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Abstract

Background: Binding of transcription factors to transcription factor binding sites (TFBSs) is key to the
mediation of transcriptional regulation. Information on experimentally validated functional TFBSs is limited
and consequently there is a need for accurate prediction of TFBSs for gene annotation and in applications such
as evaluating the effects of single nucleotide variations in causing disease. TFBSs are generally recognized by
scanning a position weight matrix (PWM) against DNA using one of a number of available computer programs.
Thus we set out to evaluate the best tools that can be used locally (and are therefore suitable for large-scale
analyses) for creating PWMs from high-throughput ChIP-Seq data and for scanning them against DNA.

Results: We evaluated a set of de novo motif discovery tools that could be downloaded and installed locally
using ENCODE-ChIP-Seq data and showed that rGADEM was the best performing tool. TFBS prediction tools
used to scan PWMs against DNA fall into two classes — those that predict individual TFBSs and those that
identify clusters. Our evaluation showed that FIMO and MCAST performed best respectively.

Conclusions: Selection of the best-performing tools for generating PWMs from ChIP-Seq data and for
scanning PWMs against DNA has the potential to improve prediction of precise transcription factor binding
sites within regions identified by ChIP-Seq experiments for gene finding, understanding regulation and in
evaluating the effects of single nucleotide variations in causing disease.
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Background
The sequence-specific binding of transcription factors
to transcription factor binding sites (TFBSs) is key to
the mediation of transcriptional regulation [1]. High
throughput experimental methods for identifying TF-
BSs such as ChIP-Chip and ChIP-Seq identify a region
of 100–1000 base pairs (b.p.) while the actual TFBS
is a short region (typically 9–15 b.p.) within that re-
gion. Nonetheless, there is a small set of experimen-
tally precisely validated functional transcription factor
binding sites which are stored in reference databases
such as PAZAR [2] and ORegAnno [3]. However this
is an insignificant proportion of transcription factor
binding sites in terms of the human genome. Hence
there is a need for accurate computational prediction
of transcription factor binding sites [4], for gene find-
ing, understanding regulation and in applications such
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as evaluating the effects of single nucleotide variations
(SNVs) in causing differential expression [4] and lead-
ing to disease [5].
Prediction of transcription factor binding sites is

generally performed by scanning a DNA sequence of
interest with a position weight matrix (PWM) for
a transcription factor of interest [6, 7] and various
pattern-matching tools have been developed for this
purpose. These tools fall into two classes: those that
predict clusters of transcription factor binding sites or
those that predict individual sites.

Experimental identification of transcription factor
binding sites
There are many in vitro and in vivo experimental ap-
proaches that have been used to identify transcription
factor binding sites and these are reviewed briefly here.
in vitro methods include: (i) The Electro-Mobility

Shift Assay (EMSA) [8] which exploits the abil-
ity of a non-denaturing polyacrylamide gel to act
as a molecular sieve, separating protein-bound DNA
from unbound DNA. (ii) The DNase I footprint-
ing/protection assay combines the cleavage reaction
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of DNase I with EMSA [9]. A key problem with both
EMSA and DNase I footprinting is the identification
of unwanted protein-DNA interactions that result from
non-specific DNA binding proteins [8]. (iii) System-
atic Evolution of Ligands by EXponential en-
richment (SELEX) [10] works by screening a large
pool of short, random oligonucleotide probes which are
recognized by a TFBS of interest [10]. A refinement,
SELEX-seq, involves the selected dsDNAs being sub-
jected to massively parallel sequencing [11].
There has been a recent shift towards in vivo ap-

proaches [4]. In the (iv) Chromatin ImmunoPre-
cipitation (ChIP) assay, a variation of the ‘pull
down’ class of assay [12], the DNA-binding protein
of interest is cross-linked to the DNA using formalde-
hyde. The DNA is then fragmented into small frag-
ments of around 100–1000 b.p. and an antibody spe-
cific for a given transcription factor is then used to im-
munoprecipitate the DNA-protein complex. The cross-
links are then reversed, releasing the DNA for PCR
amplification [12]. High throughput versions of the
ChIP assay involve hybridizing the resulting fragments
to genomic tiling microarrays, an approach known as
ChIP-chip [13], or the resulting DNA fragments can
undergo massively parallel sequencing, an approach
known as ChIP-Seq [14].
There are a number of advantages of using ChIP-

Seq instead of ChIP-chip. Key improvements are in
base pair resolution, avoiding non-linearity and sat-
uration of ChIP-chip signal intensity, ability to an-
alyze sequence repeat regions, and avoiding limita-
tions from the limited selection of probes on a ChIP-
chip array. Overall ChIP-Seq has a higher specificity
and sensitivity compared with ChIP-chip [14, 15] and
has largely superseded the ChIP-chip method. Con-
sequently, ChIP-Seq is the current ‘gold standard’ for
identifying protein/DNA interactions sites such as his-
tone modifications as well as transcription factor bind-
ing sites [16]. A recent refinement to ChIP-Seq is ChIP-
exo where the resulting fragments from the ChIP assay
are trimmed using lambda exonuclease. This results in
fragments that are shorter (∼ 50 b.p.), but still larger
than the precise TFBS [17].

