
Version Control and Issue Tracking
(with thanks to James Hetherington, UCL RC)

• Managing code inventory
– “When did I introduce this bug?”
– Undoing mistakes

• Working with other programmers
– How can I merge my work with Jim’s?

• What’s the most important bug to fix next?

What is version control? (Solo version)

• Do some programming
• > my_vcs commit
• Program some more

– Realise mistake

• > my_vcs rollback
– Mistake is undone

Syntax here is example only!

What is version control? (team version)

• … wait …
• … wait …
• Join the team
• > my_vcs checkout
• do some programming
• > my_vcs commit
• Do some programming
• … more programming…
• > my_vcs commit
• … more programming …
• … more programming …
• … more programming …
• … more programming …
• … more programming …
• > my_vcs commit

• Error again…

• Create some code
• > my_vcs commit
• …wait…
• …wait…
• …wait…
• …wait…
• >my_vcs update
• Do some programming
• … program some more
• > my_vcs commit

• Oh Noes! Error message!
• > my_vcs update
• > my_vcs merge
• > my_vcs commit
• More programming…

Sue Jim

Centralised VCS concepts

• There is one, linear history of changes on the server or repository
• Each revision has a unique identifier

• You have a working copy
• You update the working copy to match the state of the repository
• You commit your changes to the repository
• If you someone else has changed it you have to resolve conflicts

between your changes and the repository, and then commit

Centralised VCS solo workflow

Time

Centralised VCS Team workflow: no conflicts

Centralised VCS with conflicts

Distributed and Centralized Version Control

• Centralized:
– Some server contains the remote version
– Your computer has your copy
– To switch back to an old copy you need the internet
– E.g. cvs, subversion (svn)

• Distributed:
– Every user has a version of the full history
– Users can synchronize their history with each other
– Having a central “master” copy is a policy option
– Most groups do this

– E.g. git, mercurial (hg), bazaar (bzr)

Pragmatic distributed VCS

Git

git clone git@github.com:ucl/mycode.git

git commit -a
git push

git pull

git status

git dif

git commit -a

Working with branches

Working with branches in git

> git branch
* master

> git checkout -b experiment
> git branch

master
* experiment

Sharing branches in git

git push origin experiment
publish the branch to remote

git push -u origin experiment
publish the branch to remote(first time)

git checkout origin/experiment
get a new branch from a remote

Merging and deleting branches

git checkout master
switch back to master branch

git merge experiment
take all the changes from experiment into master
exactly like merging someone else’s work

git branch -d experiment
the experiment is done, get rid of local branch

git push --delete experiment
git rid of the branch on the remote

Working with branches

• You should have a development branch and a stable branch
• You should create temporary branches for experimental

changes
• If you release code to others, you should make a release

branch
– Then you can make fixes to bugs they find
– And control which of your work goes in the release

Tagging

• You should tag working versions
• You should produce real science only with specific

tagged versions, and note which one

Tagging

git tag v1.3
add a tag, labelling last commit

git tag v1.3 ab48dc
tag an old commit

git push --tags
publish the tags to origin

Working with GitHub

Set up ssh keys

Create repository

Conclusions

• Tools can make your development easier, safer, more reliable,
more correct, and more collaborative

• They can be complicated and take time to learn
• Learn by practicing

– Use the tools
– Pick an open source project on github or bitbucket and start

contributing

http://git-scm.com/book/

http://svnbook.red-bean.com/

Key commands

• git clone git@github.com:username/repo.git
• git add filename
• git commit -a -m “message”
• git push
• git pull
• git checkout -b branchname
• git push -u origin branchname
• git checkout branchname
• git merge branchname

