HOW TO WRITE A WRAPPER
APAT v1.3

Worappers are the only hard coded scriptsin the entire APAT system. The only requirement for the
program isto read and write XML.

Wrappers can be the scripts that run specified local servers or the specified servers over the web. The
wrappers that run the web servers need LWP::UserAgent package.

1. Wrappers used to run web servers:
These wrappers mainly need to handle four important aspects namely,

a) Getting the XML input data

b) Passing the required data to the web server

c) Parsing the output from the web server

d) Writing XML output containing selected data
2. Wrappers used to run Local server:

These wrappers mainly need to handle four important aspects namely,

a) Getting the XML input data

b) Passing the required data to the local server
c) Parsing the output from the local server

d) Writing XML output containing selected data

1. Wrappers used to run web servers:

a) Getting the XML input data:

This can be done using normal programming techniques of pattern matching to identify the required tags
and then getting the data. One of the standard ways of parsing XML input data isto use a perl module
called XML ::DOM designed specifically for parsing. It enables pulling out the required datain a
hierarchical fashion whether it isan *attribute’ or enclosed between start<tag> and end</tag> tags by
using inbuilt functions like getElementsByTagNam, getAttribute, getFirstChild->getNodeVal ue.

Example:

Input XMLfile:

<input>
<sequenceid>sp|P17261|ERS1_YEAST Transmembrane protein ERS1 (ERD suppressor)
— Saccharomyces cerevisiae (Baker's yeast).
</sequenceid>
<sequence>MVSLDDILGIVYVTSWSISMYPPIITNWRHKSASAISMDEVMLNTAGYSYLVISIFLQLYCWK
MTGDESDLGRPKLTQFDFWYCLHGCLMNVVLLTQVVAGARIWRFPGKGHRKMNPWYLRILLAS
LATFSLLTVQFMYSNYWYDWHNSRTLAYCNNLFLLKISMSLIKYIPQVTHNSTRKSMDCEFPIQ
GVFLDVTGGIASLLOLIWQLSNDQGEFSLDTFVTNFGKVGLSMVTLIFNEFIFIMOWEVYRSRGH
DLASEYPL
</sequence>
<emailaddress>s.v.v.deevi@rdg.ac.uk</emailaddress>
<parameter server='targetp' param='origin' value='non-plant' />
<parameter server='psort' param='origin' value='yeast' />
</input>

PERL CODE:

use XML: :DOM;

my Sparser = new XML::DOM: :Parser;
my S$doc = $parser->parsefile (QARGVIO0]);

Get the data within input tag.
foreach my $input ($doc->getElementsByTagName ("input"))
{

Moveto next level (sub-tag) and pick up the datain sequenceid tag.
$Ssequenceidtag = $input->getElementsByTagName ("sequenceid")->item(0) ;
Ssequenceid = $sequenceidtag->getFirstChild->getNodeValue;

Move to another sub-tag of input tag called sequence tag and get the data.
Ssequencetag = $input->getElementsByTagName ("sequence")->item(0);
$sequence = $sequencetag->getFirstChild->getNodeValue;

Move to another sub-tag of input tag called emailaddress tag and grab the data.
Semailaddresstag = $input->getElementsByTagName ("emailaddress")->item(0);
Semailaddress = $emailaddresstag->getFirstChild->getNodeValue;

Move to another sub-tag of input tag called parameter tag by using foreach loop.

foreach $parameter ($input->getElementsByTagName ("parameter"))

{

Get the server name from the attribute 'server'.
Sserver = S$parameter->getAttribute ("server");

Check for the required server using if loop and grab the origin data within the other
attribute 'value'.
if ($server eq "psort")
{

my S$param = S$parameter->getAttribute ("param");

if (Sparam eq "origin")

{

Sorigin = $parameter->getAttribute ("value");
}

b) Passing the required data to the web server:

Now the data present within the variables is passed onto specific webserver which then runs the tool
with the provided data and sends back the output from the tool.

If required, proxy server should be specified with user/password. Asit is not a good practice to place the
username and password in a program it can be retrieved from an environment variable.