Position weight matrices (PWMs)
Position Weight Matrices (PWMs) are the most widely
used approach to modelling TFBSs. In contrast to a
consensus model (which simply gives the most com-
mon base(s) at each position of a binding motif), a
matrix-based PWM model (which is simply a 4 × n
matrix of scores for each of the 4 bases across each po-
sition in the binding motif) accounts for the preference
for each of the four nucleotides at each position in the
motif [4, 6, 18].

The high-throughput techniques, particularly ChIP-
Seq and SELEX-seq, provide an opportunity to iden-
tify and characterize protein-DNA binding events at a
genome-wide level, contrary to the previous techniques
that were only able to characterize a small number of
protein-DNA binding events. Hu et al. [19] have sug-
gested that PWMs derived from transcription factor
binding sites detected by these methods will be more
accurate than PWMs derived from techniques such as
SELEX, or compilations of individual promoter assays
that detect limited transcription factor binding site
numbers. Further, the ChIP-Seq technique has been
found to produce PWMs with greater accuracy than
ChIP-chip owing to the superior resolution provided
by the ChIP-Seq technique [19,20].
PWMs can be obtained from a number of resources

including the commercial database TRANSFAC [21]
and the open access database JASPAR [20].
TRANSFAC PWMs are derived from experimental
evidence obtained from the literature [21], but
availability and application is limited by a commercial
licence. The bulk of the PWMs in earlier versions of
JASPAR were derived from SELEX experiments and
individual promoter assays, but since 2014, updates
to JASPAR [22] now include new PWMs derived
from ChIP-Seq data using MEME for motif discovery.
Other recent resources include HOCOMOCO [23],
HOMER [24, http://homer.salk.edu/homer/

motif/HomerMotifDB/homerResults.html] and
CIS-BP [25]. However, JASPAR is a well-established
and widely-used resource that was employed by us in
previous unpublished work and consequently was
used in some of the work presented here.

de novo motif discovery
While large scale ChIP experiments allow the genome-
wide identification of binding regions for a specific
transcription factor, these regions are much longer
than the actual binding site for a specific transcrip-
tion factor meaning that the actual transcription fac-
tor binding sites still need to be identified [26,27].
Various motif discovery methods have been devel-

oped and there have been several reviews of the ap-
proaches used [28–34, for example]. The most popu-
lar algorithms are either enumerative or probabilistic.
Enumerative methods examine frequencies of all DNA
strings forming a PWM from the over-represented
strings that have been identified [1]. Probabilistic
methods generate a local multiple alignment of se-
quences while learning the parameters of the PWM us-
ing approaches such as expectation-maximization [35],
Gibbs sampling [36], or greedy approaches [37]. The
advantage of enumerative methods is that there is less
chance of them getting stuck in a local optimum, while
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probabilistic methods can cope with arbitrary motif
model variations and hence remain unaffected by motif
length [1]. For example, the well-known motif discov-
ery program MEME [38] uses a probabilistic method
with expectation-maximization [39].
de novo motif discovery has proved to be challeng-

ing when carried out on the binding regions result-
ing from the genome-wide techniques of ChIP-chip and
ChIP-Seq using conventional motif discovery programs
such as MEME, owing to the large volumes of data
generated by these techniques; ChIP-Seq can generate
over 10,000 sequences in a single run. Hence a com-
mon practice has been to use these tools on a subset
of the sequences [19, 40, 41]. However, Hu et al. [19]
have suggested that this practice will lead to inaccu-
rate PWMs and consequently new tools have recently
been developed that are able to handle the large vol-
umes of data generated from these high-throughput
technologies. These include the freely available soft-
ware packages ChIPMunk [42], HOMER (Hypergeo-
metric Optimization of Motif EnRichment) [24], rGA-
DEM (Genetic Algorithm guided formation of spaced
Dyads coupled with EM for Motif identification) [43]
and MEME-ChIP [44,45].

