Anatomy of the antibody molecule: a continuing analysis based on high-resolution crystallographic structures

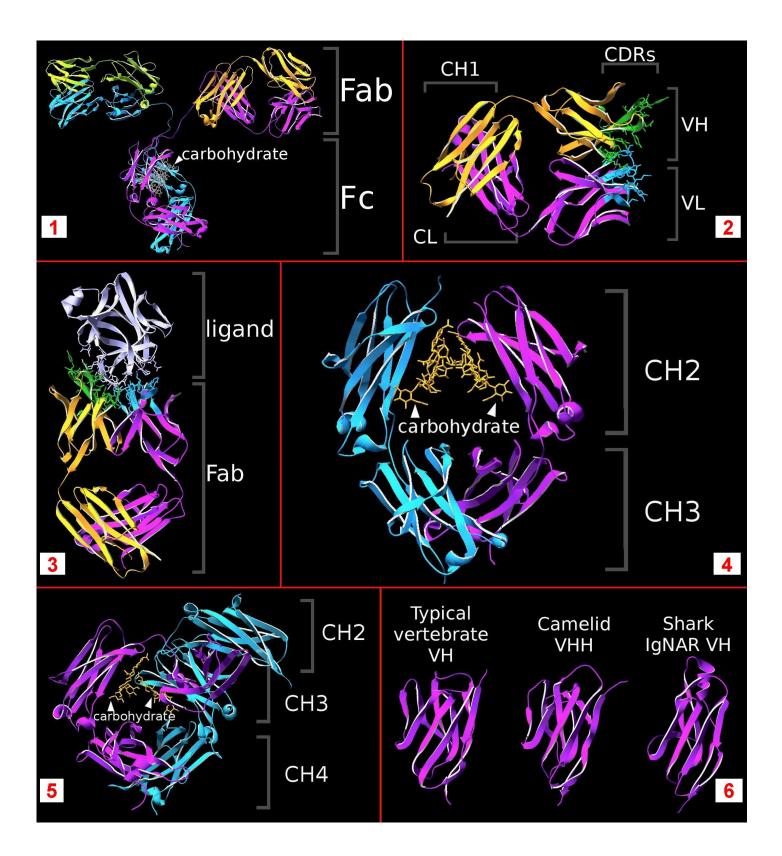
Jo Erika T. Narciso, Iris Diana C. Uy, April B. Cabang, Jenina Faye C. Chavez, Juan Lorenzo B. Pablo, Gisela P. Padilla-Concepcion*, Eduardo A. Padlan

The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines

urrently available high-resolution crystallographic studies of liganded and unliganded antibody molecules have provided the opportunity to analyze in more detail the structure of the antibody and its interaction with antigen, as well as the interactions between the domains of the molecule and between the framework and the complementarity-determining regions of the variable domains. The structural data now available have also allowed a more detailed analysis of the solvent accessibilities of the residues in the various domains of the molecule. The information resulting from this analysis is useful in the engineering of antibodies for therapeutic and other purposes.

KEYWORDS

antibody structure, high-resolution crystallographic studies, antibody-ligand complexes, solvent accessibilities, inter-residue contacts, antibody engineering


Email Address: gpconcepcion@gmail.com Submitted: December 14, 2011 Revised: December 30, 2011 Accepted: December 30, 2011 Published: May 29, 2012 Editor-in-charge: Leodevico L. Ilag Reviewer: Leodevico L. Ilag

INTRODUCTION

Antibody molecules constitute one of the most important weapons in the arsenal of the immune system and are probably the most extensively studied among the medically significant proteins. Reviews on the structure of antibodies and their interaction with antigen were written soon after the first structures became available (see, for example, Poljak 1973, 1975; Poljak et al. 1976; Davies et al. 1975a,b; Huber 1976; Huber et al. 1976; Capra and Edmundson 1977; Padlan 1977; Amzel and Poljak 1979; Colman 1988; Alzari et al. 1988; Davies et al. 1988, 1990; among others). An extensive analysis of the antibody structure was done by one of us (Padlan 1994). Since then, crystallographic studies have provided higher resolution details of the structure of antibodies and of their interaction with specific ligands. Here, we update that earlier analysis using the structural data now available.

The two most important characteristics of antibodies are exquisite specificity and high binding affinity for the antigens against which they were produced. Those characteristics make antibodies very useful in medicine, research, and industry. Consequently, antibodies have been the subject of extensive engineering. The results of the analysis that we present here will be useful in those engineering endeavors.

Antibodies are produced by all vertebrates and come in a variety of types. In humans, there are five antibody types: IgA (with two subtypes: IgA1 and IgA2), IgD, IgE, IgG (with four subtypes: IgG1, IgG2, IgG3, and IgG4), and IgM, which are often found in specialized locations and all with their specific

functions. For example, IgA is mostly found in the gastrointestinal tract; IgD is found on the surface of the lymphocytes which would eventually produce secreted antibodies; IgE is an important molecule in the fight against parasites and is the antibody type responsible for allergic reactions; IgG is the most prevalent antibody molecule and is primarily responsible for protection against pathogens and their molecules; IgM is the earliest antibody type produced and can also be found on the surface of those lymphocytes which eventually mature to cells that secrete antibodies.

Antibodies come in a variety of sizes. The usual antibody structure is a tetramer of polypeptide chains identical in pairs. One chain is roughly half the size of the other and is called the light (L) chain; the longer chain is called the heavy (H) chain. One light chain is paired with one heavy chain. Both light and heavy chains are built from independently folded structures (domains) of about 110 amino acids. There are two domains in the light chain and four, or five (in the IgE and IgM types), in the heavy chain. The light chain of either type can associate with the heavy chain of any type.

All antibody domains have a characteristic tertiary structure, that consists mainly of two anti-parallel beta-pleated sheets with loops of varying size and structure connecting the individual strands; this domain structure has been termed the Immunoglobulin Fold (Poljak et al. 1973). In addition to the strong secondary structure that characterizes anti-parallel beta-pleated sheets, the tertiary structure of antibody domains is stabilized by a disulfide bridge connecting the two sheets. Light

and heavy chains are usually linked by disulfide bonds and the two heavy chains are linked by one, or more, disulfide bonds.

The N-terminal domains of both light and heavy chains are variable, i.e., they vary from antibody to antibody; those variable domains are referred to as VL and VH, respectively. The other domains of the light and heavy chains are constant, i.e., they are the same for antibodies of the same type. The constant domain of the light chain is called CL and those of the heavy chain are called CH1, CH2, and CH3 (and CH4, in the case of IgE and IgM). There is close association between VL and VH, between CL and CH1, and between the two CH3s in IgA, IgD, and IgG (and between the two CH2s and the two CH4s in IgE and IgM). The structure of a typical IgG molecule is shown in Figure 1.

The close association between domains results in a modular structure for the antibody molecule (Figure 1). The VL:VH module, usually referred to as the Fv (Fragment, variable), is loosely connected to the CL:CH1 module so that there is some degree of freedom in the movement of the Fv relative to CL:CH1. The Fv and the CL:CH1 modules constitute the Fab (Fragment, antigen binding), which has the antigen-binding properties (specificity and affinity) of the antibody. The rest of the constant domains of the two heavy chains (the CH2 and CH3 domains of IgA, IgD, and IgG, and the CH2, CH3, and CH4 domains of IgE and IgM) constitute the Fc (Fragment, crystalline - so named because rabbit Fc, the first one studied, readily formed crystals in distilled water). The "effector functions" of antibodies (for example, recruitment of immune cells, binding to molecules that initiate the destruction of foreign cells, etc) reside in the Fc. The two Fabs and the Fc are connected by a "hinge", that is often unstructured and rather

Figure 1. Ribbon diagram of an intact mouse antibody of the IgG2a type (PDB entry 1IGT) (Harris et al. 1997). Beta strands and helices are shown as wide ribbons, while segments that lack secondary structure are shown as thin strands. The light chains are shown in orange and green, the heavy chains in purple and blue. The 'arms' of the molecule represent the Fabs; the 'stem' represents the Fc. Note that the two Fabs are linked to the Fc by extended strands (the hinge region), the flexibility of which allows essentially unrestricted movement of the Fabs relative to the Fc in this antibody type. The carbohydrates that are normally found between the two chains in the Fc are shown in grey stick representation. This and the other ribbon diagrams (below) were drawn using the modeling software, DeepView v4.0 (Guex and Peitsch 1997), implemented at http://www.expasy.org/spdbv/.

Figure 2. Ribbon diagram of a human Fab (extracted from PDB entry 2VXT). The light chain is shown in purple, the heavy chain in orange. The VL and the VH are at the top of the figure, the CL and CH1 are at the bottom. The CDRs of the light chain are shown in blue; those of the heavy chain are shown in green. The side chains of the CDR residues are shown in stick representation. Note the close association of the VL and VH domains, and of the CL and CH1 domains.

Figure 3. Ribbon diagram of a human Fab complexed to a protein antigen (PDB entry 2VXT). The color scheme for the Fab is the same as in Figure 2; the antigen is shown in lilac. The side chains of the antibody and ligand residues in contact with one another are rendered in stick representation.

Figure 4. Ribbon diagram of a human IgG1 Fc (PDB entry 2DTQ). One chain is shown in blue, the other in purple. The two CH2 domains are at the top; the two CH3 domains are at the bottom. Note the close association of the two CH3 domains. The carbo-hydrate moieties typically attached to the CH2 domains and located between them in the three-dimensional structure are shown in orange stick representation. The only contact between the two CH2 domains is through these carbohydrates.

Figure 5. Ribbon diagram of a human IgE Fc (PDB entry 2WQR). One chain is shown in blue, the other in purple. The CH2 domains are at the top; the CH3 and CH4 domains are at the bottom. Note the close association of the two CH2 and the two CH4 domains. The carbohydrate moieties attached to the CH3 domains and located between them in the three-dimensional structure are shown in orange stick representation.

Figure 6. Ribbon diagrams of a typical VH (left) [extracted from PDB entry 3D9A], a camelid VHH (middle) [PDB entry 2P49], and a shark IgNAR VH (right) [PDB entry 2I24] shown in approximately the same orientation.

flexible (as in Figure 1), allowing an essentially independent movement of the Fabs relative to the Fc.

The structure of an Fab is shown in Figure 2, where the close association of VL and VH and of CL and CH1 is evident. An isolated Fv has been shown to share similar, but often not identical, antigen-binding properties as the Fab. This is probably because the relative orientation of the VL and the VH in an isolated Fv is not necessarily the same as that found in the Fab possibly a consequence of the absence in an isolated Fv of the stabilizing effect of the CL:CH1 module.

It was found early on that within both the VL and the VH there are regions that are hypervariable (Wu and Kabat 1970). Those regions have been named "complementarity-determining regions", or CDRs, because they are mainly responsible for the close structural complementarity of the antigen-binding site of the antibody (also called the paratope) and the part of the antigen to which it binds (the epitope). Three CDRs are found in both light and heavy chains, with intervening non-CDR or framework (FR) residues, and they come together at the N-terminal tip of the Fab (see Figure 2). In all the Fab-antigen complexes studied to date, CDR residues predominate in antigen binding, with the occasional involvement of a few neighboring FR residues. The structure of an Fab-antigen complex is shown in Figure 3.

X-ray structures of the Fc from several antibody types have also become available and they have been found to be very similar. The structure of the Fc of a human IgG1 is shown in Figure 4. The structures (not shown) of rabbit Fc and of the two last two domains of avian IgY are very similar to that of human IgG1. The structure of the Fc of a human IgE is shown in Figure 5. Both structures show a close association of the two terminal domains of the heavy chain. The next-to-last domains in the heavy chains (the CH2 domains in IgG and the CH3 domains in IgE) are farther apart, with carbohydrate found in the space between them. The bent structure of an IgE, as predicted from the results of electron-spin resonance studies (Zheng et al. 1991), was confirmed by the crystal structure of the IgE Fc (Figure 5).

Antibody molecules similar in structure to those found in humans are found in other vertebrates. However, unusual antibody types are found in some species. Camelids, in addition to the usual antibody types, have a type that has only heavy chains, i.e., no light chains are found associated with the heavy chains. In that antibody type, the variable domain of the heavy chain (called VHH) is responsible for the entire antigen-binding function of the molecule. Sharks have an unusual antibody type, called IgNAR (Immunoglobulin <u>New Antigen Receptor</u>), which also has no light chains. In shark IgNAR also, the variable domain of the heavy chain constitutes the whole antigen-binding region of the molecule. To compensate for the absence of a VL, the third CDR of both the camelid VHH and the shark IgNAR VH are unusually long and the extra length of this CDR provides enough contact with the antigen to result in significant binding affinity. The VH of a typical antibody, a camelid VHH, and a shark IgNAR VH are compared in Figure 6. Their tertiary structures are seen to be very similar, with the structural differences being mainly in the CDRs.

Antibodies carry out essential functions of the immune system which include: neutralization of toxic antigens, binding to the receptors of pathogens to prevent them from entering cells, immobilization of pathogens to facilitate their ingestion by macrophages and other cells of the immune system, and recruitment of the "complement system" (a cascade system of enzymes and other molecules that is triggered by antibodyantigen complexes and which eventually leads to cell lysis). In view of these functions and, especially, their exquisite specificity, antibodies are widely used in medicine for therapy and diagnostics. Antibodies, again because of their specificity, are also very useful in isolating, tagging with detecting agents for purposes of visualizing, identifying, quantitating, and purifying molecules.

Another unique utilization of antibodies is for the catalysis of chemical reactions for which there are no known natural enzymes. Transition-state analogs can be used to elicit an antibody response, and catalytic antibodies could be obtained and used in place of enzymes (Jencks 1966).

The wide use of antibodies in medicine and in the laboratory is made possible by the ease with which large amounts of antibody molecules of a desired specificity can be generated. One procedure that is in wide use is the hybridoma technology developed by Koehler and Milstein (1973), which involves the immortalization of antibody-secreting cells obtained by usual immunization procedures. Another technology is phage display (Smith 1985), which allows for the generation of many different light and heavy chain combinations (Huse et al. 1989, McCafferty et al. 1990); the random combinations are then screened for molecules that have the desired specificity and affinity.

The specific interaction between antibodies and antigens depends on their respective three-dimensional structures. The elucidation of the three-dimensional structures of antibodies and antigens rapidly progressed in parallel with the development of powerful techniques used in structural biology. Most antibody structures had been generated by x-ray crystallography and some by Nuclear Magnetic Resonance. Several hundred antibody crystal structures have now been elucidated and atomic coordinates for most are available in the Protein Data Bank (Sussman et al. 1998, Berman et al. 2002). The antibodies were from various animal sources (mouse, rat, human, rabbit, chicken, camelids, and shark). Most structures were of natural antibodies, either whole or in fragment form, while others had been modified by protein engineering.

Engineering of the antibody molecule has been encouraged

by the many potential uses of antibodies. For human therapy, antibodies obtained from nonhuman sources (often mice and rats) have to be "humanized", i.e., made less immunogenic to humans. Antibody molecules with greater potency, greater stability, longer half-life, and improved binding properties are desirable for medical purposes, as well as for laboratory and industrial use. Clearly, a detailed knowledge of the structure of antibodies makes it easier to engineer these molecules to achieve the desired characteristics. The aim of this review is to add to that knowledge as more highly refined antibody structures are made available. A preliminary account of this analysis was presented elsewhere (Narciso et al. 2011).