So if an environment variable WEBPROXY is used for the web proxy, then the .bashrc should include:
export WEBPROXY="user:password@wwwcache.myservername:port"

where you substitute your username, password, myservername| example: rdg.ac.uk] and port[example:
8080] as required.

Note:

1) The spacing is important - there must be no spaces around the = sign.
1) The commandsin .bashrc file don't get executed until you run the .bashrc script - i.e. need to open a
new shell.

Ii)Any scripts that contain your password need to be protected so they can't be read by anyone else:

chmod og-rx filename

Specify proxy server (with user/password) if required
if (defined (SENV{WEBPROXY}))
{

Swebproxy
}
else
{

Swebproxy ;
}

SENV{WEBPROXY};

Specify the URL for the CGI script to be accessed. For example, to access NetPhos:
Surl = "http://www.cbs.dtu.dk/cgi-bin/nph-webface";

The submission web page needs to be examined for the required data to be sent to the CGI script and the
order in which they should go in.

Note:

For some reason some servers need the configfile to comefirst asin this case.
Spost = "configfile=/usr/opt/www/pub/CBS/services/NetPhos—
2.0/NetPhos.cf&segpaste=S$seq&tyrosine=psé&serine=ps&threonine=ps";

A user agent isto be created for posting the request.

Sua CreateUserAgent ($webproxy) ;

FHAE A R R R R A
sub CreateUserAgent

{
my (Swebproxy) = @_;

my (S$ua) ;

A new LWP::UserAgent is created with awebbrowser like Mozilla.
Header needs to include theline : Use LWP::UserAgent;

Sua = LWP::UserAgent->new;
Sua->agent ('Mozilla/5.0");

If proxy isrequired, provide it with details
if (length (Swebproxy))
{
Sua->proxy (['http', 'ftp'l => Swebproxy);
}

return (Sua) ;

}

gddatsistaisiaisa ittt gttt tattdtds

After creating the user agent, the request needs to be posted to the URL.
Sreq = CreatePostRequest (Surl, S$post);

FHAHFH A A AR H AR A AR H A AR A AR AR H AR
sub CreatePostRequest

{
my ($Surl, S$params) = Q_;
my ($req) ;

The URL is posted in the webbrowser
Sreq = HTTP::Request->new (POST => S$Surl);
Sreg->content_type ('application/x-www-form-urlencoded') ;
Sreg->content_type ('multipart/form-data');

The required data for run parameters of the tool are also posted

Sreg->content ($params) ;

return ($req) ;

}

R A AR R R R R R

After posting arequest to the URL along with data for the parameters the output from
the tool is to be collected.

Sresult = GetContent ($ua, Sreq);

Redirection :

Some servers return redirection page instead of results. The page returns a'wait' page which eventually
redirects itself to the results once they are ready. Modification of the code is needed so that it Sitsin a
loop until the results are available and then grabs them.

Grab this URL out of the returned page.
Surl = GrabRedirect ($Sresult);

xR
sub GrabRedirect

{
my ($Shtml) = @_;

Grab the URL on the wait page through pattern matching methods.
Shtml =~ /location\.replace\ (\" (.*2)\"\)/;
return ($1);

}

B A R R R R R R

So we start aloop...

Iterate while the URL contains 'wait'
do

{
Where we create arequest using this new URL and get the page which is of the same

format but will contain aredirect either to the wait page again or to the final results page
Sreq = CreateGetRequest (Surl);

Post the new URL

Sresult = GetContent (Sua, $req);

Grab the URL
Surl = GrabRedirect ($Sresult);

Just to be polite we sleep for one second so we don't keep hammering the server

sleep 1;
and we keep looping while the URL contains the word 'wait'
} while (Surl =~ /wait/);

We have now got out final results URL so we grab that page
The URL is now the one for the results page
Sreq = CreateGetRequest (Surl);

FHAHFH A A H AR AR H A A H SRS
sub CreateGetRequest

my (Surl) = @_;
my (Sreq) ;

Getsthe new URL
Sreq = HTTP::Request->new('GET', Surl);
return ($req) ;

}
R A A A A R AR R R

Sresult = GetContent (Sua, S$req);

The url containing the results is then passed into $link asit is.
$link = S$url;

Asthe url might contain ‘&' character that needs to be written in adifferent way for HTML to
understand, it should be substituted by '&'.