Evaluation of the performance of transcription factor
binding site prediction tools and motif discovery tools
As well as high quality PWMs to model TFBSs, the
computational prediction of TFBSs requires a pattern
matching tool. A number of tools are available for this
purpose which fall into two classes: those that pre-
dict clusters of sites and those that predict individual
sites. Consequently the range of tools that can be used
locally for motif discovery designed for use with high-
throughput data and tools for identifying TFBSs using
PWMs warrants an independent performance evalua-
tion.
Approaches for scanning PWMs against DNA were

reviewed by Hannenhalli [6] and by Bulyk [30], but the
number of performance comparisons is limited. Most
have been as part authors’ evaluations of their own
new tools [46, 47, for example] although an indepen-
dent assessment was performed by Roulet et al. [48]
and a much more recent survey of online PWM scan-
ning tools was performed by Tran and Huang [49].
A number of authors have performed comparisons

of methods for motif discovery. These include work by
Sandve and colleagues [32, 50, 51], McLeay and Bai-
ley [52] and Orenstein et al. [53]. Kibet and Machan-
ick [34] assessed the performance of matrices obtained
from different sources but did not directly assess the
motif discovery tools. The most comprehensive evalua-
tions of tools are those performed by Tompa et al. [39],
Hu et al. [54], Medina-Rivera et al. [55] and, most

recently, Weirauch et al. [56]. Tompa et al. [39] per-
formed an independent assessment of the performance
of 13 tools designed for discovery of novel regulatory
elements with no a priori knowledge of the transcrip-
tion factor involved. They made predictions across a
number of species (fly, human, mouse and yeast) with
known binding sites taken from TRANSFAC. Assess-
ment was performed at a nucleotide level (i.e. whether
individual bases were correctly identified as being part
of a binding motif or not) and they concluded that,
overall, Weeder [57] performed best. Hu et al. [54]
performed another assessment around the same time.
However, while Tompa et al. allowed the authors of
tools to fine-tune parameters to achieve what they
considered to be the best results, Hu et al. performed
minimum intervention reflecting the approach likely to
be taken by the average end user. They assessed five
methods at different levels: nucleotide, binding site,
sequence and motif. They also created a ‘consensus
ensemble algorithm’ which exploits variations in pre-
dictions by stochastic methods to refine predictions.
Neither Tompa et al. nor Hu et al. assessed the qual-
ity of any models (PWMs) generated from these motifs
by applying them to search for TFBSs in DNA. More
recently, Kibet and Machanick [34] reviewed and eval-
uated different approaches and pointed out the diffi-
culty in evaluating motif discovery tools by applying
the PWMs to motif searching: annotation of precise
true TFBSs in DNA, to use as a gold standard refer-
ence set, is limited. An assessment of motif discovery
methods using binding site prediction for evaluation
was performed by Medina-Rivera et al. [55]. They gen-
erated an assessment method that combines theoreti-
cal and empirical score distributions to assess reliabil-
ity of PWMs for predicting TFBSs and used this to
analyze PWMs for bacterial, yeast and mouse TFBSs.
Weirauch et al. [56] evaluated 26 tools for motif dis-
covery using in vitro data for 66 mouse TFBSs, look-
ing at PWMs and more complex models such as din-
ucleotide matrices and secondary motifs. They added
ChIPMunk [42] and MEME-ChIP [44,45] for a further
evaluation of performance on in vivo data using five
mouse and four yeast TFBSs. During this compari-
son they found that ChIPMunk outperforms MEME-
ChIP.
In this paper we conduct an independent

assessment of a set of four motif discovery tools
specifically designed for handling large datasets from
high-throughput methods (including ChIPMunk
and MEME-ChIP evaluated by Weirauch et al.),
but using human ChIP-Seq data obtained from
ENCODE [58]. Performance evaluation makes use
of a gold standard reference set of experimentally
validated precise human transcription factor binding
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Figure 1 Overlap of transcription factor data between known
sites in PAZAR, the PWMs in JASPAR and those derived
from the ENCODE-ChIP-Seq data used in this paper.

sites. We also evaluate a number of open source PWM
scanning tools that are well documented and can be
installed locally and are therefore more suitable for
large scale analyses. These pattern matching tools
represent both classes (individual and cluster).

Methods
Sources of experimentally validated TFBSs

To evaluate performance, we identified experimentally
validated TFBSs from resources that, rather than just
providing PWMs or approximate regions to which TF-
BSs bind, provide precise validated binding sites for a
limited set of genes. Three sources of such data are
available: PAZAR [2], ORegAnno [3,59] and TRANS-
FAC [21]. TRANSFAC was rejected because of its com-
mercial licensing, while the data in PAZAR are a su-
perset of ORegAnno and consequently, the PAZAR
dataset was selected.

Selecting data from PAZAR

PAZAR contains some redundancy (multiple instances
of the same TFBS annotated for a given gene), so any
duplicate TFBSs were removed.

PAZAR contains 159 genes annotated with TFBSs
that are contained in either JASPAR or ENCODE-
ChIP-Seq data. This set contains data for 14 TFBSs
with corresponding PWMs in JASPAR coming from a
total of 156 human genes. This set is referred to below

as ‘PAZAR-J’. The set also contains data for 12 tran-
scription factors with binding data in the ENCODE-
ChIP-Seq data which come from a total of 149 genes
(‘PAZAR-E’). The PAZAR-J and PAZAR-E datasets
overlap for 11 of the transcription factors (See Figure 1
and Supplementary File ‘pazar.xls’ for details.)

