i

Version Control and Issue Tracking
(with thanks to James Hetherington, UCL RC)

* Managing code inventory
— “When did | introduce this bug?”
— Undoing mistakes

* Working with other programmers
— How can | merge my work with Jim’s?

* What's the most important bug to fix next?

What is version control? (Solo version)

Do some programming
> my vcs commit

Program some more
— Realise mistake

> my vcs rollback
— Mistake is undone

Syntax here is example only!

Sue

Create some code
> my vcs commit
...wait...
...wait...
...wait...
...wait...
>my vcs update
Do some programming
... program some more
> my vcs commit

* Oh Noes! Error message!
> my vcs update
> my vVCs merge
> my vcs commit
More programming...

What is version control? (team version)

Jim

... wait ...
... wait ...
Join the team
> my vcs checkout

do

some programming

> my vcs commit
Do some programming

more programming...

> my vcs commit

.. more programming ...
.. more programming ...
.. more programming ...
.. more programming ...
.. more programming ...

> my vcs commit

Error again...

Centralised VCS concepts

* There is one, linear history of changes on the server or repository
* Each revision has a unique identifier
* You have a working copy
* You update the working copy to match the state of the repository
* You commit your changes to the repository
* |If you someone else has changed it you have to resolve conflicts
between your changes and the repository, and then commit

Centralised VCS solo workflow

Time

Centralised VCS Team workflow: no conflicts

Centralised VCS with conflicts

Server Tim Sue.

Distributed and Centralized Version Control

* Centralized:
— Some server contains the remote version
— Your computer has your copy
— To switch back to an old copy you need the internet
— E.g. cvs, subversion (svn)

* Distributed:
— Every user has a version of the full history
— Users can synchronize their history with each other

— Having a central “master” copy is a policy option
— Most groups do this

— E.g. git, mercurial (hg), bazaar (bzr)

Pragmatic distributed VCS

Git
git

git
git

git
git

git

clone git@github.com:ucl/mycode.git

commit
push

pull
status

diff

—-a

wnrklng
dlrectﬂl'}f

Local

staglng
area

It commlt -a

Remote

l
Il :

Working with branches

- master

\ nice_feature /

9 > Q

\ very_nice_feature

Q >Q

time

Working with branches in git

> git branch

* master
> git checkout -b experiment
> git branch

master

* experiment

Sharing branches in git

git push origin experiment
publish the branch to remote

git push -u origin experiment
publish the branch to remote(first time)

git checkout origin/experiment
get a new branch from a remote

Merging and deleting branches

git checkout master
switch back to master branch
git merge experiment
take all the changes from experiment into master
exactly like merging someone else’s work
git branch -d experiment
the experiment is done, get rid of local branch
git push --delete experiment
git rid of the branch on the remote

Working with branches

* You should have a development branch and a stable branch

* You should create temporary branches for experimental
changes

* If you release code to others, you should make a release
branch

— Then you can make fixes to bugs they find
— And control which of your work goes in the release

Tag Author: Yincent Driessen
0.1 Original blog post: http-/ /nvie com/archives/323
. License: Creative Commaons

20

"'1
hotfixes |
7 B
release Incorporate

master

v
'
O
v
O

branches bugfix in ->0-9

develop f
LN
develop f X
: Major ?)
fasiiE feature for %
>Q >0

branches next
’ release

lIime

Tagging

* You should tag working versions

* You should produce real science only with specific
tagged versions, and note which one

Tagging
git tag v1.3
add a tag, labelling last commit
git tag v1.3 ab48dc
tag an old commit
git push --tags
publish the tags to origin

Working with GitHub

GitHub Bootcamp If you are still new to things, we've provided a few walkthroughs to get you started.

Set Up Git Create A Repository Fork a Repository Be social
A quick guide to help you get Create the place where your Copy a repo to create a new, Follow a friend.
started with Git. commits will be stored. unigue project from its contents. Waitch a project.

Set up ssh keys

SSH Keys
jamespjh@plinian (ce:f6:e2:64:22:15:75:66:43:15:66:5b:63:18:16:37)
GitHub for Mac - szilard (0d:f3:58:37:b9:a7:3d:50:a8:¢1:b7:50:51:41:3b:93)

jamespjh@szilard (d1:81:7e:58:16:30:00:50:33:1e:76:f1:57:29:dd:39)

Add an SSH Key

Title

Key

Add SSH key
Delete
Delete

Delete

Match case

Create repository

Owner Repository name

example|

PUBLIC @ jamespih - /

Great repository names are short and memorable. Need inspiration? How about cloaked-nemesis.

Description (optional)

@ [Public

Anyone can see this repository. You choose who can commit.

N

Q) Private
You choose who can see and commit to this repository.

(| Initialize this repository with a README
This will allow you to git clone the repository immediately.

Add .gitignore: None ~

Conclusions

* Tools can make your development easier, safer, more
reliable, more correct, and more collaborative

* They can be complicated and take time to learn

* Learn by practicing
— Use the tools

— Pick an open source project on github or bitbucket and start
contributing

http://git-scm.com/book/
http://svnbook.red-bean.com/