MATERIALS AND METHODS

Structural data

In this review, we analyzed the antibody structures that have been determined by x-ray crystallography and whose coordinates were available in the Protein Data Bank (PDB) as of December 31, 2010 (Table 1). We analyzed representative antibody-antigen interactions and determined the solvent accessibilities of individual residues in the variable domains of the light and heavy chains, and in constant domains. In addition, we analyzed the details of the residue contacts between the variable domain of the L chain (VL) and the variable domain of the H chain (VH), between the constant domain of the L chain (CL) and the first constant domain of the H chain (CH1), and between the constant domains of the heavy chain. We also analyzed the details of the contacts between the residues in the CDRs and the framework regions of the variable domains. We have also analyzed the structures and antigen interactions of the variable domain of the atypical antibodies of camelids (VHH) and of sharks (IgNAR VH).

Although several hundred antibody structures are available in the PDB, we chose to include in our analysis only those which had been determined to high resolution and had been subjected to a high degree of refinement. This is to minimize the uncertainty in the results of our analysis. For purposes of this review, we had arbitrarily designated a structure as "highresolution/highly refined" if it had been determined at a resolution of 2.00 Angstroms or higher and refined to a crystallographic R-value of 0.200 or better.

We have included in our analysis only naturally occurring molecules and those with native sequences, and have excluded engineered molecules, e.g., those which had been humanized, as well as assemblies of VL and VH domains, whether in the form of paired isolated domains (Fv) or linked together as single chains (scFv). There is no assurance that the antigen-binding site of an Fv will have the same structure and binding properties as the Fab from which the variable domains had been isolated. As mentioned above, a change in the relative orientation of the VL and VH in the Fv versus the Fab was demonstrated very early on (Bhat et al. 1990). Not infrequently, some segments or atoms are not observed in the electron density maps from the crystallographic studies, even those which had been done at high resolution. The structures with missing parts in the antigen-binding region of the molecule were excluded from our analysis.

Four Fc structures met our criterion for designation as "high-resolution/highly refined" (Table 1). We have included those in our analysis.

Some structures that had been determined at high resolution have shown that water molecules are involved in the interaction between antibody and antigen (e.g., Bhat et al. 1994, Cohen et al. 2005). In the absence of an actual structure determination, the number of water molecules and the nature of their involvement can only be guessed. Obviously, water molecules contribute to the complementarity of the paratope and the epitope. However, no generalizations can be made with the currently available data, so we have decided to forego a discussion of the role of water molecules until more high-resolution structures become available.

Some of the CDRs are mainly loop structures that are exposed to solvent, so that they may be inherently flexible and could be deformed upon binding to ligand - an example of "induced fit" (Koshland et al. 1966). Several examples of "induced fit" in antibody-ligand interactions have been documented (see, for example, Rini et al. 1992, Stanfield et al. 1993). A number of the structures that we have analyzed were unliganded, so that the results for those structures may be different from those which we would have obtained if the structures were liganded.

We wish to remind the reader that our analysis was done on structures that had been determined by x-ray crystallography - a technique that subjects the molecules to non-physiological conditions and damaging radiation. Nonetheless, it is generally accepted that a crystallographically determined structure probably represents one of the more stable conformations of a protein molecule.

Calculations

Surface areas were calculated using the method of Connolly (1983). Fractional solvent accessibilities and interatomic contacts were computed as described earlier (Padlan 1994). Here, two atoms are considered to be in contact if they are within 4.0 Angstroms of each other. A more accurate estimate of interatomic contacts would take into account the error in atomic positions. Error estimates are provided in some, but not all, of the PDB entries and they vary widely. In view of the different resolution and degree of refinement of the structures being analyzed here, only an average value would be appropriate. We chose simply to use a fixed distance of 4.0 Angstroms, which is not unreasonable.

Table 1. High-resolution antibody and antibody-complex structures analyzed in this review (inthe PDB as of 12-31-2010)

	FRAGMENT	PDB CODE	RESOLUTION	R- VALUE	LIGAND	REFERENCE
(Human)	E 1	0010707	2.00	0.103	URU 1 120 1 CD4	71 (2007)
17B 17B	Fab Fab	2NXY 2NY2	2.00 2.00	0.183 0.195	HIV-1 gp120 and CD4 HIV-1 gp120 and CD4	Zhou et al. (2007) Zhou et al. (2007)
7G10	Fab	3D85	1.90	0.172	interleukin-23 subunit	Beyer et al. (2007)
5E1	Fab	3MXW	1.83	0.181	sonic hedgehog protein	Maun et al. (2010)
2F5	Fab	1TJG	2.00	0.198	peptide	Ofek et al. (2004)
3074	Fab(λ)	3MLY	1.70	0.182	peptide	Jiang et al. (2010)
268-D	Fab(λ)	3GO1	1.89	0.192	peptide	Jiang et al. (2010)
ABT-325	Fab	2VXV	1.49	0.155		Argiriadi et al. (2009)
OPG2	Fab	10PG	2.00	0.160		Kodandapani et al. (1995)
BHA10	Fab	3HC0	1.90	0.182		Jordan et al. (2009)
(Murine)						
125-2H	Fab	2VXT	1.49	0.164	interleukin-18	Argiriadi et al. (2009)
82D6A3	Fab	2ADF	1.90	0.192	von Willebrand factor A3-domain	Staelens et al. (2006)
HyHEL-5	Fab	1YQV	1.70	0.195	lysozyme (hen egg-white)	Cohen et al. (2005)
E8	Fab	1WEJ	1.80	0.200	horse cytochrome c	Mylvaganam et al. (1998)
HyHel-10 4C3	Fab Fab	3D9A 3LIZ	1.20	0.191 0.178	lysozyme (hen egg-white)	Acchione et al. (2009)
4C3 MN423	Fab	2V17	1.65	0.178	cockroach Bla g 2 allergen	Li et al. (2011) Sevcik et al. (2007)
58.2	Fab	1F58	2.00	0.100	peptide	Stanfield et al. (1999)
58.2 12A11	Fab	3IFN	1.50	0.198	peptide peptide	Basi et al. (2010)
6A7	Fab	3LEY	1.99	0.188	peptide	Ofek et al. (2010)
101F	Fab	3041	1.95	0.130	peptide	McLellan et al. (2010)
P20.1	Fab (λ)	2ZPK	1.80	0.173	peptide	Nogi et al. (2008)
F22-4	Fab	3GGW	1.70	0.198	carbohydrate-mimetic peptide	Theillet et al. (2009)
CS-35	Fab	3HNS	2.00	0.172	hexasaccharide	Murase et al. (2009)
F22-4	Fab	3C6S	1.80	0.192	pentasaccharide	Vulliez-Le Normand et al. (2008)
CS-35	Fab	3HNT	1.80	0.199	tetrasaccharide	Murase et al. (2009)
CS-35	Fab	3HNV	2.00	0.177	tetrasaccharide	Murase et al. (2009)
ED10	Fab	2OK0	1.89	0.178	dinucleotide	Sanguineti et al. (2007)
EP2-19G2	Fab	3CFB	1.60	0.187	hapten	Debler et al. (2008)
28B4	Fab	1KEL	1.90	0.199	hapten	Hsieh-Wilson et al. (1996)
M82G2	Fab	1QYG	1.81	0.178	benzoylecgonine	Pozharski et al. (2005)
M82G2	Fab	1RIU	2.00	0.184	norbenzoylecgonine	Pozharski et al. (to be published)
7A1	Fab	2AJV	1.50	0.184	cocaine	Zhu et al. (2006)
4C6	Fab	1NCW	1.30	0.158	benzoic acid	Zhu et al. (2003)
13G5	Fab	1A3L	1.95	0.188	ferrocenyl inhibitor	Heine et al. (1998)
D2.3	Fab	1YEF	2.00	0.199	substrate analog	Gigant et al. (1997)
D2.3 7A1	Fab Fab	1YEG 2AJU	2.00	0.199 0.184	reaction product	Gigant et al. (1997) Zhu et al. (2006)
ACC4	Fab	2W60	1.50	0.171		Uysal et al. (2009)
3A2	Fab	1SBS	2.00	0.180		Fotinou et al. (1998)
17/9	Fab	1HIL	2.00	0.195		Rini et al. (1992)
19D9D6	Fab	1NLB	1.60	0.181		Menez et al. (2003)
F10.6.6	Fab	2Q76	2.00	0.196		Aciemo et al. (2007)
J539	Fab	2FBJ	1.95	0.194		Bhat et al. (to be published)
MN423	Fab	3L10	2.00	0.162		Skrabana et al. (2010)
Fab15	Fab	3NA9	1.70	0.169		Luo et al. (2010)
NC-1	Fab	30Z9	1.60	0.192		Stanfield et al. (to be published)
(unnamed)	Fab	3175	1.95	0.181		Riboldi-Tunnicliffe and Isaacs (to be
(Correlia)						published)
(Camelid) HL6	3/1111	1070	1.96	0.107	have a series of the series of	Democritics at al. (2002)
rAb-Lys3	VHH VHH	1OP9 1JTP	1.86 1.90	0.197 0.184	lysozyme (human) lysozyme (turkey)	Dumoulin et al. (2003) Decanniere et al. (2001)
CAB-Lyss CAB-RN05	VHH	2P49	1.38	0.157	ribonuclease A (cattle)	Koide et al. (2007)
CAB-RN05	VHH	2P4A	1.90	0.186	ribonuclease A (cattle)	Koide et al. (2007)
CABAMD9	VHH	1KXQ	1.60	0.197	pancreatic α-amylase (pig)	Desmyter et al. (2002)
D 7	VHH	2XA3	1.50	0.1670		Hinz et al. (2010)
B10	VHH	3LN9	1.80	0.199		Haupt et al. (2011)
(Shark)						
	IgNAR VH	1T6V	1.70	0.195	lysozyme (hen egg-white)	Stanfield et al. (2004)
	IgNAR VH	1SQ2	1.45	0.197	lysozyme (hen egg-white)	Stanfield et al. (2004)
PBLA8	IgNAR VH	2125	1.80	0.187	lysozyme (hen egg-white)	Stanfield et al. (2007)
PBLA8	IgNAR VH	2I24	1.35	0.174		Stanfield et al. (2007)
(Human)						
	IgG1 Fc	2DTQ	2.00	0.195		Matsumiya et al. (2007)
_	IgE Fc	2WQR	1.90	0.1949		Holdom et al. (2011)
(Rabbit)						
	IgG Fc	2VUO	1.95	0.1676		Girardi et al. (2009)
(Avian)	LNCCC	011/20	1.20	0.171		T 1 1 (2000)
	IgY C3-C4	2W59	1.75	0.171		Taylor et al. (2009)

Unless otherwise specified, the light chain in the Fab entries is of the kappa (κ) type.

RESULTS

The solvent accessibilities and the identity of the residues involved in the VL:VH contacts in the Fab structures which had been determined at high resolution are presented in Table 2.

The residues involved in the ligand contacts in the antibodyligand complexes are listed in Table 3.

The contacts between framework and CDR residues in three antibodies are compiled in Tables 4a,b,c. For this analysis, we chose the Fab structures which had been determined at the highest resolution. Details of the contacts between the VL and VH domains in those three Fab structures are presented in Tables 4d,e,f.

The solvent accessibilities and ligand contacts of the residues in a camelid VHH domain are presented in Table 5a. The solvent accessibilities and ligand contacts of the residues in shark IgNAR VH domains are presented in Table 5b. The contacts between the framework and CDR residues in a camelid VHH domain are enumerated in Table 5c. Those contacts between the framework and CDR and hypervariable (H) residues in a shark IgNAR VH domain are listed in Table 5d. Here also, the structures chosen for analysis where those which had been determined at the highest resolution.

The solvent accessibilities of the residues in the CL:CH1 modules of an Fab with a kappa light chain and an Fab with a lambda light chain are compiled in Table 6a; details of the contacts are presented in Tables 6b and 6c, respectively.

The solvent accessibilities of the residues in the Fc of human IgG1, rabbit IgG, and avian IgY, and the residues involved in the contact between the two chains in those molecules are presented in Table 7a. The solvent accessibilities and residue contacts in the human IgE Fc are enumerated separately in Table 7b. Details of the interaction between the two chains in the human IgG1 Fc are presented in Table 7c.

DISCUSSION

The structural information, that we provide here and which we consider to be relevant to the understanding of antibody structure and antigen-binding characteristics, includes the identity of the residues which contact ligand, the exposed and buried residues, the residues involved in the VL:VH interaction, and the framework residues which contact the CDRs. This information is critical in the design of humanization and other engineering protocols while attempting to preserve the antigenbinding properties of the unmodified molecule. We also provide structural information on the Fc part of the molecule since the effector functions, e.g., receptor binding, reside in this part of the molecule and modifications in those functions may be desired. In order to minimize uncertainties, we have limited our analysis to the most accurately determined structures.

The engineering procedure that is the most often done on antibodies is humanization, which aims to reduce the immune response when those molecules are used in medical therapy. There are various techniques used in humanization, including the grafting of the CDRs to a human framework (Jones et al. 1986), grafting only the segments of the CDRs which are involved in the interaction with antigen (abbreviated CDRs), or transfering just the "specificity-determining residues" (SDRs) (Padlan et al. 1995), or by "veneering/resurfacing", i.e., replacing the exposed residues with human counterparts (Padlan 1991, Roguska et al. 1994), or with residues that are expected to be less antigenic based on their physicochemical properties (Padlan 2008, 2010). Humanization by grafting abbreviated CDRs, or by the transfer of only the SDRs, will reduce the likelihood of an anti-idiotypic immune response (i.e., directed at the variable region) against the humanized antibody, compared to that which might be induced by grafting the full CDRs.

A detailed knowledge of the VL:VH contact reveals the identity of the residues which play a major role in the formation of the quaternary structure of the antigen-binding region of an antibody and which should be preserved to maintain its antigenbinding properties. Knowledge of the identity of the framework residues in contact with the CDRs is needed in deciding which framework residues should be preserved when humanizing by CDR-grafting or SDR-transfer (Verhoeven et al. 1988, Queen et al. 1989, Foote and Winter 1992). Since small differences in binding energy lead to noticeable differences in binding affinity, minor deviations from the original structure of the antigenbinding site could lead to significant changes in the binding properties of an engineered molecule. The changes could be a decrease in binding affinity (see, for example, De Pascalis et al. 2002), or even an increase (see, for example, Brams et al. 2001). Knowing which residues are exposed to solvent is needed when deciding which residues to replace when humanizing by veneering/resurfacing.

We provide similar structural information for the camelid VHH and shark IgNAR VH. It has been shown that those unpaired domains are quite capable of binding to antigen with high affinity and their small size makes them attractive for use in therapy.

To aid in the engineering of the Fc, we also provide the solvent accessibilities of the individual residues of the Fc, as well as details of the interaction between the two chains of the fragment.