Tool evaluation
Initial evaluation of the motif scanning tools (using
JASPAR.2010 PWMs) was performed for each of the
14 transcription factors in PAZAR-J by selecting the
appropriate subset of the 156 genes in PAZAR-J hav-
ing validated binding sites for the transcription factor
in question.
Evaluation of the motif discovery tools was per-

formed for each of the 12 transcription factors in
PAZAR-E by selecting the appropriate subset of the
149 genes in PAZAR-E having validated binding sites
for the transcription factor in question and using the
motif discovery tool selected in the initial evaluation
(FIMO).
Finally, re-evaluation of the motif scanning tools

(using PWMs generated by rGADEM) was also per-
formed for each of the 12 transcription factors in
PAZAR-E by selecting the appropriate subset of the
149 genes in PAZAR-E having validated binding sites
for the transcription factor in question.

DNA Data
TFBSs can occur in the promoter region, in introns
and exons, and far upstream of genes [60, 61]. Con-
sequently the complete gene sequence (i.e. both ex-
ons and introns), together with an upstream region
of 10,000 b.p. of each of the genes was obtained from
Biomart [62] using the biomaRt package in Bioconduc-
tor [63–65].

Performance Metrics
True positives (TP) were defined as predicted binding
sites having a minimum overlap of 70% of base pairs
with known binding sites from PAZAR. Similarly, false
positives (FP) were defined as predicted binding sites
not having an overlap of at least 70% with a known
binding site and false negatives (FN) were defined as
known binding sites that were not identified. Obtain-
ing a true estimate of the total number of negative sites
(and hence the number of true negatives, TN) is diffi-
cult and therefore we adopted the normal practice of
avoiding performance measures that require true neg-
ative counts [66]. For cluster predictors, all predicted
component TFBSs within a region must overlap with
known sites by at least 70% of base pairs for a predic-
tion to be regarded as a true positive.
As a control, all the DNA sequences were scrambled

using the ‘shuffleseq’ program from the EMBOSS suite
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Figure 2 Flowchart summarising the methods used to derive
PWMs from the ENCODE-ChIP-Seq data. See text.

(version 6.4.0) [67]. In this case there are no actual
positives and therefore no true positives or false nega-
tives. Any positive predictions are therefore classified
as false positives and the number of actual negatives
(AN = FP + TN) was defined as AN = L/lt where L
is the length of the sequence and lt is the length of the
PWM in question).
Performance was assessed by calculating sensitiv-

ity (Sn = TP/(TP + FN)), positive predictive value
(PPV = TP/(TP + FP)) and geometric accuracy
(ACCg =

√
Sn.PPV) [66], averaged across the TFBS

PWMs and genes analyzed. For the scrambled se-
quences, a false positive rate was calculated (FPRs =
Np/AN, where Np is the number of predicted sites
and AN is the number of actual negatives as defined
above).

Derivation of PWMs
The methods used for deriving PWMs from the
ENCODE-ChIP-Seq data are summarized in
Figure 2.
ChIP-Seq data for the human transcription

factors were obtained from the ENCODE project
(http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeSydhTfbs/) in FASTQ
format. Only the ChIP-Seq data that had a
corresponding control sample available were
selected to help to control biases and artefacts
that occur in the experimental protocol [14, 68].
ChIP-Seq control samples are obtained from a
mock experiment without the specific antibody
and were used during the peak calling process as
recommended by Bardet et al. [68]. It is critical that
the short reads arising from ChIP-Seq are aligned

properly to the reference genome, otherwise false
positives and false negatives would occur. Thus, low
quality reads and adaptor sequences were identified
using FASTQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and
removed using the FASTX TOOLKIT
(http://hannonlab.cshl.edu/fastx_toolkit/).
The reads were then mapped to the human genome

version hg19 using Bowtie [69]. The resulting Sequence
Alignment/Map format (SAM) files were converted to
binary format (BAM) files and indexed using SAM-
tools [70]. This step reduces the file size and allows
rapid access which is essential given the large size of
the data.
After the reads were aligned to the reference genome,

peak calling was performed by identifying statistically
significant binding regions that are enriched in the
ChIP-Seq sample compared with the control sample
[14]. It has been suggested that peaks should be called
using more than one peak caller and the intersection of
peaks should then be taken [71]. Consequently peaks
were called using both MACS [72] and the biocon-
ductor package BayesPeak [63,73,74]. Common peaks
were identified and replicates were pooled using the
bioconductor package ChIPpeakAnno [63,75]. A set of
peak regions — centred on the summits of the peaks
(±100 b.p.) in order to prevent bias towards longer
peak regions [68] — were obtained in FASTA format.
We refer to these filtered peak data as the ‘ENCODE-
ChIP-Seq data’.
The TFBS motif discovery tools evaluated were

MEME-ChIP [44, 45], HOMER [24], ChIPMunk [42]
and rGADEM [43, 63] and these were tested using
the 12 transcription factors in the PAZAR-E dataset.
Since these programs are able to deal with large
datasets, all peak regions were used. The motif discov-
ery methods have various adjustable parameters and
these were explored in 10% steps.

