP 2800+
processor, but are highly dependent on other parameters such as disk and
network access speeds and, most importantly, the size of the database. ‘Data-
base data analysis’ represents the time taken for PostgreSQL analyze steps
to update the indexes — see text.

of the PDB chain is extracted from the ATOM records of the file
and also written in FASTA format and the sequences are aligned
using ssearch33. The alignment is then mapped onto the residue
identifiers from the PDB file consisting of the residue number and
optional insert code.

Finally the alignments can be dumped to a flat file containing the
residue-level mappings between PDB chains and UniProtKB codes.

3 RESULTS AND DISCUSSION
Initial population of the database takes approximately 10 days
indicating why it is very important that the system is able to be
updated. An update corresponding to a new full release of Uni-
ProtKB/SwissProt takes less than 17 hours. Approximate timings
for populating the database and updating it are shown in Table 1.

The PostgreSQL database is easily able to cope with the rather
large tables. The ‘sprot’, ‘idac’ and ‘acac’ tables have more than
2 million rows each, while the ‘alignment’ table contains nearly
8 million rows. However, we found it was important to run the Post-
greSQL analyze command at regular intervals while populating
the database. This updates the statistics on the database contents
and allows indexes to work with maximum efficiency. If this was
not done, the main ‘postmaster’ process could start to crawl using
lots of CPU time and achieving very little.

Table 2 shows the number of chains mapped to UniProt entries
from each of the sources of information. The vast majority of entries
mapped using a link in the PDB entry will also have a link from
UniProt. However, since links from the PDB currently take priority
over links from UniProtKB, this information is not recorded.

3.1 Comparison with the EBI mapping
As a validation of the mapping we have created, we have made some
comparisons with the mapping produced and kindly provided to us
by the EBI.

We have identified one case in which a protein from the wrong
species has been identified by our method. PDB entry 1rbf (blank
chain name) is an exact match to UniProtKB/SwissProt entry
P61824 from Bison bison. However 1rbf is a structure of part of

4



Mapping PDB Chains to UniProtKB Entries

Source of mapping data Number of chains mapped
PDB entry 40664
UniProtKB 15057

�

Brute force scan 10324 �
DNA 6261
Short peptides 1647
fasta33 failed 111
Unmatched 1063

Table 2. Sources of link information in the complete mapping.
�
Since links

from PDB to UniProtKB take priority over links in the other direction, this
figure considers only those links from UniProtKB to PDB where links in the
other direction are absent. � While 10324 chains were assigned by the brute-
force scan, 815 of these were chains in multi-chain PDB files linked from
UniProtKB/SwissProt but which were not identified as matching because
other chains matched with a higher sequence identity. The true number of
additional chains found by the brute-force scan is therefore 9509.

the chain from Bos taurus (P61823). Over the 104 residues of the
sequence included in the structure, these two sequences are 100%
identical. Chain A of PDB file 1aby (Looker et al., 1992) consists of
two copies of the haemoglobin alpha chain (UniProtKB/SwissProt
entry P69907) spliced together. Currently our mapping and the EBI
MSDLite mapping both match only one of these in the alignment.
Thus far, we have identified no other anomalies in our data.

We did, however, find a small number of minor problems in the
EBI mapping. PDB entry 1dsj corresponds to UniProtKB/SwissProt
entry P12520 and the chain begins with a HETATM ‘ACE’ group
(an N-terminal acetylation) and ends with an additional HETATM
‘NH2’ group. The most recent downloadable EBI mapping, dated
21st September 2004, maps both of these to real amino acids (Thr49
and Cys76 in the UniProtKB/SwissProt entry respectively). Howe-
ver, the new mapping from UniProtKB/SwissProt to residue ranges
within chains has corrected this error.

We also identified an error in the EBI’s downloadable mapping for
5azu which contains four identical chains (A–D). All these match
UniProtKB/SwissProt entry P00282. However, in their mapping
residues 28–30 of the B chain were erroneously identified as coming
from Q51325 (this is a secondary accession code for P19919). Again
this error does not occur in the mapping from UniProtKB/SwissProt
residue ranges to PDB chains.

The mapping provided in the UniProtKB/SwissProt file provides
a PDB chain and then specifies the range of residues within the
UniProtKB/SwissProt entry that matches that chain. This scheme
is unable to address chimeric sequences such as that found in PDB
file 1a7m (Hinds et al., 1998). In this PDB file residues 1–47 and
82–180 come from UniProtKB/SwissProt entry P09056 while resi-
dues 48–81 come from P15018. In these two UniProtKB/SwissProt
entries, a cross-reference to PDB file 1a7m is provided, but the resi-
due range is not given. Our system correctly addresses chimeric
chains from the PDB (providing DBREF records are present descri-
bing the chimeric construction). The exception to correct processing
of chimeric chains is the ‘self-chimera’, 1aby chain A, described
above.

While the downloadable mapping from the EBI is not regularly
updated, the MSDLite web server also contains mapping data. We
have noted some anomalies in these data as well. For example,
while the downloadable mapping for PDB entry 487d adopts the

same strategy as us of simply ignoring non-standard amino acids
(MSE at I113, I116 and I182), the MSDLite server correctly iden-
tifies the UniProtKB entries, but does not include an alignment at
all. Similarly for PDB entry 1val, the MSDLite identifies the same
UniProtKB entries as our server, but provides no alignment.

