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Abstract

We present the SAAPpred server, a prediction server for assessing whether sin-

gle amino acid mutations are likely to be pathogenic. SAAPpred is built on

SAAPdap, our data analysis pipeline which analyses a set of structural fea-

tures. While SAAPdap offers information about individual features that may

be damaging (for example a small-to-large mutation causing a clash), SAAP-

pred amalgamates the results of all the analyses and uses a random forest to

predict whether a mutation is pathogenic. The underlying resources used for the

analysis and prediction have been updated and are now automatically updated

on a regular basis.

The server is available at www.bioinf.org.uk/saap/dap/.
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1. Research highlights

• We present a new web server to access our SAAPpred pathogenicity pre-

diction system.

• The analysis and prediction method relies on having a protein structure

available for the protein in question.
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• The resource has been updated with newly available PDB structures and

sequence families for calculation of conservation information. Updating is

now automated.

• Performance appears to exceed that of competing methods for pathogenic-

ity prediction.

2. Graphical Abstract

3. Introduction

High-throughput next-generation sequencing platforms[1] are increasingly

used to screen patients with genetic disease for pathogenic mutations. This has

led to a huge demand for methods that can analyze and predict the effects of

mutations, but prediction remains challenging.

Most mutations are ‘loss of function’ although some are ‘gain of function’

(generally through loss of regulation). A small number are actually ‘change

of function’, for example of specificity, and it has been estimated that 5%

of cancer mutations fall into this category[2]. At least 20 research groups
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Figure 1: Classification of approaches used to predict the effect of mutations.

have developed prediction methods which adopt a variety of approaches

and we have attempted to provide a reasonably comprehensive list at

www.bioinf.org.uk/saap/methods/.

Methods can be classified based on the types of data they use (sequence,

structure and/or systems biology / network information) and on the methods

that they use to interpret the information (rules, machine-learning, etc.). Fig-

ure 1 illustrates the types of approaches. Many methods (boxes 1 and 2 in

Figure 1) are purely sequence based, typically including evolutionary conserva-

tion information. For example, SIFT[3], Align-GVGD[4], MutationAssessor[2],

PANTHER[5], MAPP[6] and FATHMM[7]. Other methods add structural in-

formation (box 4), either directly from a known structure or predicted struc-

tural properties such as secondary structure or solvent accessibility (for exam-

ple, PolyPhen[8], PolyPhen-2[9], LS-SNP/PDB[10], SNPeffect[11], BONGO[12],

SNAP[13], PMUT[14] and CanPredict[15]). When a structure is not available,

some methods also exploit comparative modelling (e.g. LS-SNP[16]) or ab initio
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structural models[17]. Methods such as SuSPect[18] also incorporate systems

biology-based features (box 3). Some methods such as SNP@Domain[19] and

SNPs3D[20] rely more heavily on structure (box 5) including features such as

hydrogen-bonding, clashes and voids. Our own SAAPdb[21], a pre-calculated

analysis database, more recently replaced by SAAPdap[22], an on-the-fly data

analysis pipeline that caches its results, together with SAAPpred[22], our pre-

diction system, fall into this category including analysis of clashes and voids,

conservation of hydrogen bonds and a Ramachandran pseudo-energy for muta-

tions to proline or from glycine.

Methods used to interpret the information include empirical rules (e.g.

PolyPhen[8]), direct methods (exploiting a score based on some type of

theoretical model of what happens when a mutation occurs — e.g. SIFT[3] and

PANTHER[5]) and, most commonly, machine-learning methods. These include

artificial neural networks, support vector machines and random forests, and

can combine different properties of the native and mutant residue such as size

and polarity, together with other information such as structural environment

(e.g. accessibility and hydrogen bonding) as well as evolutionary conservation.

Examples include PMUT[14], SNAP[13], PhD-SNP[23], SNPs&GO[24],

Parepro[25], CanPredict[15], nsSNPAnalyzer[26], MutPred[27], Hansa[28] and

MutationTaster[29] as well as our own SAAPpred[22]. More recent additions

to the list of approaches include consensus predictors such as Condel[30],

PredictSNP[31] and DUET[32].

Almost all methods are general predictors which can be applied to any mu-

tation although some, like CanPredict, are specialized for mutations in cancer.

In general, while the overall performance of a method may be good, the per-

formance on a particular protein or disease is rarely evaluated. However, one

method, KvSNP[33] has been designed specifically for analysis of mutations in

voltage-gated potassium channels.
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Figure 2: The SAAPdb/SAAPpred web site showing prediction on an Asn187Lys mutation

in the protein Myosin-7 which is known to be pathogenic.
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4. Results

Our own approach was initially to try to understand the local structural

effects caused by mutations, comparing these effects in single nucleotide poly-

morphisms (SNPs, that is non-pathogenic mutations) and pathogenic deviations

(PDs). In many cases, these structural effects (together with a measure of con-

servation) could be used to suggest that a mutation would be damaging. We

then went on to use these analysis results to train a random forest machine

learning method. As described previously[22], the performance of the method,

on the set of mutations for which it can be used — those that occur in pro-

teins for which a structure is available (MCC=0.692), exceeds other commonly

used methods such as SIFT (MCC=0.528), PolyPhen-2 (MCC=0.572), Mu-

tationAssessor (MCC=0.453) and FATHMM (MCC=0.671) evaluated on the

same dataset. It should also be noted that our results are fully cross-validated;

not only do we not allow the same mutation to appear in the training and

testing sets, but also we do not allow the same protein to appear in both

datasets. In Al-Numair & Martin[22] we also showed a non-cross-validated

result of MCC=0.894. In fact, even this set did not allow the same mutation in

the training and testing sets although it did allow the same structure to appear

in both datasets.