Results and discussion
As shown in Figure 1, the overlap between transcrip-
tion factors having validated binding sites in PAZAR,
the PWMs describing these TFBSs in JASPAR and
the binding sites in the ENCODE-ChIP-Seq data
is fairly small. Only 11 transcription factors (E2F1,
ELK4, GATA2, GATA3, IRF1, MAX, NF-κB, STAT1,
YY1, CTCF and NFYA) have validated TFBSs in
PAZAR, PWMs in JASPAR and are also represented
in the ENCODE-ChIP-Seq data. BRCA1 was also
found in all datasets, but has recently been removed
from JASPAR since its sequence specificity has been
questioned [76]. While the ENCODE-ChIP-Seq data
are actually more comprehensive than indicated, only
ChIP-Seq datasets having no access restrictions and
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Table 1 Performance of TFBS prediction methods using
JASPAR.2010 PWMs.

Sn PPV ACCg FPRs

CLUSTER
Baycis 0.599 0.497 0.545 0.040
Cister 0.635 0.565 0.599 0.037
MCast 0.774 0.682 0.726 0.032
Comet 0.682 0.589 0.634 0.037
ClusterBuster 0.656 0.580 0.617 0.036
INDIVIDUAL
Matrix-Scan 0.647 0.579 0.612 0.027
Clover 0.674 0.584 0.627 0.022
FIMO 0.816 0.734 0.774 0.015
Patser 0.723 0.653 0.687 0.016
PossumSearch 0.708 0.635 0.670 0.019

Average sensitivities (Sn), Positive Predictive Value (PPV) and ge-
ometric accuracy (ACCg) are reported together with the false pos-
itive rate using scrambled sequences (FPRs). The best-performing
tools, MCast and FIMO are highlighted in bold. Performance was
evaluated using the 14 PWMs in the PAZAR-J dataset.

for which the transcription factor had a control ChIP-
Seq sample available were chosen. Three additional
transcription factors have data that overlap between
JASPAR and the ENCODE-ChIP-Seq data (USF2,
ZNF263 and JUND) and between PAZAR and JAS-
PAR (ESR1, ESR2 and SP1) while one more has data
that overlaps between PAZAR and the ENCODE-
ChIP-Seq data (TAL1). Consequently the number of
PWMs that could be used for the evaluations described
below was limited to 11–14.
Logically it makes sense to evaluate motif discovery

methods first and then to evaluate the tools available
for matching the derived PWMs to DNA sequences.
However the evaluation of the performance of motif
discovery methods requires a tool to test the perfor-
mance of the resulting PWMs. Therefore we needed to
select a motif scanning tool for this purpose. In ear-
lier work we had tested the performance of a number
of PWM scanning tools using older JASPAR matrices
(referred to here as JASPAR.2010). These results are
summarized below and the best performing tool was
then used for evaluating the motif discovery methods.
Finally, the performance of the scanning tools was re-
assessed using motifs from the best performing motif
discovery method.

Selecting a PWM scanning tool for evaluation of motif
discovery methods
As stated above, in order to evaluate motif discovery
methods, we need to scan the motifs against DNA and
compare the predictions with a gold-standard set of
known precise TFBSs. In work done in 2011, we evalu-
ated the performance of different PWM scanning tools
using the older JASPAR.2010 matrices [20] which had
been derived from SELEX and individual promoter
assays. Consequently, we exploited that earlier anal-
ysis for this work. PWMs for 14 human transcription

Table 2 Performance of the different motif discovery tools using
FIMO.