In some cases, two or more independently determined sets of high-resolution structural data are available for the same antibody (Table 1). Such duplications provide an opportunity to get a better estimate of the uncertainties in the structure determination and in the structural details. Further, studies of the

VL			CDR-1			CDR-2					CDR-3	3		
	10	20	27abcdef 30	35 40	49	50 56	60	70	80	88	89 95ab		100	107
(Human)	- 1		1 1		1 1		1	1					
2NXY	DIVMTQSPATLSVSPG ebEBEBeeEebpbee		* RASESVSSDLA pBppeBeepBB	WYQQKPGQAF BBBBpE ppE	BpBBBb	* GASTRAT beebBE			ISSLQSEDF BEeBpEpBB		* * * * * QQYNNWPPF BBBpppEBp	RYT DBp	FGQGTI BeBj	
2NY2	DIVMTQSPATLSVSPG ebEBEBEeEebpbee		* RASESVSSDLA pBppeBeepBB	WYQQKPGQAF BBBBpE ppE	BpBBBb	GASTRAT			ISSLQSEDF BeeBpEpBB		* * * * * QQYNNWPPF BBBpbpEBp	RYT DBp	* FGQGTI B e Bj	
3D85	DIVMTQSPATLSVTPG eBEBEBepEeppbee		* RASQSISDYLH pBppeBeppBB * *	WYRQKSHESF BBBBbEEppE * * *	PRLLIK	* YASQSIS pbepEbE * *			INSVEPEDV BEeBpeeBp		* ** QNGHSFP BB pepp * * **	FT Bp	* FGSGTI B E Be	
1TJG	ALQLTQSPSSLSASVG EBeBEBeeEebpBee		RASQGVTSALA pBpp BeepBB	WYRQKPGSPF BBBBeE pet	QLLIY	DASSLES bbeppbE			ISTLRPEDF BeeBbEpBb		QQLHFYP BBBpppp	HT	FGGGT	RVDVR pBbep
2VXV	EIVMTQSPATLSVSPG ebEBeBEeEebpbeE		RASESISSNLA pBepBeepBB * *	WYQQKPGQAF BBBbpE ppE	PRLFIY	TASTRAT ebeepeE			ISSLQSEDF BeeBpEpBB		QQYNNWPS- BBBpEbpE- * *^ **		FGQGTI BeBj *	
10PG	DELLTQSPATLSVTPG eBEBEBEeEEppbEe		RASQSISNNLH pBppEBEeBBB * *	WYQQKSHESF BBbBbEEppE * * ^**		YASQSIS bBepepe * *			INSVETEDF BeEBpEeBb		QQSNSWP BBBpepE * * **		FGGGSI B Bo	KLEIK eBbBp
3HC0	DIQMTQSPSSLSASVG eBeBEBEeeEbpbee		KASQNVGINVA pBppeB epBB *	WYQQKPGKAF BBBBpE eef * * ^**	PKSLIS BpbBBb	SASYRYS pBeepbE * *			ISSLQPEDF BeeBpEpBb		QQYDTYP BBBbepp * * *	bb	FGQGTI B p Bj *	
3MXW	DIVMTQTPKFLLVSAG eBEBEBEeeeppbeE	ррВеВеВ	KASQSVSNDLT eBepeBeepBB *		BeBBBb	YASNRYT pbepbbE *	BeebBE E	e eeBeBp	ISTVQAEDL BeEBpEpBb	BeBBB *	QQDYGSP BBBp Ep * * ^^*	*	*	eBbBp
3G01	SYVLTOPPS-VSVSPG EBEBEBeEe-ppbeE	ррВрВеВ	SAEALSNQYAY ebebBeeBeBB ** *		BEBBBb * * *	KDTKRPS pbepbbE	beebBe E	еЕ ееврвр	ISGVQAEDE Be BpEebB	BpBBB *	QSADSSGD- BBbbEe b-	Bp *	*	eBeBe
3MLY	QSVLTQPPS-VSAAPG eepBEBeEp-pBpEE		SGSSSNIGNNMVS E eEeBB ebpBB	WYQQHPGTAF BBBBeE EpE		ENSKRPS bbepbpE			BE BPE BP		ATWDGSLR- BBBB bEb-		FGGGTI B B	pBBBbl
(Murin	e)			* * **	k * *	* *				*	* *	*	*	
1YQV	DIVLTQSPAIMSASPG epEBEBeeEEbpbpE		SASSSVNYMY EBpeeBEpBB *	WYQQKSGTSF BBBbpE epE * * ^**		DTSKLAS bbeppBE *	BeEbBE e	e E eEBeBp	ISSMETEDA BEeBpEpBE	BeBBB *	QQWGRN BBp ep * * *	* *	*	eBbbp
30Z9	QIVLTQSPVIMSASLG ebEBEBEeEebeBee	ppbeBeB	SASSSVSYMH eBeeeBeeBb * *		BebBBb	STSNLAS pbeeppE * *	BEEbBE E	Е ееврвр	ISSVEAEDA BeeBpepBpl	BpBBB *	HQWSGF BBpe p * * **	* Bb	*	eBbBp
2FBJ 2076	EIVLTQSPAITAASLG eBEBEBeeEEbEBee DIELTQSPATLSVTPG	ppbeBeB	SASSSVSSLH eBeeEBpBBB * RASOSISNNLH	WYQQKSGTSF BBBBpE EbE * * ^** WYQQKSHESF	BepBBb * * *	EISKLAS bpepppE * * YTSQSMS	BeEbBE E	E eEBeBp	INTMEAEDA BeEBpEeBB	BpBBB *	QQWTYPL BBbppEp * * ** QQSGSWP	Вр *	FGAGTI B E Bj *^^ FGGGTI	pBbBp
	eBpBEBeeEEbpbee	eEBeBeB	pBppeBeebBB *	BBBBpeEppE * * **	BpBBBb	pbeeEbE * * *	beEbBE E	Е еевевр	BEeBpepBb	pBBB *	BBB ppB * **	Bb *	B B(eBbBp
3LIZ 2VXT	QIVLTQSPSSMYASLG eBEBEBEEEEbpBep ; DIQMTQSPSSLSASLG	opBeBEB	KASQDINNYLS eBppeBepbBB * RASQDIGSKLY	WFQQKPGKSF BBbbpE epB * * ^ * WL00EPDGTF	BeBbBB	RADRLVD bBeppbE ATSSLDS	bEEbbE e	Е реВрВр	'ISSLEYEDL BeEBpbpBp 'ISSLESEDF'	pBBB *	LQYDELP BBBbppp * * LOYASSP	*	FGGGT B B * ^ FGGGT	eBbBp
2ADF	eBeBEBEEEebpBeE ;	opBeBeB	KASQB EpBb * * KASQDINKYIA	BBBBpEp EB	BpBBBp * * *	EbepbbE * YTSTLQP	BeebBE e	bE epBpBb	BeEBpEpBB	bpBBB *	BBbeeEp	* *		pBbEe
1WEJ	eBeBEBeeEEbpeEe * DIOMTOSPASLSASVG	eBeBEB	RASGNIHNYLA	BBBbpE e E * * * ^** WYQQKQGKSP	8p8888	bBeepbE * NAKTLAD	BpEbBE E	e peBeBe	BeeBbepBb	BeBBB *	888bee * * ** QHFWSTP	Be *		eBbBp
3D9A	pbpBEBeeEebpBee ; DIVLTQSPATLSVTPG		pBppBpepBB RASQSIGNNLH	BBBBpp ppB * * ** WYQQKSHESP	spBBBb *	pbeebbe YASQSIS			BeeBpEpBB	* *	BBBpeeB * ** QQSNSWP	*	B B * ^ FGGGT	eBBep KLEIK
2V17	eBEBEBEeEebpBEe		pBppeB ebBb RASKSIRKFLA	BBBBpeeppB * * ** WYREKPGKTN	* *	pbepEbE * SGSTLQS			BeeBpEpBp	*	BBppebb * * ** QQHNDYP	*	* FGAGT	
3HNS	eBeBEBeeEpbbbpe ; * DIQMTQTTSSLSASLG	DRVTIGC	pBppeBppbBB * RASQDIGSYLN	WYQQKPDGAV	RLLIY	b EepbE * YTSRLHS	GVPSRFSGS	GSGTHFSLT	BepBpEeBB	* GTYFC	BBBbbpe * * ** HQDTKPP	* YT	B E B * FGSGT	KLEIK
BHNT	ppeBEBEeEEppeee ; * DIQMTQTTSSLSASLG	DRVTIGC	pBeppB epBB * RASQDIGSYLN	WYQQKPDGAV	RLLIY	ytsrLHS	GVPSRFSGS	GSGTHFSLT	BeeBpbpBp	* GTYFC	HQDTKPP	* YT	B E B * ^ FGSGT	KLEIK
3HNV	ppeBEBEeEEppeee ; * DIQMTQTTSSLSASLG ppeBEBEeEEppeee ;	DRVTIGC	pBpppB epBB * RASQDIGSYLN pBpppB epBB	BBBbpEe EB * * ^ * WYQQKPDGAV BBBbpEe EB	RLLIY	pbeppbE * YTSRLHS pbeppbE	GVPSRFSGS	GSGTHFSLT	BeeBpbpBp ISNLEQEDI BeeBpbpBp	GTYFC	BBbbeEe * * ** HQDTKPP BBbbeEe	* YT	B E B * ^ FGSGT B E B	KLEIK
3175	DIQMTQSPSSLSASLG eBeBEBeeEEbeeEE	GKVTITC	QSSQDINKYIG eBpepBepbB	* * ^* WYQHKPGKGP BBBbbE p E	RLLIH	* * YTSILRP bBeepbE	DIPSRFSGS	GSGRDYSFS	ISNLEPEDT	* ATYYC	* ** LQYDDLL BBBbbEp	* -LT	* FGAGT B E B	KLELK
3L10	DVQITQSPSYLAASPG eppBEBepEepeBee ;	ETITINC	* RASKSIRKFLA eBpeeBpepBB	* * ^^** WYREKPGKTN BBbbpE peB	KLLIY RDBBBb	* SGSTLQS p eepbE	GTPSRFSGS	GSGTDFTLT	ISRLEPEDF BeeBpEpBB	* AMYYC BbBBB	* * ** QQHNDYP BBBpebe	* LT Bp	*^ FGAGT B E B	KLELK
BNA9	DIQMTQSPSSLSASVG eBpBEBeeEebpbee		*^* RASQSIGLYLA pBppB epBB	* * ^** WYQQKPGKAP BBbBpE eeB	KLLIY BpBBBb	* * AASSLQS ebeepbE			ISSLQPEDF BeeBbEpBb		* ^ * QQGNTLS BB peeE	YT Bp	* FGQGT B p B	
1F58	DIVLTQSPASLAVSLG eBEBEBEeEpbeBee		KASQGVDFDGASFMN eBpp Bpee pbpBB * *	* * ^** WYQQKPGQPP BBbBpE ppE * * ^**	KLLIF BeBBBB	* * * AASTLES BbeepbE * *			IIHPVEEEDA BeeBpepBe		** QQSHEDP BBbbpbb * * **	-LT -bp	* FGAGT B E B	
3041	DIVLTQSPASLAVSLG eBEBEBeeEEpEbep		* * RASQSVDYNGISYMH eBpppBbee pbbBB	WFQQKPGQPP BBBbpE ppB	KLLIY BeBBBb	* * AASNPES bbepEbE			IIHPVEEEDA BpEBpppBbl		QQIIEDP BBBpppB ^* **	WT Bp	FGGGT B B	
BGGW	DIVMTQAAFSNPVTLG eBEBeBEEebEebEe		RSSKSLLHS-DGITYLY pBeppBeee-b pbbBB	WYLQKPGQSP BBBBbe pbB	HLLIY	HLSNLAS pbeppeE			ISRVEAEDV BeeBpeeBB		AHNVELP BBppbpe	RT	FGGGT B b	

 Table 2. Residues in contact with the opposite domain and solvent accessibilities in VL and VH domains of high-resolution antibody structures

Table 2. continued.