Because SAAPpred relies on the SAAPdap analysis of the effects of

mutations which requires protein structures from the Protein Databank (PDB)

we now automatically update the available PDB data on a daily basis. In

addition we have updated FOSTA, our database of functionally equivalent

orthologues[34] which is used to calculate conservation information. FOSTA

contains families of protein sequences each of which is rooted around a human

sequence. The previous release of FOSTA contained 535697 sequences in 20245

families while the new version contains 551384 sequences in 20197 families.

The decrease in the number of families corresponds to fewer human sequences

being present in UniProKB/SwissProt. It is not clear why these sequences

have been removed by the curators. Neither it is clear which sequences have
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been removed since FOSTA uses UniProKB/SwissProt IDs as keys and IDs

can, and do, change.

In addition, we have developed a web interface to allow the SAAPpred pre-

dictor to be run, as shown in Figure 2. Users enter the UniProtKB/SwissProt

accession code, the residue number and the native and mutant amino acids in

order to run the SAAPdap pipeline. Once this completes, the user is presented

with a summary results table, below which is a ‘Predict Pathogenicity’ button.

Clicking this expands a panel where progress on the pathogenicity prediction is

shown. The final results of a prediction are shown in the figure. Once SAAPdap

has completed, SAAPpred takes up to two minutes to complete.

5. Materials and Methods

PDB files are mirrored using ‘FTPMirror’ available as part of the ‘bioscripts’

package (github.com/AndrewCRMartin/bioscripts). FTPMirror automati-

cally handles decompression of remote compressed files and can handle very

large remote directories containing > 65536 files (such as the PDB) which fail

with the Sunsite Mirror script and the Perl LWP package. FOSTA updates are

performed on a heterogeneous network of Linux machines using the Sun Grid

Engine.

The web server is implemented in Perl using the Weka machine learning

environment as described in Al-Numair & Martin[22]. The web site follows

XHTML1.1 standards with CSS formatting and uses AJAX to keep the user

updated with progress until the results are complete. Results are calculated

over three prediction models and up to three PDB chains. PD (damaging)

and SNP (phenotypically silent) predictions are averaged separately and the

difference in the averages is presented as the final prediction.

6. Conclusion

This update and interface to the SAAPpred server adds to the range of tools

available for evaluation of the pathogenicity of a single amino acid mutation. In
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our hands, the method out-performs other well-known methods including SIFT

and PolyPhen-2 as well as more recent methods such as FATHMM. The server

is available at www.bioinf.org.uk/saap/dap/.

7. Acknowledgements

NSAN thanks the King Faisal Specialist Hospital and Research Centre and

the Royal Embassy of Saudi Arabia Cultural Bureau (reference S12063) for

funding.

References

[1] D. R. Bentley, Whole-genome re-sequencing, Curr Opin Genet Dev 16

(2006) 545–552.

[2] B. Reva, Y. Antipin, C. Sander, Predicting the functional impact of protein

mutations: Application to cancer genomics, Nucleic Acids Res 39 (2011)

e118–e118.

[3] P. C. Ng, S. Henikoff, SIFT: predicting amino acid changes that affect

protein function, Nucleic Acids Res 31 (2003) 3812–3814.

[4] E. Mathe, M. Olivier, S. Kato, C. Ishioka, P. Hainaut, S. V. Tavtigian,

Computational approaches for predicting the biological effect of p53 mis-

sense mutations: A comparison of three sequence analysis based methods,

Nucleic Acids Res. 34 (2006) 1317–25.

[5] P. D. Thomas, M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak, R. Daver-

man, K. Diemer, A. Muruganujan, A. Narechania, PANTHER: A library

of protein families and subfamilies indexed by function., Genome Research

13 (2003) 2129–2141.

[6] J. Binkley, K. Karra, A. Kirby, M. Hosobuchi, E. A. Stone, A. Sidow,

ProPhylER: a curated online resource for protein function and structure

based on evolutionary constraint analyses, Genome Res 20 (2010) 142–154.

8

www.bioinf.org.uk/saap/dap/


[7] H. A. Shihab, J. Gough, D. N. Cooper, P. D. Stenson, G. L. A. Barker, K. J.

Edwards, I. N. M. Day, T. R. Gaunt, Predicting the functional, molecu-

lar, and phenotypic consequences of amino acid substitutions using hidden

Markov models, Hum Mutat 34 (2013) 57–65.

[8] I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova,

P. Bork, A. S. Kondrashov, S. R. Sunyaev, A method and server for pre-

dicting damaging missense mutations., Nature Methods 7 (2010) 248–249.