Motif discovery tool Sn PPV ACCg FPRs

ChIPMunk 0.886 0.786 0.834 0.009
HOMER 0.901 0.795 0.846 0.007
MEME-ChIP 0.865 0.771 0.817 0.013
rGADEM 0.933 0.839 0.884 0.002

Average sensitivities (Sn), Positive Predictive Value (PPV) and
geometric accuracy (ACCg) and false positive rate on scrambled
sequences(FPRs) are reported. The best-performing tool rGADEM
is highlighted in bold. Note that TFBS PWMs were generated only
for the 12 transcription factors in the PAZAR-E dataset.

factors from JASPAR.2010 which are also present in
PAZAR were selected (the ‘PAZAR-J’ dataset) and
the performance of the scanning methods was evalu-
ated on these using PAZAR as the gold standard.
TFBS cluster prediction tools chosen were MCast

[77], Baycis [78], Cister [79], ClusterBuster [80] and
Comet [81] while individual TFBS prediction tools
chosen were FIMO [82], Clover [83], Matrix-Scan (part
of the RSAT suite) [84], Patser (also part of RSAT)
[84] and PossumSearch [85]. Note that Cister, Comet
and ClusterBuster all come from the Weng laboratory,
with ClusterBuster being their latest software. Conse-
quently this analysis provides an interesting compari-
son to find out whether their latest software is indeed
the best performing.
All tools having variable cutoffs for making predic-

tions were evaluated to ensure the optimum cutoff was
chosen by using 10% steps for all parameters. In all
cases, the default settings were found to give the best
performance and were used for all future evaluations.
Table 1 shows that FIMO and MCAST are

the best performing TFBS prediction tools for
individual sites and clusters respectively and
FIMO was therefore selected for evaluation of
the motif finding methods. (Complete results for
individual PWMs are provided in Supplementary File
‘searchtool evaluation 1.xls’.)

Evaluation of motif discovery methods
We chose to evaluate four methods for motif discovery
that have been developed especially for working with
large genome-wide datasets and that are open source
and well documented: rGADEM [43], HOMER [24],
ChIPMunk [42], and MEME-ChIP [44, 45]. For this
purpose, TFBS PWMs were derived, using the proto-
col described above, for the 12 transcription factors in
the PAZAR-E dataset.
The tools have parameters that can be adjusted for

motif discovery and these were explored for all tools
using a 10% step size. It was found that the defaults
produced PWMs that resembled well-established mo-
tifs for all tools with the exception of rGADEM where
the e-value parameter had to be set to a value of 0.5
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Table 3 Normalised Euclidean distances between PWMs derived using the different motif discovery tools and PWMs derived from
SELEX or individual promoter assays obtained from JASPAR.

JASPAR.2010 JASPAR.2014 rGADEM HOMER ChIPMunk MEME-ChIP
JASPAR.2010 0 — — — — —
JASPAR.2014 0.393 0 — — — —
rGADEM 0.660 0.404 0 — — —
HOMER 0.503 0.234 0.159 0 — —
ChIPMunk 0.471 0.192 0.263 0.120 0 —
MEME-ChIP 0.404 0.129 0.371 0.203 0.153 0

Note that comparisons between the matrices generated in this work were performed over the 12 TFBS PWMs that were used for
performance evaluation (i.e. the PAZAR-E dataset) while the comparisons with JASPAR.2010 and JASPAR.2014 were performed over
the 11 PWMs for which binding sites are found in PAZAR and the ENCODE-ChIP-Seq data and which also have PWMs in JASPAR (i.e.
the intersection of the PAZAR-E and PAZAR-J datasets).

rather than the default value of 0.0. The motif dis-
covery tools are also able to generate multiple possi-
ble motifs. During the exploration of parameters, it
was found that the first PWM generated always best-
resembled well-established motifs for the TFBSs used
in this work, and consequently only the first PWM was
used.

Performance was evaluated by using the FIMO
motif scanning tool comparing predictions of TFBS
locations with the PAZAR-E data as a gold
standard. Table 2 shows that rGADEM has the
best performance and MEME-ChIP the worst on
all four performance metrics. (Complete results for
individual PWMs are provided in Supplementary File
‘motif discovery tools.xls’ and sequence logos for
the first PWM generated for the 12 TFBSs using
each of the four motif discovery tools are provided
in Supplementary File ‘sequencelogos.pdf’.) We
confirmed the finding of Weirauch et al. [56] that
ChIPMunk outperforms MEME-ChIP, but showed
that rGADEM outperforms both.

The PWMs obtained using the different
methods were compared with each other and
with those in JASPAR: both the older set
derived from SELEX and individual promoter
assays (JASPAR.2010) and the newer matrices
obtained from ChIP-Seq data (JASPAR.2014).
Normalized Euclidean distances between equivalent
PWMs were calculated using the TFBSTools
package (http://www.bioconductor.org/
packages/release/bioc/html/TFBSTools.html) in
Bioconductor. Reverse complement matrices were
also checked and the minimum distances recorded.
Results for each matrix set comparison were averaged
across the PWMs used. The normalised Euclidean
distance ranges from 0 to 1 where 0 denotes complete
identity and 1 denotes complete dissimilarity. Results
are shown in Table 3.

Comparing the PWMs generated in this work us-
ing different motif discovery tools, the best perform-
ing method (rGADEM) shows the largest difference in

Table 4 Performance of TFBS prediction methods using the
PWMs derived using rGADEM and ENCODE-ChIP-Seq data.