$link =~ s/&/&/qg;
and we are now ready to return the results.

The results are obtained into a variable called $result which is then passed onto the parsing subroutine.

c) Parsing the output from the web server

Because most of the information presented on the output pages of many toolsis not very significant, we
need to grab only the information that might be of great significance to a biologist. So we parse the
output page and pullout the useful bits only.

sub parse

{
my @data =Q_;
my ($i,$in,Q@fields,@score);

Start aloop that runs until(blank line) there is datain the output page.
for ($i=0; $i<@data; $i++)
{

Read the data line by line.
$_ = S$datal$i];

If we want to get something that follows a header, say for example the header starts with Namein
the beginning of line, then we flag that as $in=1 and move to the next line.
if (/"Name/)
{
Si++;
Sin=1;

}

Similarly we flag something as end, say for example the end is marked by a series of continous*_’
signs at the start of the line, then we flag that as $in=0
elsif (/* /)
{
$in=0;

}

When the start flag is found, we enter aloop to pull the data.
elsif ($in)
{
s/"\s+//;

Enter if thelineis not empty
if (length())
{

If we want to split the various columns into different fields and get the values of required fields
only
@fields=split();

If $field[1] is residue number and $field[3] is some score we are interested in storing in an array
marked by the residue numbers
Sscore[$fields[1]-1]1=S$fields[3];
}
}

}
The parsed datais returned.
return (@score) ;

}

d) Writing XML output containing selected data

The parsed datais now printed out using the designed XML tags.
For example:

A bunch of lines can be printed by using aformat as below. 'print * statement followed by an End Of
File character (can be anything) and semicolon indicates the starting point of printable lines. When the
End Of File character is printed again, then it indicates the end of printable region.

Note:
Closing End Of File character should be at the very beginning of the line without any trailing spaces.

print <<__EOF;
<result program='NetPhos' version='2.0"'>
<function>Protein Phosphorylation sites Prediction</function>

<info href='http://www.cbs.dtu.dk/services/NetPhos/'>NetPhos Web
Server</info>

<run>

<params>
<param name = 'Serine' value = 'Checked'/>

<param name = 'Threonine' value = 'Checked'/>
<param name = 'Tyrosine' value = 'Checked'/>
<param name = 'Generate Graphics' value = 'unChecked'/>
<param name = 'Threshold' value = '0.500'/>
</params>

<date>$dt</date>

</run>

<predictions>

<link href='$link'>Actual prediction (native, unparsed form)- available
only for a limited time</link>

<perres-number name = 'P-score' clrmin = '0.0' clrmax = '1.0' graph='1l"
graphtype='bars'>
__EOF

When some programming chunk is to be added, then the bulk printing is ended.

Scount=1;
foreach $val (@score)
{

Sk = Scount;

Astherewill be multiple value-perres tags they are conveniently looped around the array carrying the
values.

printf " <value-perres residue='S$k'>%f</value-
perres>\n", Sval;

<threshold>

<description>P-scores greater than 0.5 are considered as positive
predictions
</description>

2. Wrappers used to run Local server:

a) Getting the XML input data:

Same as in webserver’' s context

b) Passing the required data to the local server:

Thisis much easier and better way of doing it. If the source code of atool is open and free to download,
it'salways advisable to have it locally because of the following reasons.

i) Loca programs run faster as they avoid network traffic.

i) They don’t need to use complex ways of posting the input.

11))] They can avoid the risky screen scraping techniques which fail to work if the format of
webpages is changed.

For example:

After getting the input data, it can be written to a file which can then be conveniently passed onto the
program on the command line.

my ($ipf) =€_;
my ($inputfile, Soutputfile);

open (FILE, ">inputfile") || die "Can't write inputfile";
print FILE $ipf;
close FILE;

$inputfile = "inputfile";

Run the tool (program) on the command line by using backticks ™.
Soutput = ' ~/psipred/runpsipred S$inputfile’;

Now the output isin avariable called $output.

c) Parsing the output from the local server:

Same as in webserver’ s context.

d) Writing XML output containing selected data:

Same as in webserver’' s context.