			CDR-1			CDR-2					CDR-3		
	10	20	27abcdef 30	35 40	49 	50 56	60	70 	80 	88 	89 95ab	100	107
3C65	DIVMTQAAFSNPVTL pBEBeBEEebEebee		* RSSKSLLHS-DGITYLY pBeppBepE-b pbbBB *	* * * WYLQKPGQSP BBBBpe pbB * * **	HLLIY	HLSNLAS bbeppeE *	GVPDRFSSSG beeBBEBE				AHNVELPRT BBppbpeBp * ** *		KLEIK pBpBp
20K0	DILMTQTPLSLPVSL eBEBEBepEpbeBee		RSSQSIVHS-NGNTYLE pBpppBepE-p pbpBB	WYLQKPGQSP BBbBpE ppB		KVSNRFS pbepbpE * *	GVPDRFSGSG beeBBE e				FQGSHIPLT BB Bpppbb * ** *		KLEVK SpBBee
3CFB	DIVMTQAAFSNPVTL pbEBeBEEpBEebEe		RSTKSLLHS-NGITYLY pBEpeBepe-p pbbBB * *	WYLQKPGQSP BBbbpE epb	QLLIY	QMSNLAS bbeppBe	GVPDRFSSSG BeebBEBE				AQNLELPPT BBbbpeepb		KLEIK eBbBe
1KEL	DVLMTQTPLSLPVSL pbEBEBEeEebeBpe		RFSQSIVHS-NGNTYLE pBppeBepe-p pbbBB	WYLQKSGQSP BBBBbE ppB	KLLIY	KVSNRFS ppepbbE	GVPDRFSGSG BEebBE e				FQGSHVPRT BB bbEEbe * * ** *		KLEIK BpBBpp
10YG	DIVMTQAAPSVPVTP pBEBEBEEEpbEBee		RSSKSLLHS-NGYTYLH eBppeBepE-b pbbBB	WFLQRPGQSP BBBBbe pbB	QLLIY	RVSNLAS bbeppeE	GVPDRFSGSG beEbBE e				MQHLEYPFT BBbbpbeBb		KLEIK BeBbBp
1RIU	DIVMTQAAPSVPVTP eBEBEBEEEepEBee		RSSKSLLHS-NGYTYLH eBepeBepE-b pbbBB * * *	WFLQRPGQSP BBBbbE pbB	QLLIY	RVSNLAS bbeppEE *	GVPDRFSGSG BeebBE e				MQHLEYPFT BBbbpbeBp * * ** *		KLEIK BeBbBp
2AJV	DIVITQDELSNPVTS BBEBEBpebEEpbeE		RSSRSLLYK-DGRTYLN pBppeBepe-b pbBBB * * *	WFLQRPGQSP BBBbpp pbB	QLLIY	LMSTRAS pbeebbE * **	GVSDRFSGSG BpeBBE E				QQFVEYPFT BBBbbbbbp	FGSGT	KLEIK BeBbBp
INCW	DVVMTQSPKTISVTI eBEBEBEeeebebee		KSSQRLLNS-NGKTFLN pBppeBebE-E bpbBB * * * *	WLLQRPGQSP BbbBbe bbB	KRLIY	LGTKLDS p EppBe	GVPDRFTGSG BeeBBE e			GVYYC	WQGTHFPYT bB BppBbb * ** *	FGGGT	KLEIK BpBbBp
1A3L	DIVLTQAAFSNPVTL pBEBEBEEEpEebEe		RSSKSLLNS-NGIIHMY pBepeBebe-p bbBBB * * *	WYLQKPGQSP BBBbbE ebB	QLLIY	QMSKLAS bbepppE	GAPDRFSGSG BeebBE E				AQNLELP YT pBbbbee pb		KLEIK eBpBe
1YEF	DIVMTQSPLTLSVTI ebEBEBEeEEbpbEe		KSSQSLLYS-NGKTYLN pBppeBepE-b pbbBB	WLLQRPGQSP BBBbpe epB	KRLIH pBbBB	LVSKLDS bbepbBE	GVPDRITGSG bEebBE e			pBBB	VQGTHFPYT bB Bppbbb		KLEIL BbBBBe
1YEG	DIVMTQSPLTLSVTI ebEBEBEeEEbpbee		* * * * KSSQSLLYS-NGKTYLN pBppeBepE-b pbbBB	WLLQRPGQSP BBBbpE ppB	pBbBB	* LVSKLDS bbeppBE	GVPDRITGSG bEebBE e				** * VQGTHFPYT bB Bppbbb	FGGGT B B	KLEIL BbBbBe
2AJU	DIVITQDELSNPVTS eBEBEBpebEEpbeE		* ** RSSRSLLYK-DGRTYLN pBppeBepe-b pbBBB	WFLQRPGQSP BBBbpp pbB	pBBBb	* LMSTRAS BbeebbE *	GVSDRFSGSG BpeBBE E				* * ** * QQFVEYPFT BBbbppbbp * ^ ** *		KLEIK BeBbBp
2W60	DVVMTQTPLTLSVTI pBEBEBEeEpbpBEe		* * KSSQSLLDS-DGKTYLN pBppeBebE-b pbbBB * *	WLLQRPGQSP BBBbpE epB		* LVSKLDS bbepppE	GVPDRFTGSG peebBE e				WQGTHFPLT BB BpepBb * * ** *		KLELK BpBBpe
3IFN	DVLMTQTPLSLPVSL eBEBEBEpeebebee		* * RSSQSIVHS-NGNTYLE pBppeBEpE-p ppbBB	WYLQKPGQSP BBBbbE epB	KLLIY pBBBb	* KVSNRFS ppepbpE	GVPDRFSGSG beebBE E				FQSSHVPLT BBBBpeBbb		KLELK SpBBpp
3LEY	DVVMTQTPLSLSVTL ebEBEBEeEebpbEe		* KSSQSLLDS-DGKTYLN eBppeBebE-p pbbBb	* * ** WLLQRPGQSP BBBbpe epB		LVSKLAS pbepppE	GVPDRFTGSG beebBE e				* ^ ** * WQGTHFPWT BB BbpbBp		KLEIK BpBbBp
1SBS	DIVMSQSPSSLAVSV eBEBEBEeEepEbeE		* KSSQSLLYSSNQMNYLA eBppeBpbEebepBBBB * * *	WYQQKPGQSP BBbbpp ebB		* * WASTRES bbeebpE * *	GVPDRFTGSG BeebBE e				* * ** * QQYHSYPFT BBBbpbeBp * * ** *		TKLEIK BeBpBp
1HIL	DIVMTQSPSSLTVTA ebEBEBEeEepeBEE		TSSQSLFNSGKQKNYLT eBppeBppE pebbBBB	WYQQKPGQPP BBbBpE ppB	KVLIY pBBBB	WASTRES	GVPDRFTGSG beebBE e				QNDYSNPLT BBBpepebp		TKLELK B <i>pBbbp</i>
1NLB	DIVMSQSPSSLAVSA eBEBEBEeEebEbeE		* KSSQSLLNSRTRKNYLA pBepeBpbEepepBbBB	WYQQKPGQSP BBbBpE pbB	eBBBB	* * WASTRES bbepbbE	GVPDRFTGRG bEebBp p				* * * * * KQAYIPPLT BBBbeEpbp	BEE	TKLELK B <i>pBpBp</i>
2ZPK	ZTVVTQESA-LTTSP ppeBeBbEE-ppbee		* * RSSTGAVTTSNYAN pBpe EBEEEbpBB	* * * * WVQEKPDHLF BBBbpEepeB	TGLIV	* GTNNRVP BeebbE	GVPPRFSGSL BeEbBe eb				* * * ALWYSNHWV BBbbEepBp		TKLTVLG B <i>bBBBb</i>

Table 2. continued.

_				CDR-1			CD	R-2				CDR-3		
	10	20	30	ab 35	40	49	52abc	60	66 70	82abc	90 94	95 100abcdefghijklmn101	103 	11
Human)				* ^^*	*	*	* *			*	* *^*** *	*^	
G01	EVQLQESGPGLVKPSE ebeBeBE p BbpEep	TLSLTCTVS eBEBpBeBE	GGPIN Ebp	NAYWT - <i>- pBbBB</i>	WIRQPPGKGLE BBBbeE e Bp	YLG BB		VTNYNPSLKS EpbbbEebeE		QLSLSLKFVTAA bbBEBeBpEBEEE		EWAEDGDFGNAFHV BbEpe bb pBBbp	WGQGT Beb	MVAVS eBEBp
MLY	QVQLQESGPGLVKPSE epeBeBE p ebeEep			GFHWS pbBB	WIRQPPGKGLE BBBBeE e Bp			STSYNPSLKS EppbBepBeE		NQFSLELSSVTAA bbBeBeBEeBEEE		DFGEYHYDGRGFQCEGFDL Bb ppbep p BbBB Bpp	WGQGT Beb	
D85	EVQLQQSGPELVKPGA pbpBpBp bbbbeE E			* SNVMH pBpBB	WVKQKPGQGLE		* YINPYND bBpBeep	GTKYNEKFKG ppbbeeBp		STAYMELSSLTSE bbBpBpBeEBEEe		** * NWDVAY pBppEp	WGQGT B p B	
NXY	* EVQLVESGAEVKKPGS pBeBEBp Ebebee µ			RYSFT <i>bBBBB</i>	WVRQAPGQGLE	BB	RIITILD BBBBpee	* * VAHYAPHLQG eppbpEeBp		STVYLELRNLRSD bbBpBbBbEB pE		VYEGEADEGEYDNNGFLKH BpB pBpp pbepb bBpb	WGQGT B p B	
NY2	* EVQLVESGAEVKKPGS eBpBEBp Ebebee u			RYSFT bBBBB	* ^^* WVRQAPGQGLE BBbbEE E Bp	WMG	RIITILD BBBBpEe	* * VAHYAPHLQG eppbeEEBp		STVYLELRNLRSD bBpBbBbEBpee		* ^** * VYEGEADEGEYDNNGFLKH BpB pBpp pbppb bBpb	*^ WGQGT B p B	
vxv	EVQLVQSGTEVKKPGE eppBEBp EbEbpe p			* SYWIG ebbB	* ^^* WVRQMPGKGLE BBBbpe e Bb	* WMG	* FIYPGDS BBpB pe	* ETRYSPTFQG opbbBEebp	QVTISADKSFN	ITAFLQWSSLKAS	* DTAMYYCAR	* *^*** VGSGWYPYTFDI B e EbEpBBBp	*^ WGQGT B p B	
OPG	EVQLVQSGGGLVNPGF		GFTFS	SYGMS pb BB	* ^ * WVRQTPEKRLE BBBBbEpppBp	* WVA	* AISGGGT	* YIHYPDSVKG eppbbeeBp		NLYLQMSSLRSE		**** * HPFYRYDGGNYYAMDH Bpeppep EppBBpp	WGQGT B p b	SVTV
нсө	QVQLVQSGAEVKKPGS ebpBEBb EbEbee p	SVKVSCKAS	GYTFT	* TYYLH eppBB	* * * WVRQAPGQGLE BBBbpE b Bb	* WMG	* WIYPGNV bBbB eE	* HAQYNEKFKG eBbbbenBe	RVTITADKST	STAYMELSSLRSE	* DTAVYYCAR	^*^* * * SWEGFPY pEp Bbp	*^ WGQGT B p B	туту
MXW	QVQLQQSGPELVRPGV ebpBpBp pbbbpe E	SVKISCKGS	GYTFI	DEALH pbBBB	* ** WVKQSHAESLE BBBBpEEppBb	* WIG	VIRPYSG	* ETNYNQKFKD ppebbepBeE	KATMTVDISS	STAYLELARLTSE SDBbBpBEpBEEe	* DSAIYYCAR	* *^*** * DWERGDFFDY Bbep pBBBp	WGQGT	LVTV
TJG	RITLKESGPPLVKPTC ebEBeBE eEebpeEp	TLTLTCSFS	GFSLS	DFGVGVG pe b B	* * ^** WIRQPPGKALE BBBbpE eEBp	* WLA	* IIYSDD	* * DKRYSPSLNT pbbbbEebeE	RLTITKDTSK	QVVLVMTRVSPV	* DTATYFCAH	** ^^^**** RRGPTTLFGVPIARGPVNAMDV Bb pppee EepEe epbBBBe	*^ WGQGI B p b	TVTI
Murin	e)	ebebpbebe	Debe	<i>μ</i>	* * ^^*				obcocoppee,	JODEDEDEDEDE	*		5 p b	сөрс
окө	EVQLEESGPELVKPG ebpBpBp Ebebee E			DYYMN pbbBB	WLRQKPGQGLE BBBbbE p Bb			◆ SIKYNEKFKD pppbbepBpe		SIVYMHLSSLTSD bbbbbpBeEBeEe		** * WTYGSSFDY ppE pbBBp	WGEGT B p B	
CFB	EVKLVESGGGLVKPGG pepBEBE pbee			RYIMS pbpBb	* ** WVRQIPEKRLE BbBbbEpppbb		* SISSGG BBpe	* ITYYPDSVKG eppBbebBe		ILYLQMSSLRSE bbbbpbeEbpEp		GQGRPY p_bBb	** WGQGT peb	
D9A	DVQLQESGPSLVKPS0 ebeBeBe EEpbeeep			SDYWS ebpBB	* * * WIRKFPGNRLE BBBbpE peBb	BB		*^** STYYNPSLKS eppbbepBee		NQYYLDLNSVTTE bbbbbpBeeBeEe		*^^ WDGDY pepp	*^ WGQGT Bep	
νхт	EIQLQQSGPELVKPGA pbpBpBp EbEbee E			* DYFIY pppBb	* ** WVKQSHGKSLEN BBBbbE peBbl	WIG		* DTSYNQKFRD ebebbepBpE		TAFMHLNSLTSE bBpBpBpeBeEe		^* * GLRF Bpp	* WGQGT B p B	
ADF	QIQLVQSGPELKKPGE ebeBEBp Ebpbep p	TVKISCKAS	GYTFI	* NYGMN eb BB	* ^* WVKQAPGKGLKN BBbbEE e Bel	* WMG		* ETTYGEEFRG	RFAFSLETSVS	TAYLQINNLKNE bBbBpBeeBpep	* DTATYFCAR	*^^**** * DNPYYALDY bbEppBBBp	*^ WGQGT B p B	TVTV
YQV	EVQLQQSGAELMKPGA epeBeBp Ebpbee E			* DYWIE pbpBB	* * * WVKQRPGHGLEN BBBbbE p Bbl	WIG	EILPGSG bBpB p d	** STNYHERFKG ebebBppBp		TAYMQLNSLTSE		^^* * GNYDFDG Bepbp	*^^^ WGQGT B p B	
VEJ	EVQLQQSGAELVKPGA ebeBeBp Epebee E			* * DTYMH eBbBB	* * *^^* WVKQRPEKGLEV BBBbbEee Bbb	WIG	RIDPASG	*^** NTKYDPKFQD opbbbEeBpe		ITAYLQLSSLTSE		*^*^* * YDYGNFDY Bpp epBp	*^^ WGQGT B p B	
HNS	EVQLQQSGTVLARPGT pbeBeBp bpbbpe e	SVKMSCKAS	GYSFT	* NYWMH ebpBB	* * * WVKQRPGQGLEN BBbbbE e Bbl			* DTNYKQKFKG	KAKLTAVTSAS	TAYMEVNSLTNE	* DSAVYYCTR	* ^*** * FGNYVPFAY p eepBBbp	* WGQGT B p B	LVTV
HNT	EVQLQQSGTVLARPGT pbeBeBp bpbbpe e			* NYWMH ebp8B	* * ^* WVKQRPGQGLEN BBbbbE e Bbl		SIYPGNSI BBbB pE	* DTNYKQKFKG oppbbppBp		TAYMEVNSLTNE		* ^*** * FGNYVPFAY p eepBBBp	* WGQGT B p B	
HNV	EVQLQQSGTVLARPGT ebeBeBp bpbbpe e			* NYWMH ebpBB	* ^* WVKQRPGQGLEV BBbbbE e Bbb			* DTNYKQKFKG		TAYMEVNSLTNE		* ^**** * FGNYVPFAY p eepBBBp	* WGQGT B p B	
A3L	EVQLEESGPELVRPGT ebpBpBp Ebpbee e	SVKISCKAS ebpBpBpBe	GYTFT BeBe	NYWLG ebpB	WVKQRPGHGFEN BbbbbE p Bpl	* WIG BB	* DIYPGGV bBbB ed	* YTTNNEKFRG eppebeebe	KAILTADTSSS bBeBEBpEeee	TAYMQLSSLTSE	* DSAVYFCAR BpBeBBBpB	AGGYYTGGDY E epebp	WGQGT	SVTV EBeB
YEF	EMQLQQSGAELLRPGT eBpBpBp EbbBpe e			SYWIH ebbBb	* *^*^ WVKQRSGQGLEV BBBBpE b Bpl		* RIYPGTG bBbB e j	^* STYYNEKFKG obpbBepBp		TAYMQLSTLKSE		* * ***^ * WGFIPVREDYVMDY b ppEeppeBepBp	*^^ WGQGT B p B	
YEG	EMQLQQSGAELLRPGT eBpBpBp EbbBpE e	SVKLSCKTS	GYIFT	SYWIH ebbBb	* * *** WVKQRSGQGLEV BBBBpE b Bpl	WIA BBB	* RIYPGTG bBbB e d	^* STYYNEKFKG ebpbbepBp	KATLTADKSSS bBEBEbpeepp	TAYMQLSTLKSE	* DSAVYFCTR BpBeBBBBB	* * ***^* * WGFIPVREDYVMDY b ppEeppeBepBp	*^^ WGQGT	
w60	QIQLVQSGPELKKPGE ebpBEBp Ebebee p			DYSIH pppBB	* ^^* WVKQAPGKGLKN BBbbEE e Bel	WMG	WINTETG pBpBee	EPTYTDDFKG epebbEeBe		TAFLQINNLKNE bBbBbBeeBpep		**** ** ATTATELAY epEEBpBBp	WGQGT B p B	
NA9	EVQLVQSGAEVKKPGE pppBEBp Ebebpp p			NYWVG ebpB	WVRQMPGKGLEV BBBbpE p Bbb	* WMG BB	* FIDPSDS BBbBepE	YTNYAPSFQG oppbeEEbp	QVTISADKSIS	TAYLQWSSLKAS	* DTAMYYCAR	* *^***** ELYQGYMDTFDS Bppb eBbBBBp	*^ WGQGT B p B	
)Z9	QVQLQQSGTELMKPGS ebpBpBp ebbpeE p	SVKISCKAT eBpBeBpBe	GYRFS BpBe	* SYWVE pbbBB	* ^* WVKQRPGHGLEV BBBbbE e Bbl	WIG BB	KILPGIG bBbB E	* STSYNEKFKG ppebbepBp		ITAYMQLSSLTSE bBbBpBeEBeEp		^**** GYYGPTWFAY pe_EBbBpp	WGQGT B p B	
IIL	EVQLVESGGDLVKPGG pbpBEBe pbbee			SYGMS eb BB	* * * * WVRQTPDKRLEV BBBBbEpeeBpl	WVA		* YTYYPDSVKG eppbbEeBe		ITLYLQMSSLKSE pBpBpBeeBpEe		* ^****^* RERYDENGFAY bBpebbp Bep	*^ WGQGT Beb	
NIB	010LV0SGPELKKPGE			DESMH	* ^^*	*	WVNTETG	EDTVADDEKC		TAYLOINSLKNE	*	**** * FLLR0YFDV	*^ WGAGT	TUTU

Table 2. continued.