Sn PPV ACCg FPRs

CLUSTER
Baycis 0.792 0.687 0.738 0.021
Cister 0.828 0.722 0.773 0.022
MCast 0.907 0.778 0.840 0.013
Comet 0.871 0.759 0.813 0.014
ClusterBuster 0.849 0.739 0.792 0.017
INDIVIDUAL
Matrix-Scan 0.830 0.717 0.771 0.018
Clover 0.851 0.736 0.791 0.015
FIMO 0.933 0.839 0.884 0.002
Patser 0.887 0.774 0.828 0.008
PossumSearch 0.875 0.758 0.814 0.010

Average sensitivities (Sn), Positive Predictive Value (PPV) and ac-
curacy (ACCg) are reported together with the false positive rate us-
ing scrambled sequences (FPRs). Performance was evaluated across
the 12 PWMs that could be derived from the ENCODE-ChIP-Seq
data using rGADEM that have validated TFBSs in PAZAR (the
PAZAR-E dataset). The best performing tools, MCast and FIMO
are highlighted in bold.

PWMs from the worst performing method (MEME-
ChIP). Clearly there are small but significant differ-
ences in the PWMs generated by different motif dis-
covery tools. However all the motif discovery meth-
ods applied to the ENCODE-ChIP-Seq data show even
greater differences from the old JASPAR.2010 PWMs
generated using SELEX or individual promoter assays.

Re-evaluation of PWM scanning tools
Having shown that rGADEM generates better PWMs
than other motif-discovery methods, we returned to
the evaluation of tools for scanning PWMs against
DNA. We repeated this evaluation using PWMs gen-
erated from the ENCODE-ChIP-Seq data using rGA-
DEM, and results are shown in Table 4. In general the
tools predicting individual sites perform better than
those predicting clusters. Because of the more strin-
gent requirements for a true positive in predicting clus-
ters (i.e. every predicted site within the cluster must
have a 70% overlap with a true site), it might be ex-
pected that the sensitivity for cluster predictors would
be lowered, while the specificity would be improved.
Indeed the sensitivity of cluster predictors is somewhat
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lower than the individual site predictors. Since we do
not have the true negative count, we cannot calculate
specificity, but surprisingly the false positive rate on
scrambled sequences (FPRs) for the cluster predictors
is larger than that for single site predictors suggesting
that the cluster predictors have lower specificity.
Using the JASPAR.2010 data, we had identified

FIMO as the best tool for identifying individual TF-
BSs and MCast as the best cluster-based tool. Ta-
ble 4 shows that these two tools still perform best
using the PWMs derived here using rGADEM and
ENCODE-ChIP-Seq data. (Complete results for in-
dividual PWMs are provided in Supplementary File
‘searchtool evaluation 2.xls’.) Indeed the overall
ranking of all the tools remains the same:
MCast>Comet>ClusterBuster>Cister>Baycis

for cluster predictors and
FIMO>Patser>PossumSearch>Clover>Matrix-Scan

for individual predictors.
Cister, Comet and ClusterBuster all come from the

same laboratory (published in 2001, 2002 and 2003
respectively). These results suggest that Comet from
2002 outperforms ClusterBuster from 2003, but both
have made progress over their initial 2001 software.
However MCast significantly outperforms all three
methods.

Conclusions
As a comprehensive set of experimentally-
characterized precise transcription factor binding
sites is not available, having good reliable prediction
methods is very important. While some experimental
methods of identifying TFBSs are relatively accurate,
identifying regions of around 10–20 b.p., methods
such as ChIP-Chip, and more importantly the ‘gold
standard’ ChIP-Seq method, identify DNA regions
of 100–1000 b.p. which is much larger than the
TFBS itself (typically 9–15 b.p.). Consequently,
when these experimental methods are employed for
identifying TFBSs, it is necessary to use a prediction
tool to identify the TFBS within the much wider
region. While the need for identifying TFBSs as an
adjunct to gene prediction in the human genome has
diminished, it is now much more important in order
to have a full understanding of the regulation of gene
expression and to be able to consider the potential
phenotypic effects of mutations occurring in a TFBS.

Motif discovery
None of the ENCODE-ChIP-Seq data used to derive
the PWMs for evaluating motif discovery tools over-
lapped the sequences obtained from genes present in
PAZAR and consequently we know there is no over-
lap between the training and test sets. Table 2 clearly
shows that PWMs derived using rGADEM outperform
those derived using other motif discovery methods.

Alternative sources of binding data

The analysis here has focused on the use of data from
ChIP-Seq experiments which, as described in the intro-
duction, have largely superseded the earlier ChIP-chip
approach; both of these are in vivo approaches. An-
other relatively new approach is the in vitro SELEX-
seq [11] approach. To investigate whether SELEX-seq
would be a useful addition to ChIP-Seq data, we used
rGADEM with SELEX-seq data to derive a PWM
for NF-κB, the only transcription factor for which
SELEX-seq, ENCODE-ChIP-Seq data and PAZAR
data are available.