[9] I. A. Adzhubei, D. M. Jordan, S. R. Sunyaev, Predicting functional effect

of human missense mutations using PolyPhen-2, Curr Protoc Hum Genet

76 (2013) 7.20.

[10] M. Ryan, M. Diekhans, S. Lien, Y. Liu, R. Karchin, LS-SNP/PDB: an-

notated non-synonymous SNPs mapped to Protein Data Bank structures,

Bioinformatics 25 (2009) 1431–2.

[11] J. Reumers, S. Maurer-Stroh, J. Schymkowitz, F. Rousseau, SNPeffect v2.0:

A new step in investigating the molecular phenotypic effects of human non-

synonymous SNPs, Bioinformatics 22 (2006) 2183–2185.

[12] T. M. K. Cheng, Y.-E. Lu, M. Vendruscolo, P. Lio, T. L. Blundell, Pre-

diction by graph theoretic measures of structural effects in proteins arising

from non-synonymous single nucleotide polymorphisms, PLoS Comp. Biol-

ogy 4 (2008) e1000135.

[13] Y. Bromberg, G. Yachdav, B. Rost, SNAP predicts effect of mutations on

protein function, Bioinformatics 24 (2008) 2397–2398.

[14] C. Ferrer-Costa, J. L. Gelp, L. Zamakola, I. Parraga, X. de la Cruz,

M. Orozco, PMUT: a web-based tool for the annotation of pathological

mutations on proteins, Bioinformatics 21 (2005) 3176–8.

[15] J. S. Kaminker, Y. Zhang, C. Watanabe, Z. Zhang, CanPredict: a compu-

tational tool for predicting cancer-associated missense mutations, Nucleic

Acids Res. 35 (2007) W595–W598.

9



[16] R. Karchin, M. Diekhans, L. Kelly, D. J. Thomas, U. Pieper, N. Eswar,

D. Haussler, A. Sali, LS-SNP: large-scale annotation of coding non-

synonymous SNPs based on multiple information sources, Bioinformatics

21 (2005) 2814–2820.

[17] C. T. Saunders, D. Baker, Evaluation of structural and evolutionary contri-

butions to deleterious mutation prediction, J Mol Biol 322 (2002) 891–901.

[18] C. M. Yates, I. Filippis, L. A. Kelley, M. J. Sternberg, SuSPect: enhanced

prediction of single amino acid variant (SAV) phenotype using network

features, J Mol Biol 426 (2014) 2692–2701.

[19] D. Chasman, R. M. Adams, Predicting the functional consequences of non-

synonymous single nucleotide polymorphisms: Structure-based assessment

of amino acid variation, J Mol Biol 307 (2001) 683–706.

[20] P. Yue, E. Melamud, J. Moult, SNPs3D: candidate gene and SNP selection

for association studies, BMC Bioinformatics 7 (2006) 166–166.

[21] J. M. Hurst, L. E. M. McMillan, C. T. Porter, J. Allen, A. Fakorede,

A. C. R. Martin, The SAAPdb web resource: A large-scale structural anal-

ysis of mutant proteins, Hum Mutat 30 (2009) 616–624.

[22] N. S. Al-Numair, A. C. R. Martin, The SAAP pipeline and database: Tools

to analyze the impact and predict the pathogenicity of mutations, BMC

Genomics 14 (2013) 1–11.

[23] E. Capriotti, R. Calabrese, R. Casadio, Predicting the insurgence of human

genetic diseases associated to single point protein mutations with support

vector machines and evolutionary information, Bioinformatics 22 (2006)

2729–2734.

[24] E. Capriotti, R. Calabrese, P. Fariselli, P. L. Martelli, R. B. Altman,

R. Casadio, WS-SNPs&GO: a web server for predicting the deleterious ef-

fect of human protein variants using functional annotation, BMC Genomics

14(Suppl 3) (2013) S6.

10



[25] J. Tian, N. Wu, X. Guo, J. Guo, J. Zhang, Y. Fan, Predicting the pheno-

typic effects of non-synonymous single nucleotide polymorphisms based on

support vector machines, BMC Bioinformatics 8 (2007) 450–464.

[26] L. Bao, M. Zhou, Y. Cui, nsSNPAnalyzer: identifying disease-associated

nonsynonymous single nucleotide polymorphisms, Nucleic Acids Res 33

(2005) W480–W482.

[27] B. Li, V. G. Krishnan, M. E. Mort, F. Xin, K. K. Kamati, D. N. Cooper,

S. D. Mooney, P. Radivojac, Automated inference of molecular mechanisms

of disease from amino acid substitutions, Bioinformatics 25 (2009) 2744–

2750.

[28] V. Acharya, H. A. Nagarajaram, Hansa. An automated method for dis-

criminating disease and neutral human nsSNPs, Human Mutation 2 (2012)

332–337.

[29] J. M. Schwarz, C. Rödelsperger, M. Schuelke, D. Seelow, MutationTaster

evaluates disease-causing potential of sequence alterations, Nature Methods

7 (2010) 575–576.
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