				CDR-1			CI	DR-2				CDR-3		
	10	20	30	ab 35	40	49	52abc	60	66 70	82abc	90 94	95 100abcdefghijklmn101	103	113
2076	EVQLEQSGAELMKI ebeBeBb Ebbpel			TYWIE ebpBB	WIKQRPGHS BBbbbE ep	BeBb		* * STYYNEKVKG pbpbpbeEe		SSNTAYMQLSSLTS		^** * GDGFYVY b bBpp	*^ WGQGTT B p BE	
2FBJ	EVKLLESGGGLVQI epeBEBE bbpe	GGSLKLSCAAS e ebpBeBEBE		KYWMS pbpBB	* ^^ WVRQAPGKG BBbbEE e	LEWIG BpBB	BBpbee	* * GTINYTPSLKD epbbpEebee		AKNSLYLQMSKVRS EppbBbBpBpeBpe		A**** LHYYGYNAY BpEp BBbp	*^* WGQGTL Bebp	
2ZPK	ZIQLVQSGPEVQK pbpBEBp EbEbe			* TAGMQ Ep BB	WVQKMPGKS BBBbpE pb	BpBB		* * SVPKYAEDFKG EppbBepBe		SASIAYLHINNLKN EepbBbBpBeeBpe		^*^* ** EGPGFVY b e Bbb	WGQGTL B p BE	
3LIZ	EVQLVESGGGLVQF ebpBEBE bbee	GGSLKLSCAAS e ebpBeBEBE		SFAMS ppEBB	WGRQTPDKR B BBpEpep	LELVA		* ASTYYPDTVKG EEpbbbEeBe *^		AKNTLFLQMSSLKS EeepBpBpBeeBpe		* ^* * * * DPAGRAWFAY BBE eEebBp * ^*^^ **	*^ WGQGTL B p be	
3175	EVKLEESGAELVRI pbeBpBp EbbBbb			DFEIH pbbBB	WVKQPPVGG BBBbbEE	LEWIG		GGTAYNQNFKG ppbpeEBe		SSSTAYMELRSLTS EpebBpBpBpEBEE		WGKKFYYYGTSYAMDY B beEeee BEpBBBp	wGQGTS B p Be	
3GGW	EVKVEESGGGLVQI ebeBeBe bbee	PGGSMKISCVVS pbpBpBeBE		NYWMS eppBB	WVRQSPEKG BBBbbEee	LEWVA		ATYYAESVKG EpbbeepBp		SKSRLYLQMNNLRT epebBpBpBeEBpE		PMDY BBpp	WGQGTS B p be	
3C6S	EVKVEESGGGLVQ pbeBpBe bbee	GGSMKISCVVS pbpBpBeBE		NYWMS eppBB	WVRQSPEKG BBBbbEee * *	LEWVA BbBBB	EIRLKSDN	ATYYAESVKG peppbeepBp		SKSRLYLQMNNLRT eppbBbBpBeeBpE		PMDY BB	WGQGTS B p bp	
1KEL	EVKLVESGGGLGQI ebeBEBE e pe	GGSLRLSCATS e ebpBpBEBE		DYYFN ebbBB	WARQPPGKA BBBbpE pE	LEWLG		TTEYSASVKG epbbbEpBe *		SQGILYLQMNTLRA Ep bBbBbBpEBpE		WGSYAMDY <i>p</i> EpBBBp * *^^^*	WGQGTS B p bE	
10YG	EVTLQESGGGLVQI epEBeBE bBpe	GGSMKLSCAAS eBpBeBEBe		DAWVD pBpBB * *	WVRQSPGKG BBBbbE p *			ATKYTESVKG EppbbepBp *		SKSSVYLQMNSLRA epebBbBpBeEBpE		VPQLGRGFAY bbeE b Bpb	WGQGTL B E be *^	
1RIU	EVTLQESGGGLVQF epEBeBE bBpe	PGGSMKLSCAAS e eBpBeBEBe		DAWVD pBpBB	WVRQSPGKG BBBbbE e *			ATKYTESVKG EppbbeeBp *		SKSSVYLQMNSLRA epebBbBpBeEBpE		VPQLGRGFAY bbpE b Bpb * * *** *	WGQGTL Bebp *^^	
2V17	EVNLVESGGGLEQS pbeBEBE bbel	GGSLSLSCAAS ebpBpBEBE		DYYMS pbBBB	WVRQPPGKA BBBbpE eE			TTEYSASVKG		SQSILYLQMNALRA EpppBpBpBeEBpE		DNGAARATFAY BB EbbeBBBp * ** ***	WGQGTL Bebe	
3L10	EVNLVESGGGLEQS ebeBEBE bbel	GGSLSLSCAAS <i>ebEBeBEBe</i>		DYYMS <i>pbBBB</i> *	WVRQPPGKA BBBbpE eE	LEWLA	LIRNKAKG	TTEYSASVKG epbbbEpBe *		SQSILYLQMNALRA epppBpBpBeEBpE		DNGAARATFAY BB EpbeBBBp ^**** *	WGQGTL B e bE	
1SBS	EVNLEESGGGLVQI ebeBpBe Bbel	PGGSMKLSCVAS E eBpBeBEBe		NYWMN ebBBB *	WVRQSPEKG BBBbbEep * **	BbBBB		ATLYAESVKG EpebeepBe *^**		SKSSVYLQMNNLRA epebBbBpBeEBpE		GAYYRYDYAMDY EeeppBBBBbp ^** *	WGQGTS B p pe *^^	
3LEY	DVQLQESGPGLVK epeBpBe E bbee *			- TDYAWN - epbBBB	WIRQFPGNK BBBBpE ee	BbBB		EppbbeeBeE *^**		SKNQFFLQLNSVTT pbbBpBpBeEBEE		GNYLPAY pppBee * **^^^ ^*	WGQGTL B p be *^	
INCW	RVQLQQSGPGLVKI pBeBpBe E bbpe			-SDFAWN -epBpBb	WIRQFPGNK BBBbpE ee	BbBB		FTSHNPSLKS eebpbepBee		SKNQFFLQLNSVTT ppbBpBeBpeBEE		LLWYDGGAGS pppeb Eb	WGQGTL B p bp	
2AJU	EVKLSESGPGLVKI ebeBEBE e bbej			- TNYAWT - pebEBB	* * WIRQFPGNK BBBBbE Ee	LEWMG BBBB		* ** /ITRYNPSLKS EebpbbEpBeE *^*		SKNQFFLQLNSVTT eppbBpBpBpeBEE		YDYYGNTGDY Bbep bBeb	WGQGTS Bebe	
2AJV	EVKLSESGPGLVKI ebeBEBE e bbej			-TNYAWT -pebEBB	WIRQFPGNK BBBBbE ee	LEWMG BbBB	YIRSS	/ITRYNPSLKS EpbpbbEpBeE		SKNQFFLQLNSVTT eppbBpBpBpeBEE		YDYYGNTGDY Bbep bBEb	WGQGTS Bepe	
1F58	DVQLQQSGPDLVK ebpBpBE eeeBpe			-SGYSWH -e bBBB	WIRQFPGNK BBBBbE ee	LEWMG	YIHYS/	AGTNYNPSLKS E ppbbEeBeE *^**		SKNQFFLQLNSVTT eppbBpBpBeEBEE		EEAMPYGNQAYYYAMDC BbEBEb EeEeBpBBBp	WGQGTT B p bE	
3IFN	QVTLKESGPGILK ebeBeBe p Ebep			TSGMSVG ee BBB	WIRQPSGKG BBBbeE e	LEWLA		DKYYNPSLKS pepppbepBeE		SRNQVFLKITSVDT eppbBpBpBeEBeE		RTTTADYFAY BbeEEpbBep * *^*^*	WGQGTT B e bi	
3041	QVTLKESGPGILQ ebEBeBE p bbpe			TSGMGVS eE B BB	WIROPSGKG BBBbEE e		HIYWDD	DKRYNPSLKS		SRNQVFLKITSVDT eppbBpBpBeEBpE		LYGFTYGFAY Bp pee Bep	WGQGTL B p by	

The solvent accessibilities of the side chains are placed under the sequences and are italicized. A residue is designated "*E*" (completely exposed) if the fractional accessibility of its side chain is at least 0.80; "*e*" (mostly exposed) if the accessibility is between 0.60 and 0.80; "*p*" (partly exposed, partly buried) if the accessibility is between 0.40 and 0.60; "*b*" (mostly buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) if the accessibility is between 0.20 and 0.40; and "*B*" (completely buried) by a signated as blank, "". A residue that is in contact by its side chain is indicated by an asterisk, "*", above it; one that is in contact by only its main chain is indicated by a caret, "^". The numbering scheme follows that of Kabat et al. (1991), except in CDR-1 of the heavy chain, where the insertions are placed after residue 30 instead of residue 35 - a structurally more logical placement (Padlan et al. 1995

		CDR-1		CDR-2		CDR-3	
	10 20	27abcdef 30	35 40 49	50 56	60 70 80 88	89 95ab	100 107
(Human	1)			1 1			
2NXY	DIVMTQSPATLSVSPGERATLSC	RASESVSSDLA	WYQQK PGQAPRLLIY	GASTRAT	GVPARFSGSGSGAEFTLTISSLQSEDFAVYYC	** QQYNNWPPRYT **	FGQGTRLEIK
2NY2	DIVMTQSPATLSVSPGERATLSC	RASESVSSDLA	WYQQKPGQAPRLLIY	GASTRAT	GVPARFSGSGSGAEFTLTISSLQSEDFAVYYC	QQYNNWPPRYT	FGQGTRLEIK
3D85	DIVMTQSPATLSVTPGDRVSLSC	RASQSISDYLH	WYRQKSHESPRLLIK	YASQSIS * ** *	GIPSRFSGSGSGSDFTLSINSVEPEDVGVYYC	QNGHSFPFT	FGSGTKLEIK
3MXW	DIVMTQTPKFLLVSAGDKVTITC	KASQSVSNDLT	WYQQKPGQSPKLLIY	YASNRYT	GVPDRFTGSGYGTDFTFTISTVQAEDLAVYFC	QQDYGSPPT	FGGGTKVEIK
1TJG	ALQLTQSPSSLSASVGDRITITC	RASQGVTSALA	WYRQKPGSPPQLLIY	DASSLES	GVPSRFSGSGSGTEFTLTISTLRPEDFATYYC	QQLHFYPHT	FGGGTRVDVR
3G01	SYVLTQPPS-VSVSPGQTARITC	SAEALSNQYAY	WYRQRPGQAPLLIIY	KDTKRPS	GIPERFSGSTSGTTVTLTISGVQAEDEADYYC	QSADSSGD-YV	FGGGTKVTVLG
3MLY	QSVLTQPPS-VSAAPGQKVTISC	SGSSSNIGNNMVS	WYQQHPGTAPKLLIY	ENSKRPS	GIPDRFSGSRSGTSATLGIIGLQTGDEAEYYC	ATWDGSLR-TV	FGGGTKLTVLS
(Murin	ie)	* ** *	* *	*		*^ * *	
2VXT	DIQMTQSPSSLSASLGERVSLTC	RASQDIGSKLY	WLQQEPDGTFKRLIY	ATSSLDS * *	GVPKRFSGSRSGSDYSLTISSLESEDFVDYYC	LQYASSPYT * *	FGGGTKLAIK
2ADF	DIQMTQSPSSLSASLGGKVTITC	KASQDINKYIA	WYQHKPGKGPRLLIH	YTSTLQP	GIPSRFSGSGSGRDYSFSISNLEPEDIATYYC	LQYDNLRT	FGGGTKLEIK
1YQV	DIVLTQSPAIMSASPGEKVTMTC	SASSSVNYMY	WYQQKSGTSPKRWIY	DTSKLAS	GVPVRFSGSGSGTSYSLTISSMETEDAATYYC	QQWGRNPT	FGGGTKLEIK
1WEJ	DIQMTQSPASLSASVGETVTITC	RASGNIHNYLA **	WYQQKQGkSPQLLVY	NAKTLAD	GVPSRFSGSGSGTQYSLKINSLQPEDFGSYYC	QHFWSTPWT	FGGGTKLEIK
3D9A	DIVLTQSPATLSVTPGNSVSLSC	RASQSIGNNLH	WYQQKSHESPRLLIK	YASQSIS	GIPSRFSGSGSGTDFTLSINSVETEDFGMYFC	QQSNSWPYT	FGGGTKLEIK
3LIZ	QIVLTQSPSSMYASLGERVTITC	KASQDINNYLS * *	WFQQKPGKSPKTLIY	RADRLVD	GVPSRVSGSGSGQDYSLTISSLEYEDLGIYYC	LQYDELPYT *^ *	FGGGTKLEIK
2V17	DVQITQSPSYLAASPGETITINC	RASKSIRKFLA	WYREKPGKTNKLLIY	SGSTLQS	GTPSRFSGSGSGTDFTLTISRLEPEDFAMYYC	QQHNDYPLT	FGAGTKLELK
1F58	DIVLTQSPASLAVSLGQRATISC	KASQGVDFDGASFMN	WYQQKPGQPPKLLIF	AASTLES	GIPARFSGRGSGTDFTLNIHPVEEEDAATYYC	QQSHEDPLT	FGAGTKLELK
3GGW	DIVMTQAAFSNPVTLGTSASISC	RSSKSLLHS-DGITYLY	WYLQKPGQSPHLLIY	HLSNLAS	GVPDRFSSSGSGTDFTLRISRVEAEDVGIYYC	AHNVELPRT	FGGGTKLEIK
3HNS	DIQMTQTTSSLSASLGDRVTIGC	RASQDIGSYLN	WYQQKPDGAVRLLIY	YTSRLHS	GVPSRFSGSGSGTHFSLTISNLEQEDIGTYFC	HQDTKPPYT	FGSGTKLEIK
3C6S	DIVMTQAAFSNPVTLGTSASISC	RSSKSLLHS-DGITYLY	WYLQKPGQSPHLLIY	HLSNLAS *	GVPDRFSSSGSGTDFTLRISRVEAEDVGIYYC	AHNVELPRT	FGGGTKLEIK
3HNT	DIQMTQTTSSLSASLGDRVTIGC	RASQDIGSYLN *	WYQQKPDGAVRLLIY	YTSRLHS *	GVPSRFSGSGSGTHFSLTISNLEQEDIGTYFC	HQDTKPPYT *	FGSGTKLEIK
3HNV	DIQMTQTTSSLSASLGDRVTIGC	RASQDIGSYLN	WYQQKPDGAVRLLIY	YTSRLHS	GVPSRFSGSGSGTHFSLTISNLEQEDIGTYFC	HQDTKPPYT	FGSGTKLEIK
20K0	DILMTQTPLSLPVSLGDQASISC	RSSQSIVHS-NGNTYLE	WYLQKPGQSPTLLIY	KVSNRFS	GVPDRFSGSGSGTDFTLKISRVEAEDLGVYYC	FQGSHIPLT	FGAGTKLEVK
3CFB	DIVMTQAAFSNPVTLGTSASISC	RSTKSLLHS-NGITYLY	WYLQKPGQSPQLLIY	QMSNLAS	GVPDRFSSSGSGTDFTLRISRVEAEDVGVYYC	AQNLELPPT	FGGGTKLEIK
1KEL	DVLMTQTPLSLPVSLGDQASISC	RFSQSIVHS-NGNTYLE	WYLQKSGQSPKLLIY	KVSNRFS	GVPDRFSGSGSGTDFTLKISRVEAEDLGVYYC	FQGSHVPRT	FGGGTKLEIK
10YG	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHS-NGYTYLH	WFLQRPGQSPQLLIY	RVSNLAS	GVPDRFSGSGSGTAFTLRFSRVEAEDVGVYYC	MQHLEYPFT	FGSGTKLEIK
1RIU	DIVMTQAAPSVPVTPGESVSISC	RSSKSLLHS-NGYTYLH	WFLQRPGQSPQLLIY	RVSNLAS	GVPDRFSGSGSGTAFTLRFSRVEAEDVGVYYC	MQHLEYPFT	FGSGTKLEIK
2AJV	DIVITQDELSNPVTSGESVSISC	RSSRSLLYK-DGRTYLN	WFLQRPGQSPQLLIY	LMSTRAS	GVSDRFSGSGSGTDFTLEISRVKAEDVGVYYC	QQFVEYPFT	FGSGTKLEIK
1NCW	DVVMTQSPKTISVTIGQPASISC	KSSQRLLNS-NGKTFLN *	WLLQRPGQSPKRLIY	LGTKLDS	GVPDRFTGSGSGTDFTLKISRVEAEDLGVYYC	WQGTHFPYT	FGGGTKLEIK
1A3L	DIVLTQAAFSNPVTLGASASISC	RSSKSLLNS-NGIIHMY * *	WYLQKPGQSPQLLIY	QMSKLAS	GAPDRFSGSGSGTDFTLRISRVEAEDVGVYYC	AQNLELPYT	FGGGTKLEIK
1YEF	DIVMTQSPLTLSVTIGQPASISC	KSSQSLLYS-NGKTYLN	WLLQRPGQSPKRLIH	LVSKLDS	GVPDRITGSGSGTDFTLKISRVEAADLGVYYC	VQGTHFPYT	FGGGTKLEIL
1YEG	DIVMTQSPLTLSVTIGQPASISC	KSSQSLLYS-NGKTYLN	WLLQRPGQSPKRLIH	LVSKLDS	GVPDRITGSGSGTDFTLKISRVEAADLGVYYC	VQGTHFPYT	FGGGTKLEIL
3IFN	DVLMTQTPLSLPVSLGDQASISC	RSSQSIVHS-NGNTYLE	WYLQKPGQSPKLLIY	KVSNRFS	GVPDRFSGSGSGTDFTLKISRVEAEDLGIYYC	FQSSHVPLT	FGAGTKLELK
3LEY	DVVMTQTPLSLSVTLGQPASISC	KSSQSLLDS-DGKTYLN	WLLQRPGQSPKRLIY	LVSKLAS	GVPDRFTGSGSGTDFTLKINRVEAEDLGIYYC	WQGTHFPWT	FGGGTKLEIK
3041	DIVLTQSPASLAVSLGQRATIFC	RASQSVDY NGISYMH	WFQQKPGQPPKLLIY	AASNPES	GIPARFTGSGSGTDFTLNIHPVEEEDAATYYC	QQIIEDPWT	FGGGTKLEIK
2ZPK	ZTVVTQESA-LTTSPGETVTLTC	RSSTGAVTTSNYAN	WVQEKPDHLFTGLIV	GTNNRVP	GVPPRFSGSLIGDKAALTITGAQTEDEAIYFC	ALWYSNHWV	FGGGTKLTVLG