The performance of the SELEX-seq derived PWM
(Sn=0.913, PPV=0.810, ACCg=0.860, FPRs=0.004)
is less than its counterpart derived from the ENCODE-
ChIP-Seq data (Sn=0.937, PPV=0.831, ACCg=0.882,
FPRs=0.002). However no firm conclusions can be
drawn on the performance of SELEX-seq data in gen-
eral on the basis of a single transcription factor.

Another recently developed technology is ChIP-exo
[17]. Unfortunately no data are available from ChIP-
exo for TFBSs that are present in the PAZAR gold
standard dataset and consequently we cannot evaluate
the performance of PWMs derived from these data.

Scanning tools

An inherent problem with TFBS prediction is their
short and degenerate nature. The non-redundant ver-
tebrate TFBS PWMs in JASPAR.2014 range from
5 b.p. (Pax4) to 30 b.p. (Prrx2), but with the ma-
jority being 9–15 b.p. (mean = 12.2, σ = 3.7). A näıve
scanning of PWMs against a DNA sequence can there-
fore result in a high false positive rate. It is therefore
essential to optimize the methods used to scan a PWM
against a DNA sequence in order to minimize the false
positive rate.

We have evaluated a set of transcription factor bind-
ing site prediction tools that could be downloaded and
installed locally, identifying FIMO and MCAST as the
best-performing tools for identifying individual TFBSs
and clusters of TFBSs respectively. While it is possible
that there is some inter-relationship between the choice
of motif discovery method and the tool used to search
those motifs against a DNA sequence, this seems un-
likely to be significant. The ranking of tool perfor-
mance was the same when used with the JASPAR.2010
PWMs (generated using MEME-based tools) and the
PWMs generated in this work using rGADEM. Sim-
ilarly, using FIMO (part of the MEME suite) as a
search tool, PWMs generated using MEME-ChIP do
not perform as well as PWMs generated using rGA-
DEM (Table 2).
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Alternatives to PWMs
Position Weight Matrices (PWMs) are the most widely
used TFBS models, but are limited by the assump-
tion of the model that positions within a binding
site are independent, something which is not true
in all cases [56]. There have therefore been several
attempts to develop more complex alternatives to
the PWM model that take into account nucleotide
interdependencies [6, 18, 25]. Some examples include
pair-correlation models [86], trees [87], non-parametric
models [88], feature-based models [89], Markov chain
optimization [90], maximal dependence decomposition
[91], Hidden Markov Models [92], transcription factor
flexible models [93] and Dinucleotide PWMs [94].
However it has been observed that classical PWM

models tend to perform at least as well as more com-
plex models [18] and that more complex models tend
to be prone to learning noise. Consequently, it has been
suggested that the PWM model may be the state of
the art and that focus should be placed on optimizing
the PWM model rather than developing more complex
models [95].
While PWMs are not outperformed by more com-

plex models for the majority of transcription factors,
for a small number of individual transcription factors
it has been found that more complex models do result
in better performance [56]. For example, more complex
models perform better for transcription factors AP-2A
and REST, but not for HNF4A [94]. Thus, in future, it
may be worth evaluating both PWMs and more com-
plex models and selecting an appropriate model for
each individual transcription factor.

Summary
While TFBS predictors which identify individual sites
outperform those that identify clusters, the choice of
the type of prediction tool depends on the context in
which it is to be used. The evaluation used in this study
was performed in the context of known TFBSs asso-
ciated with genes. Consequently, if prior knowledge is
available about the DNA sequence being scanned (i.e.
the DNA sequence is that of a known protein coding
gene) then using a predictor of individual TFBSs is
probably a sensible strategy. When analyzing a stretch
of DNA with no prior knowledge about the presence
of a gene, it would be better to use a prediction tool
that identifies clusters of TFBSs since the chance of a
random match is much reduced [58,96].
In conclusion, we have analyzed motif discovery

tools for generating PWMs from ChIP-Seq data using
experimentally-validated precise TFBSs from PAZAR
as a gold standard. We found that rGADEM out-
performed other tools. We then evaluated a number
of tools for scanning PWMs against DNA, both for

identifying individual TFBSs and clusters of TFBSs.
We found that FIMO and MCAST performed best re-
spectively. We also found that there appears to be no
dependence between the tool used for motif discov-
ery and the tool used for motif scanning — in other
words, using (for example) a motif scanning tool from
the MEME suite does not perform better when using
PWMs generated using a motif discovery tool from
the MEME suite than when using an unrelated motif
discovery tool.
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