At the time of writing, we have identified 115 chimeric chains in
the PDB for which residue range mappings are not present in Uni-
ProtKB/SwissProt. As shown in Table 2, the brute-force scan of our
method identifies approximately 9500 additional chain mappings
(representing around 12.5% of chains in the PDB) for which cross-
links were not present in either the PDB or UniProtKB/SwissProt.
After accounting for DNA chains, short peptides and cases where
fasta33 failed, only around 1050 chains (1.5% of chains in the
PDB) were unassigned to UniProt sequences. Some chains, such
as antibodies, are only partial assignments: the constant domain is
assigned, but the variable domain is not because antibody variable
domains do not appear in UniProt.

The procedure also identified a number of errors in the residue
ranges specified in DBREF records of PDB files. For example, PDB
file 1qsn (Rojas et al., 1999) contains a DBREF record which indi-
cates that residues 9–19 of chain B should match residues 9–19 of
UniProtKB/SwissProt entry P02303 (a secondary accession which
has been replaced by P61830). However, the residues in chain B are
numbered from 309, so this range should be 309–319. The DBREF
record in PDB entry 1cxx gives a residue range of 81–193 for the
A chain matching Q05158, but the ATOM records start from residue
117 and the SEQRES records appear to start from 82. Similar pro-
blems were identified in PDB entries 1a45, 1dj8, 1dox, 1doy, 1fo7,
1fv2, 1g50, 1g50, 1g6w, 1g6w, 1g6y, 1gd2, 1hgx, 1hqo, 1hqo, 1hr8,
1hr8, 1hr8, 1jid, 1b10, 1k0a, 1k0a, 1k0b, 1k0b, 1ltj, 1m1d, 1kna,
1kne, 4cat, 2pgk, 1bpl.

3.2 Search interface and availability
The complete mapping is available for download via the author’s
web site at http://www.bioinf.org.uk/pdbsws/. The
site also provides a search interface allowing searches on the basis
of PDB code (optionally with chain label), UniProtKB accession
or UniProtKB/SwissProt identifier, all optionally with residue num-
bers. The results provide links to the Protein Databank and full
UniProtKB entries. The web interface also provides a REST-style
API (REpresentational State Transfer) — an option to return results
in plain text making it easy to parse. This allows simple queries
to be made from Perl scripts using the Perl LWP package avoiding
the necessity for ‘screen scraping’ of HTML. This is invaluable for
users wishing to employ the results in automated scripts and pro-
vides an easy alternative to a SOAP interface. Full instructions are
provided on the web site.

4 ACKNOWLEDGEMENTS
The author thanks members of the MSD and SwissProt groups at the
EBI (in particular, Sameer Valenka, Virginie Mittard, Phil McNeil,
Rolf Apweiler and Kim Henrick) for making their PDB/SwissProt
mapping available. This work was funded by a grant from the
Wellcome Trust.

5



Martin

REFERENCES
Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S.,

Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A.,
O’Donovan, C., Redaschi, N. and Yeh, L.-S. L. (2005) The Universal Protein
Resource (UniProt), Nuc. Ac. Res., 33, D154–D159.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shin-
dyalov, I. N. and Bourne, P. E. (2000) The Protein Data Bank, Nuc. Ac. Res., 28,
235–242.

Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E.,
Martin, M. J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S. and Schneider, M.
(2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in
2003, Nuc. Ac. Res., 31, 365–370.

Cavallo, A. and Martin, A. C. R. (2005) Mapping SNPs to protein sequence and
structure data, Bioinformatics, 21, 1443–1450.

Chamberlin, S. G., Brennan, L., Puddicombe, S. M., Davies, D. E. and Turner, D. L.
(2001) Solution structure of the mEGF/TGFalpha44-50 chimeric growth factor, Eur.
J. Biochem., 268, 6247–6255.

Hinds, M. G., Maurer, T., Zhang, J. G., Nicola, N. A. and Norton, R. S. (1998) Solution
structure of leukemia inhibitory factor, J. Biol. Chem., 273, 13738–13745.

Looker, D., Abbott-Brown, D., Cozart, P., Durfee, S., Hoffman, S., Mathews, A. J.,
Miller-Roehrich, J., Shoemaker, S., Trimble, S. and Fermi, G. (1992) A human
recombinant haemoglobin designed for use as a blood substitute, Nature (London),
356, 258–260.

Martin, A. C., Orengo, C. A., Hutchinson, E. G., Jones, S., Karmirantzou, M., Laskow-
ski, R. A., Mitchell, J. B., Taroni, C. and Thornton, J. M. (1998) Protein folds and
functions, Structure, 6, 875–884.

Martin, A. C. R. (2004) PDBSprotEC: a Web-accessible database linking PDB chains
to EC numbers via SwissProt, Bioinformatics, 20, 986–988.

Pearson, W. R. and Lipman, D. J. (1988) Improved tools for biological sequence
comparison, Proc. Natl. Acad. Sci. USA, 85, 2444–2448.

Rojas, J. R., Trievel, R. C., Zhou, J., Mo, Y., Li, X., Berger, S. L., Allis, C. D. and
Marmorstein, R. (1999) Structure of Tetrahymena GCN5 bound to coenzyme A and
a histone H3 peptide, Nature (London), 401, 93–98.

6