 VL
 CDR-2
 CDR-3

Table 3. continued.

			CDR-1			CDR-2				CDR-3			
	10	20 30	ab 35	40 49) 52abc	60	66 70	82abc	90 94	95 100abcdefghijk	lmn101	103	113
(Human	1)				* *:	* * *				* *^**^*			
2NXY	EVQLVESGAEVKKPG	SVKVSCKASGDTFI	RYSFT	WVRQAPGQGLEWMO		LDVAHYAPHLQG	RVTITADKST	STVYLELRNLRSD	DTAVYFCAG	VYEGEADEGEYDNNGFL	KH	WGQGTL	VTVSS
2NY2	EVQLVESGAEVKKPG	SVKVSCKASGDTFI	RYSFT	WVRQAPGQGLEWMO		* * * LDVAHYAPHLQG	RVTITADKST	STVYLELRNLRSD	DTAVYFCAG	* ^^**^* VYEGEADEGEYDNNGFL ****	КН	WGQGTL	VTVSS
3D85	EVQLQQSGPELVKPG	ASVKMSCKASGYTFT	SNVMH	WVKQKPGQGLEWIG	YINPY	NDGTKYNEKFKG	KATLTSDKSS	STAYMELSSLTSE	DSAVYYCAR	NWDV	AY	WGQGTL	VTVSA
ЗМХW	QVQLQQSGPELVRPG	/SVKISCKGSGYTFI	DEALH	WVKQSHAESLEWIG		SGETNYNQKFKD	KATMTVDISS	STAYLELARLTSE	DSAIYYCAR	***^* DWERGDFF * * * * *	DY	WGQGTL	VTVSS
1TJG	RITLKESGPPLVKPT	TLTLTCSFSGFSLS	DFGVGVG	WIRQPPGKALEWLA	IIYS	DDDKRYSPSLNT	RLTITKDTSK	NQVVLVMTRVSPV	DTATYFCAH	RRGPTTLFGVPIARGPV	NAMDV	WGQGIT	VTISS
3G01	EVQLQESGPGLVKPS	TLSLTCTVSGGPIN	* NAYWT	WIRQPPGKGLEYLC		* TGVTNYNPSLKS	RLTITIDTSR	KQLSLSLKFVTAA	DSAVYYCAR	*^^ * ^* EWAEDGDFGNAF	HV	WGQGTM	VAVSS
3MLY	QVQLQESGPGLVKPS	TLSLTCTVSGGSIS	^* GFHWS	WIRQPPGKGLEYIG	* * YIYY	SGSTSYNPSLKS	RVSMSVDTSR	NQFSLELSSVTAA	* DTAVYYCAR	*^**** * DFGEYHYDGRGFQCEGF	* DL	WGQGTL	vtvss
(Murin	ie)	^	*** *		* * *	*^*			*	^8	**		
2VXT	EIQLQQSGPELVKPG	ASVKVSCKASGYSFT	DYFIY **	WVKQSHGKSLEWIC	DIDPY	NGDTSYNQKFRD	KATLTVDQSS	TTAFMHLNSLTSE	DSAVYFCAR	GL	RF	WGQGTL	VTVSA
2ADF	QIQLVQSGPELKKPG	TVKISCKASGYTFI	NYGMN *	WVKQAPGKGLKWMC		TGETTYGEEFRG * *^*	RFAFSLETSV	STAYLQINNLKNE	DTATYFCAR	DNPYYAL	DY	WGQGTT	VTVSS
1401	EVQLQQSGAELMKPG	ASVKISCKASGYTFS	DYWIE	WVKQRPGHGLEWIC		SGSTNYHERFKG	KATFTADTSS	STAYMQLNSLTSE	DSGVYYCLH	GNYDF	DG	WGQGTT	LTVSS
1WEJ	EVQLQQSGAELVKPG	ASVKLSCTASGFNIK	DTYMH	WVKQRPEKGLEWIC	RIDPA	SGNTKYDPKFQD	KATITADTSS	NTAYLQLSSLTSE	DTAVYYCAG	YDYGNF	DY	WGQGTT	LTVSS
3D9A	DVQLQESGPSLVKPS	TLSLTCSVTGDSIT	SDYWS	WIRKFPGNRLEYMO	YVSY	SGSTYYNPSLKS	RISITRDTSK	NQYYLDLNSVTTE	DTATYYCAN	WDG	DY	WGQGTL	VTVSA
3LIZ	EVQLVESGGGLVQPG		SFAMS	WGRQTPDKRLELVA		GASTYYPDTVKG	RFTISRDNAK	NTLFLQMSSLKSE	DTAMYYCTR		AY	WGQGTL	VTVSA
2V17	EVNLVESGGGLEQSG	GSLSLSCAASGFTFT	DYYMS	WVRQPPGKALEWLA	LIRNKAK	GYTTEYSASVKG	RFTISRDNSQ	SILYLQMNALRAE	DSAIYYCAR	DNGAARATF	AY	WGQGTL	VTVSA
1F58	DVQLQQSGPDLVKPS	SLSLTCTVTGYSIT	- SGYSWH	WIRQFPGNKLEWMO		SAGTNYNPSLKS	RISITRDTSK	NQFFLQLNSVTTE	DTATYYCAR	EEAMPYGNQAYYYAM	DC	WGQGTT	VTVSS
3GGW	EVKVEESGGGLVQPG	SSMKISCVVSGLTFS	NYWMS	WVRQSPEKGLEWV4	EIRLKSD	VYATYYAESVKG	KFTISRDDSK	SRLYLQMNNLRTE	DTGIYYCFL	PM	DY	WGQGTS	VTVSS
3HNS	EVQLQQSGTVLARPG	TSVKMSCKASGYSFT	NYWMH	WVKQRPGQGLEWIC	SIYPG	NSDTNYKQKFKG	KAKLTAVTSA	STAYMEVNSLTNE	DSAVYYCTR		AY	WGQGTL	VTVSA
3C6S	EVKVEESGGGLVQPG	SSMKISCVVSGLTFS	NYWMS	WVRQSPEKGLEWVA		NYATYYAESVKG	KFTISRDDSK	SRLYLQMNNLRTE	DTGIYYCFL	PM	DY	WGQGTS	VTVSS
3HNT	EVQLQQSGTVLARPG	TSVKMSCKASGYSFT	NYWMH	WVKQRPGQGLEWIC		NSDTNYKQKFKG	KAKLTAVTSA	STAYMEVNSLTNE	DSAVYYCTR	FGNYVPF	AY	WGQGTL	VTVSA
3HNV	EVQLQQSGTVLARPG	TSVKMSCKASGYSFT	NYWMH	WVKQRPGQGLEWIC	SIYPG	NSDTNYKQKFKG	KAKLTAVTSA	STAYMEVNSLTNE	DSAVYYCTR	FGNYVPF	AY	WGQGTL	VTVSA
20K0	EVQLEESGPELVKPGA	SVKISCKASGYTFT	DYYMN	WLRQKPGQGLEWIG	WVYF	GSIKYNEKFKD	KATLTADTSS	SIVYMHLSSLTSD	DNAVYFCTR		DY	WGEGTL	LTVSS
3CFB	EVKLVESGGGLVKPGG	SLKLSCTASGITFS	RYIMS	WVRQIPEKRLEWVA	SISS	GITYYPDSVKG	RFTISRDNVR	NILYLQMSSLRSE	~ ~	GQGR	PY	WGQGTL	vtvss
1KEL	EVKLVESGGGLGQPGG	SLRLSCATSGFTFT	DYYFN	WARQPPGKALEWLG		GYTTEYSASVKG	RFTISRDNSQ	GILYLQMNTLRAE	DSATYYCAR	-	DY	WGQGTS	VTVSS
10YG	EVTLQESGGGLVQPGG	SMKLSCAASGFTFS	DAWVD	WVRQSPGKGLEWVA	EIRNKANN	HATKYTESVKG	RFTISRDDSK	SSVYLQMNSLRAE	DTGIYYCTS	VPQLGRGF	AY	WGQGTL	VTVSA
1RIU	EVTLQESGGGLVQPGG	SMKLSCAASGFTFS	DAWVD	WVRQSPGKGLEWVA	EIRNKANN	HATKYTESVKG	RFTISRDDSK	SSVYLQMNSLRAE	DTGIYYCTS	* **^ VPQLGRGF	AY	WGQGTL	VTVSA
2AJV	EVKLSESGPGLVKPSQ	SLSLTCTVTGYSIT	-TNYAWT	WIRQFPGNKLEWMG		SVITRYNPSLKS	RISITQDTSK	NQFFLQLNSVTTE	DTATYYCAR	YDYYGNTG	DY	WGQGTS	vtvss
1NCW	RVQLQQSGPGLVKPSQ	SLSLTCTVTGYSIT	-SDFAWN	WIRQFPGNKLEWMG	YINY	GFTSHNPSLKS	RISITRDTSK	NQFFLQLNSVTTE	DTATYYCAG	LLWYDGGA	GS	WGQGTL	VTVSA
1A3L	EVQLEESGPELVRPGT	SVKISCKASGYTFT	NYWLG	WVKQRPGHGFEWIG	DIYPG	GVYTTNNEKFRG	KAILTADTSS	STAYMQLSSLTSE	DSAVYFCAR	AGGYYTGG	DY	WGQGTS	vtvss
1YEF	EMQLQQSGAELLRPGT	SVKLSCKTSGYIFT	SYWIH	WVKQRSGQGLEWIA	RIYPG	IGSTYYNEKFKG	KATLTADKSS	STAYMQLSTLKSE	DSAVYFCTR	WGFIPVREDYVM	DY	WGQGTL	VTVSS
1YEG	EMQLQQSGAELLRPGT	SVKLSCKTSGYIFT	* SYWIH	* * WVKQRSGQGLEWIA		IGSTYYNEKFKG	KATLTADKSS	STAYMQLSTLKSE	DSAVYFCTR	* WGFIPVREDYVM	DY	* WGQGTL	VTVSS
3IFN	QVTLKESGPGILKPSG	TLSLTCSFSGFSLS	TSGMSVG	WIRQPSGKGLEWLA		* * * DDKYYNPSLKS	RLTISKDTSR	NQVFLKITSVDTA	DTATYYCAR	* * * RTTTADYF	AY	WGQGTT	LTVSS
3LEY	DVQLQESGPGLVKPSQ	SLSLTCTVTGYLIT	* - TDYAWN	WIRQFPGNKLEWMG		GFTSYNPSLKS	QISITRDTSK	NQFFLQLNSVTTE	* DTATYYCAF	^*** GNYLP	* AY	WGQGTL	VTVSA
3041	QVTLKESGPGILQPSQ	TLSLTCSFSGFSLS	TSGMGVS	WIRQPSGKGLEWLA	HIYW	* * * DDKRYNPSLKS	RLTISKDTSR	NQVFLKITSVDTA	DTATYYCAR	*** * LYGFTYGF	AY	WGQGTL	VTVSA
2ZPK	ZIQLVQSGPEVQKPGE	TVRISCKASGYTET	TAGMQ	WVQKMPGKSLKWIG	* ** * WINTRS	GVPKYAEDFKG	RFAFSLETSA	SIAYLHINNLKNE	DTATYFCAR	*^*^ EGPGF	VY	WGQGTL	VTVSA

See footnote to Table 2.

same antibody in different ligand states provide a better gauge of the flexibility and deformability of the CDR loops, the stability of the quaternary structure, and other structural features of the molecule.

The information provided here could help in the engineering of an antibody, even in the absence of a three-dimensional structure for that antibody. An examination of the structural data presented in the various tables shows that antibodies have structural features that are shared (as well as features that are very different). For example, many of the residues in the framework, which are involved in the contact with the opposite domain (Table 2), are located at the same position and share structural characteristics (size, polarity, etc). That information and the results presented in Table 3 are useful in deciding which framework residues to keep if the quaternary structure of the Fv is to be preserved. However, the residues in the CDRs, which are involved in the VL:VH contact and which also play a role in the

Table 4a. Contacts between Framework and CDR residues in the murine HyHEL-10 Fab [PDB entry 3D9A]

CDRs-	L:				CI	DR1-	L						CI	DR2-	L			CI	DR3-	L	
		Arg	Ala	Ser	Gln	Ser	Ile	Gly	Leu	His	1	la	Ser	Gln	Ile	Ser	Gln	Gln	Ser	Pro	Thr
		24	25	26	27	28	29	30	33	34	5	51	52	53	55	56	89	90	93	95	97
FRs-L	.:																				
Asp	1																			5	
Ile	2			1	3		1											3	2		
Val	3			1																	
Leu	4		2						1								3	1			1
Ser 2	2	6																			
Tyr 3	6																1				
Leu 4	6														1						
Ile 4	8											2	3	2							
Lys 4	9									1				2	3						
Ile 5	8														4						
Ser 6	7							1													
Thr 6	9		2		2	2															
Asp 7	0	5																			
Phe 7	1						3	2	7			2									
Call of the Provi	102.117		0.0000000		6						7.56512-58515	0012-550						0403		29/2	
CDRs-	H:			R1-H							CDR								DR3-		
					Ser								100 C			r Leu				sp Ty	
		31	32	34	35		50	51	52	53	54	55	59	60	62	63	96	91	7 10)1 1(02
FRs-H																					
Val																				7	7
Leu																				1	Ę.
Val 2				2																	
Asp 2	.7	3	7	3																	
Ser 2	8	2																			
Ile 3	17				1																
Glu 4	6													1	3	3					
Tyr 4	7				6																
Met 4																2					
Arg 6																1					
Ile 6													4			3					
Ile 6							1	2					3								
Arg 7								4	2	5	1	5									
Tyr 7				13	7					-	-										
Ala 9					50															1	
***** 2	-			1														4		12	

The residues along the horizontal are the complementarity-determining region (CDR) residues; those along the vertical are the framework (FR) residues. The residues, which are in contact by only their main chain, are italicized. In this matrix of contacts, the element c(i,j) the number of atom pairs, one from residue *i* the other from residue *j*. Nearest-neighbor contacts and CDR contacts with the intradomain disulfide bridge, with the "invariant tryptophan" (the tryptophan immediately following the CDR-1 in both chains), with the phenylalanine immediately following the CDR-3 in light chains, and with the tryptophan immediately following the CDR-3 in heavy chains, are excluded. The numbering scheme of Table 2 is used.

quaternary structure, often do not share a common location. This is especially true of the contact residues in the CDRs which have different lengths (CDR-1 and CDR-3 in the light chain, and all three CDRs in the heavy chain). A fortuitous similarity in the CDR lengths of an antibody listed in Table 2 with those of the antibody of unknown structure would be fortunate.

The antibody:ligand contacts shown in Table 3 show that the N-terminal segment of CDR-1 of the light chain and the C-terminal segment of the CDR-2 of the heavy chain are not involved in the interaction with ligand. This supports the

suggestion that not the entire length of the CDRs need to be preserved when humanizing by CDR-grafting, but only those segments which had been found to be in contact with ligand (Padlan et al. 1995). Likewise, the frequent use of similarly located residues in the antibody-ligand contacts suggests that not all of the CDR residues need to be transferred during humanization, but only those which are deemed to be specificity-determining (Padlan et al. 1995). This information also helps in the humanization of an antibody of unknown structure.

Table 4b. Contacts between Framework and CDR residues in the murine 4C6 Fab [PDB entry 1NCW]

CDRs-	L:				CI	DR1-	L						CI	DR2-	L				C	DR3-	L	
		Lys	Ser	Ser	Gln	Arg	Leu	Thr	Leu	Asn	G	ly	Lys	Leu	Asp	Ser	7	rp	Gln	His	Pro	Thr
		24	25	26	27	27a	27b	31	33	34	5	1	53	54	55	56	8	9	90	93	95	97
FRs-L	:																					
Asp	1																				5	
Val	2			2	4														1	3		1
Met	4		2						1									1	4			2
Thr	5	1																				
Ser 2	2	2																				
Arg 4	6														5	7						
Ile 4	8										3	2	4									
Tyr 4	9									2			9	1	12							
Val 5	8													2	3	1						
Thr 6	9		4		2	3																
Asp 7	0	4																				
Phe 7	1						1	2	6													
	12200		1194												22							
CDRs-	н:	-		DR1-				-	1	-		a ? .		R2-H			-	-	~		CDR3	
					Trp		1									n Ser					Se	
		300	31	34	34	35		50	51	53	54	22	58	59	60	62	63	64	63)	10	12
FRs-H																						
Val				1	1																2	
Leu																					3	5
Val 2		-	-		1																	
Tyr 2		3	5	6																		
Ile 2					2																	
Thr 3										1												
Arg 3																	1					
Glu 4																3						
Trp 4						3		2					3	1	2							
Met 4																	2					
Arg 6	6																2	1				
Ile 6	57																3					
Ile 6	59							2	3													
Arg 7	1								3	2	4	7										
Phe 7	8				12	1			1													
Asn 8	2A																		1			
	3																				1	

See footnote to Table 4a.

The contacts between framework and CDR residues shown in Tables 4a,b,c also reveal similarities that are useful in deciding which framework residues of a nonhuman antibody should be preserved during humanization. The preservation of critical framework residues, i.e., the ones which are involved in the interaction with the CDRs and the ones which dominate in the VL:VH contact (Tables 4d,e,f), is to ensure that the structures of the CDRs and, consequently, of the antigen-binding

CDRs-L:				CI)R1-	L					CI	DR2-	L			CI	DR3-	L	
	Arg	Ser	Ser	Arg	Ser	Leu	Thr	Leu	Asn	Met	Ser	Thr	Arg	Ala	Gln	Gln	Val	Glu	Pro
	24	25	26	27	27a	27b	31	33	34	51	52	53	54	55	89	90	92	93	95
FRs-L:																			
Asp 1																			6
Ile 2		1		1		1										3	1	4	
Val 3			1													-			
Ile 4	2	3														1			
Thr 5	1																		
Asp 7	7								1						2				
Phe 36									1						3				
Leu 46									1	2	3	3	1						
Ile 48 Tyr 49									1	2	3	5	1						
Val 58									1			5		4					
Asp 60													2						
Thr 69		1			2								1						
Asp 70	3																		
Phe 71		1				3	1	7		1									
			210.50														-		
CDRs-H:			CDI	R1-H	I						CDR	2-H	[C	DR3	-H
		Thr	Ту	r Tr	рI	hr		Ty	r Ile	Ser	Arg	Ту	r A	sn Ser	Let	ı	T	yr !	Fyr
		30b	32	34	3	35		50	51	54	58	59	6	0 62	63		9	5 :	102
FRs-H:																			
Val 2																			6
Leu 4																			4
Val 24				2															
Tyr 27		12	9	1															
Ser 28		1	-	14.11															
Ile 29		-		3															
Ile 37				5		1												2	
						T									. 4			4	
Arg 38															1				
Glu 46														2 3					
mana 17						2		1			2	3	4	1					
Trp 47						4		1			4	2		1					

4/			4	1			4	2	4			
48										2		
66											4	
67								6			2	
69				2	2			3				
71					1	5						
78		9	4									
93												1
94	16	6										7
	48 66 67 69 71 78 93	48 66 67 69 71 78 93	48 66 67 69 71 78 9 93	48 66 67 69 71 78 9 4 93	48 66 67 69 2 71 78 9 4 93	48 66 67 69 2 2 71 1 78 9 4 93	48 66 67 69 2 2 71 1 5 78 9 4 93	48 66 67 69 2 2 71 1 5 78 9 4 93	48 66 67 6 69 2 2 3 71 1 5 78 9 4 93	48 66 67 6 69 2 2 3 71 1 5 78 9 4 93	48 2 66 67 6 69 2 2 3 71 1 5 78 9 4 93	48 2 66 4 67 6 69 2 71 1 78 9 93 2

See footnote to Table 4a.

VH :		Lys 39		Leu 45	_	Gly 49	_	Tyr 58		Asn				Asp 99		Trp 103	
VL:		00	10					00		00	~-				200	100	
Tyr	36														4	5	
Gln		5										2					
Ser	43															2	2
Pro	44															10	
Leu	46													1	1		
Met	85		3														
Phe	87		2	6													
Gln	89				1												
Trp	94				1	1	3	8	10	1							
Pro	95									1	1						
Tyr					6	2							6				
Phe				1	5												
Gly	100		1														

Table 4d. Contacts between VL and VH in the murine HyHEL-10 Fab [PDB entry 3D9A]

The residues along the horizontal are from the VH; those along the vertical are from the VL. As in Table 4a, the residues which are in contact by only their main chain are italicized. In this matrix of contacts also, the element c(i,j) represents the number of atom pairs, one from residue *i* and the other from residue *j*.

VH:		Arg	Ile	Gln	Asn	Leu	Trp	Tyr	Ser	His	Asn	Pro	Tyr	Leu	Tyr	Asp	Gly	Gly	Ala	Gly	Ser	Trp	Gly
		1	37	39	43	45	47	50	58	59	60	61	91	95	98	99	100	100	a100	b10	1102	103	104
VL:																							
Lys	30														10								
Phe	32														2	3							
Asn	34													1			1						
Leu	36																					2	
Gln	38			8									1										
Gln	42												1										
Ser	43												4									2	2
Pro	44																					10	
Arg	46	4																	3	7	1		
Tyr	49															4		5					
Leu	50															5							
Asp	55																	2	4				
Ser	56	3																					
Val	85				1																		
Tyr	87			1	10	6																	
Trp	89													1									
Phe	94						2		2	2		4											
Pro	95						3				4	1											
Tyr	96						10	1															
Phe	98		1			5																	
Glyi	100				2																		

Table 4e. Contacts between VL and VH in the murine 4C6 Fab [PDB entry 1NCW]

See footnote to Table 4d.

site, are maintained.

The solvent exposures and the contacts with specific ligand are presented in Tables 5a and 5b for representative camelid VHH and shark IgNAR VH, respectively. The contacts between FR and hypervariable residues are presented in Tables 5c and 5d. The data presented in those tables will be useful in the engineering of those molecules.

Although the CL and CH1 domains are usually not subjected

VH:		Gln	Asn	Leu	Trp	Arg	Asn	Pro	Tyr	Tyr	Asp	Tyr	Tyr	Gly	Asn	Thr	Gl	/ Tr	рG	ly	Gln
			43		47	58	60	61		95	96	97			100						
VL:	0230-5											222									
Tyr	27D											1									
Tyr	32											5	2								
Asn	34													5							
Phe	36									1								4			
Gln	38	8							1												
Ser	43								4											3	4
Pro	44																	5			
Leu	46														2	3	1				
Tyr	49												1		10						
Leu													7								
Tyr		1	3	3																	
Gln										6											
Phe										8	2	1		6							
Tyr						3		2													
Pro					9		3														
Phe					7																
Phe				4						1											

Table 4f. Contacts between VL and VH in the muri	ine 7A1 Fab [PDB entry 2AJU]
--	------------------------------

See footnote to Table 4d.

Table 5a. Solvent accessibilities and residues in contact with ligand in camelid VHH of known structure

	2.2	10	20	3	0	40	3	5052a	60	70	82abc	90	100.	abcdefghijk	lmno 1	03 110
		FRI		r c	DR1 1	1.3	FR2	11	CDR2 1	1	FR3		7 8	CDR3	1	FR4
																600 A O
JTP	DVQLQASGO EpeBepE	GSVQAG Ebpp	GSLRLSCAAS pbpBeBEBE		GPYCMG BbBB		GKEREGVA eepp BB		GITYYADSVKG epbbpepBp		NTVYLLMNSLEPE pb8p8e8ee8pep					WGQGTQVTVS: b e bpBeBel
					***								*** *	***	~	
2949	QVQLVESGO ebpBEBe	GLVQAG EbeE	GSLRLSCAAS pbpBpBEBE		TYIYMG e8E88		GKEREGVA eebp BB		GGTLYADSVKG pebpeeBe		NTVYLQMDSLKPE SbSbSpSpeSper					WGQGTQVTV38 b e bpBeBel
				* *	****								~~*	***	^*	
2P4A	QVQLVESGO	GLVQAG	GSLRLSCAAS	GYPW	TYIYMG	WFRQAP	GKEREGVA	AMDSG	GGTLYADSVKG	RFTISRDKGK	NTVYLQMDSLKPE	DTATYYCAA	GGDALV	ATRY	GR	WGQGTQVTVS
	eBeBEBe	ebpΣ	pbpBpBEBe	bee	eBEbB	BBBpEE	eepp BB	BBbp	eebpepBp	BBEBeBpe e	bbBbBpBp e BpΣp	BpBeBbBBB	pEbee	•ЕрВ	p	b e bpBeBel
	**			**	*										*	
IKXQ	QVQLVESGO epeBEBe		GSLSLSCAAS pbESpBESp								NTVYLQMNSLKPE pbBpBpBeEBpEp					WGQGTQVTV38 p e bpBeBel
				*									*****		*	
LOP9	QVQLQESGG eBpBeBe		GSLRLSCSAS ebpBeBEpp								NTVYLQMNSLKPE ebpbBpBeeBpep					
2XA3	AVQLQESGO EBeBeBE		GSLRLSCTVS e8p8p8E8p				GKEREFVA eeppbBB				NAVYLQMNSLKPF peBbBpBeeBpSp					
BLN9	EVQLVESGO	GLVQPG	GSLRLSCTAS	GYTF	SHRYHR	WFRQAP	GKEREIVA	VISQS	MRTYYADSVKG	RFTISRDNAK	NTVYLQMNSLKPE	DTAMYYCAA	GTRKNV	TRQHPF	DY	WGQGTQVTVS:
	pppBeBe	ebpe	еврВрВеВе	BEB	eeb333	BbBbbbE	peppeBB	pBbpe	epppbbepBp	BBEBeBppEe	ebBbBpBeeBpep	SpbpBbBBB	bpeeps	Beeece	pb	p e bpBeBpl

The solvent accessibility designations and contact labels follow those in Table 2. The CDR boundaries follow the convention of Desmyter et al. (2001). The numbering scheme of Table 2 is used. PDB entries 2XA3 and 3LN9 are unliganded.

to modification, we have included the results of similar analyses of the CL:CH1 module involving both a kappa- and a lambdatype light chain (Tables 6a,b,c), in the event that the engineering of those modules becomes desirable.

Currently, the Fc is also often being engineered for longer half-life and to control its interaction with receptors and other biologically important ligands. The solvent exposure of the residues in the CH2 and CH3 domains of various IgG-type Fc and in the CH2, CH3 and CH4 domains of IgE Fc, as well as the residues involved in the contact between the two chains in those fragments (Table 7a and 7b, respectively), will be useful in the engineering of the Fc. The identity of the residues that play the more significant role in the contact between the two chains in human IgG1 Fc (Table 7c) will greatly aid in the engineering of this Fc, which is currently the primary subject of attempts to improve the efficacy of therapeutic antibodies.

Knowledge of which residues are exposed on the surface and which could be replaced judiciously without unduly altering tertiary structure is useful in the design of molecules with reduced antigenicity, a procedure called "de-Antigenization" (Padlan 2008), especially in instances when a specific region or function is to be preserved (Padlan 2010), like the antigenbinding site of an antibody.

Teble Eb. Colvent accessibilities	and reaiduas in contact w	ith ligand in aborly	In NAD VII of known atructure
Table 5b. Solvent accessibilities	and residues in contact w	iui liganu ili Shark	

	10	20	30	40	5	0	60		70	8	30	9	0	100		110
	1	1	1	I.		Ľ.,	Π.		T.		T		11	Τ		
	F	R1	[CDR1]	FR2	[H2]	FR3	[H4]		FR4		[CDR3	1	FF	R5
			* ^*									^**^	^* * **	***		
SQ2	RVDQTPRSVTKET(GESLTINCVLR	DASYALGS	TCWYRKKSGE	GNEESI	SK GGR	YVETVN	SGSK	SFSLRINDL	TVEDGO	TYRCG	LGVAG	GYCDYALO	SSRYAE	CGDGI	INTVAT
	pBpBEepEpEbpe	ppBeBeBeBp	eBEpEB p * ^*	BBBBbbpe p	EBeeB	Ep b	bEBEee	E pb	еВрВрВреВ	EEeB	eBBB	b pE ^**^	epppEbl		BeB	BEBEBe
TOV	RVDQTPRSVTKET(GESLTINCVLR	DASYALGS	TCWYRKKSGE	GNEESI	SK GGR	YVETVN	SGSK	SFSLRINDL	TVEDGO	TYRCG	LGVAG	GYCDYAL	SSRYAE	CGDG1	TAVTVN
	pBpBEpeEbebpe	ppBeBeBeBp	ebEpEB p *	BBBBbpbe p	pBpeB	Sp b	bEBEee	E pb	pBeBpBpeB	eEeB	eBbB	0.740.00	ppppEbl ^***	EbpeBp **	BeB	ВЕВеВе
2125	RVDQTPQRITKET(GESLTINCVVR	DSRCVLST	GYWYRKPPGS	RNEESI	SD GGR	YVETVN	RGSK	SFSLRINDL	TVKDSG	TYRCK	PESRY	GSYDAVCA	AALNDQ-	YGGGI	IVVTVN
	pBbBEpepbEbpp	ррВеВрВрВр	BEpBEBbp	pBbbppE p	eEbeEb	Ep b	bEbEpe	p eb	рВеВрВреВ	еЕеВр	eBbBb	BbBpp	EppEebe	eEBpep-	b E	BeBEBp
2124	RVDQTPQRITKET(GESLTINCVVR	DSRCVLST	GYWYRKPPGS	RNEESI	SD GGR	YVETVN	RGSK	SFSLRINDL	TVKDSG	TYRCK	PESRY	GSYDAVCA	ALNDQ-	YGGGI	IVVTVN
	pBpBEeeppebpp	ppBeBeBeBp	ebpBeBpe	pBbbbeE p	eEbeEB	Ep b	bebEpe	da a	еВеВрВреВ	eEeBb	eBbBb	BoBbe	EepEEbl	EEBpep-	b E	BEBEBp

The solvent accessibility designations and contact labels follow those in Table 2. The CDR and hypervariable (H) region boundaries are as defined by Dooley et al. (2006). The numbering is sequential (the first residue is missing in all of these entries). PDB entry 2I24 is unliganded.

						CDR	1								CDR	2					CDI	R3	
				Ala 28				Ile 32		Met 34		Met 51		Ser 52a			Tyr 59		Val 63			Gly d101	
FR:																							
Val	2	2					2																3
Leu	4																						2
Arg	38																	1					
Arg																				16			
Ala																1	2						
Arg	66																	4	3				
Phe																			7				
Thr	68																1						
Ile	69										3	2			1		3						
Arg	71						3	2	2	6		3	4	8									
Lys				2	1	1																	
Asn			1		3	2	6																
Val	78									2													
Ala										157.02											3		1
Ala							4																
Trpl																				5	5	1	

Table 5c. Contacts between framework and CDR residues in the camelid CAB-RN05 VHH [2P49]

The residues along the horizontal are the complementaritydetermining region (CDR) residues; those along the vertical are the framework (FR) residues. The residues, which are in contact by only their main chain, are italicized. In this matrix of contacts also, the element c(i,j) represents the number of atom pairs, one from residue *I* and the other from residue *j*. The CDR boundaries are as defined by Desmyter et al. (2001); only the CDR residues which are in contact are listed. The numbering scheme of Table 5a is used.

Table 5d. Contacts between the framework and CDR and hypervariable (H)regions in the shark IgNAR PBLA8 VH [2124]

				CDR	1					H	2					H4			CDR3	
				Leu 31								Ile 49		Asp 51		Ser 63	Lys 64		Asn As 100 10	
FR:																				
Arg	2	3																		
Val	3																	1		4
Val	23															1	1			
Val	24		1														2			
Tyr	35					2														
Trp												1								
Tyr									4	3	3									
Lys	39						4	2												
Pro	40							1												
Ser								5												
Tyr												3	3							
Glu	57												1	7						
Val	59				1	1														
Asn	60														3	9				
Ser	65															2				
Phe	66			1														4		
Leu												1								
Tyr	81											2								
Arg									12											
Lys	84																		3	
Tyr	104																		2	

The residues along the horizontal are the hypervariable (H) and complementarity-determining region (CDR) residues; those along the vertical are the framework (FR) residues. The residues, which are in contact by only their main chain, are italicized. In this matrix of contacts also, the element c(i,j) represents the number of atom pairs, one from residue *i* and the other from residue *j*. The CDR and hypervariable (H) region boundaries are as defined by Dooley et al. (2006); only the residues which form contacts are listed. The numbering scheme of Table 5b is used.

CL:											
	110	120	130	140	150	160	170	180	190	200	210
	1	- I	1	1	1		1	T	1	1	1
MLY		TLFPPSSEELQ eBBeBBepBpe									
	110	120	130	140	150	160	170	180	190	200	210
	1	1	1	1	1	1	1	1	1	1	1
	bEpeEBEB		e BBBBBBB								
н1:	-			150	160	150	100	100	202	210	
H1:	120		140	150	160	170	180	190	200	210	1
0.000	120	130 I	140	1	1	1	1	1	1	1	
0.000	120 ASTKGPSV		140 ggtaalgclv	/ KDYFPEPVTV	1	 VHTFPAVLQS	 SGLYSLSSVV	 TVPSSSLGT(TTTICNVNHKI	 PSNTKVDKKV	EPKSC
0000	120 ASTKGPSV	130 FPLAPSSKSTS	140 ggtaalgclv	/ KDYFPEPVTV	 SWNSGALTSG	 VHTFPAVLQS	 SGLYSLSSVV	 TVPSSSLGT(TTTICNVNHKI	 PSNTKVDKKV	/EPKSC
0.000	120 İ ASTKGPSV EEep BeB	130 FPLAPSSKSTS bbBbBEEpEEe	140 SGTAALGCLV EBeB BBB	 /KDYFPEPVTV 3bpBbepEBEB	 /SWNSGALTSG @EBbE EbEE }	 VHTFPAVLQS bppBeBBebE	 SGLYSLSSVV p pbBBBBbB	 TVPSSSLGT(EBEbEpp Ep	 ОТЧІСНУННКІ реВрВьВрВер	 PSNTKVDKK\ pbEpeeebpB	EPKSC
H1: MLY WEJ	120 I ASTKGPSV EEep BeB 120 I	130 FPLAPSSKSTS bbBbBEEpEEe	140 I GGTAALGCLV EBeB BBF 140 I	/ VKDYFPEPVTV 3bpBbepEBEE 150 I	 VSWNSGALTSG DeBbE EbEE) 160 	I VHTFPAVLQS bppBeBBebE 170 I	sGLYSLSSVV p pbBBBBbB 180 I	I TVPSSSLGT(EBEbEpp Ep 190 I	I DTYICNVNHKI DeBpBbBpBep 200 I	 PSNTKVDKKV pbEpeeebpE 210 	VEPKSC SpEeEE

The solvent accessibility designations follow those in Table 2. PDB entry 1WEJ is a murine Fab with a kappa light chain; PDB entry 3MLY is a human Fab with a lambda light chain. The numbering schemes are sequential and follow those in the respective PDB entries.

Table 6b. Residue contacts in the CL:CH1 of PDB entry 1WEJ

	CH1:	Tyr	Pro	Leu	Ala	Pro	Thr	Leu	Lys	His	Thr	Phe	Pro	Val	Gln	Thr	Thr	Ser	Ser	Lys	Arg	Cys
		126	127	128	129	130	141	145	147	168	169	170	171	173	175	180	182	183	184	212	217	219
CL:																						
Ser	116						3															
Phe	118			6	5	1	2															
Pro	119																				4	
Ser	121	3	1																			
Glu	123		2																	1		
Gln	124	15							1													
Ser	131							1	2													
Phe	135			2								2					2	2	4			
Asn	137									6		1							2			
Asn	138									7												
Val	159														2							
Leu	160													2	5	2						
Asn	161													1								
Ser	162											4	8									
Trp	163												3									
Thr	164										1	2										
Ser	174									7		4										
Met	175											6										
Ser	176											6					4					
Thr	180								3													
Cys	214																					4

The residues along the horizontal are from the CH1; those along the vertical are from the CL. The residues, which are in contact by only their main chain, are italicized. In this matrix of contacts also, the element c(i,j) represents the number of atom pairs, one from residue *i* and the other from residue *j*.

Table 6c. Residue contacts in the CL:CH1 of PDB entry 3MLY

CH1:		Phe	Pro	Leu	Ala	Ala	Gly	Leu	Lys	His	Phe	Pro	Ala	Val	Leu	Gln	Ser	Leu	Ser	Val	Lys	Cys
																					214	
CL:																						
Phe	118			5	2	2	1													1		
Ser	121	2	1																		3	
Ser	122																				4	
Glu	123	3	5																		1	
Glu	124	10							1													
Thr	131								2													
Val	133																		1			
Leu	135										1								1	1		
Ile	136										2											
Ser	137									2												
Glu	160													1	1	4	5					
Thr	162												1	3								
Ser	165											3										
Gln	167									3												
Ala	173									2	1											
Ala	174										2											
Ser	175											1										
Tyr	177							1						2				3	6			
	211																					6

See footnote to Table 6b.

	240	250	260	270	280	290	300	310	320	330	340
	1	1	1	1	1	1	1	1	1	1	1
DTQ:								VLTVLHQDWLN pBEBEbepBbe			
vuo:								ILPIAHQDWLR EbEBEEEebpE			
W59:								AVPVSTQDWLS EBEbEEEEbEE			
H3:											
		350	360	370	380	390	400	410	420	430	440
		1	1		1.1			L.	2		
DTQ:			LTKNQVSLT PEPEPBBBB			ENNYKTTP-P	bebep	* * * SFFLYSKLT BbBBBBBBb * * *			
DTQ: VUO:	eeppBb GQPLEPK	VYTLPPSRDE BBbBEBBppE * *^ * * VYTMGPPREE bpbb bBEEb	LTKNQVSLT PEPEPBBBB * *	CLVKGFYPSD: BBBb BbBeEI * * CMINGFYPSD:	BeBpBbbE eE ISVEWEKNGKA	PENNYKTTP-P DEpbbpBe-e * * ** AEDNYKTTP-A	VLDSDG bebep *^*^ VLDSDG	SFFLYSKLT BbBBBBBBb	BebEbBpp pi VPTSEWQRGD	EBbBbBbBbbb VFTCSVMHEAI	LHNHYTQKSLS BeebppppeBp LHNHYTQKSIS

Table 7a. Solvent accessibilities of the CH2 and CH3 domains and contacts with the opposite chain in various Fc

results shown are for the first chain in the Fc.

Table 7b. Solvent accessibilities of the residues in the first chain of human IgE Fc (PDB entry 2WQR) and contacts with the opposite chain

1	240	250	260	270	280	290	300	310	320	
	1000		1000	1	1	1	- I -		1	- 93
	******	** *							^* *	2.0
					DVDLSTASTT eSeep555e5					
inge:	_									
330										
^	_									
S-22703-44										
ADSNPRG										
EpBepp	_									
H3:										22
340	350	360	370	380	390	400	410	420	430	
1	1	1	1	1	1	1	1	1	1	60
								* *	^ ++++	* *
SAYLSRP	SPFDLFIRKS	PTITCLVVDL	APSKGTVQLT	WSRASGKPVN	HSTRKEEKQR	NGTLTVTSTL	PVGTRDWIEG	ETYQCRVTHP	HLPRALMRST'	TKTS
рВеВерВ	pbpbbbbppeE	ВеВеВеВррВ	Seee SbeBB	BeBEb pEpE	SpSpeppebe	е еррВеВрВ	ЕВ еррВер	bbBbBpBEBe	pBEepbbBBb	Bdg
		52038				0.018 80	2000	100		SR - 53
H4:										
440	450	460	470	480	490	500	510	520	530	540
110	100	100	110	100	150	000	510	320	000	040
										-
	749787878799		1771							
	YAFATPEWPG.	SRDKRTLACL			PDARHSTTOP				123 St. C. C. S.	1887 (S. 18)
	bBbbBEppE	epeebbBBBB	BBpBbBbpBb	BBBbBeeEpb	SeEbBppbep	peBp e bBB	BBBBpBSbSb	BpppbpBpBb	BBBpbbEEEb	PPPE.

The ability of a single domain to bind with high affinity and specificity to an antigen has clear advantages. The synthesis of a single domain would be simpler in comparison to paired chains. And, when used in medical diagnosis or therapy, the smaller size would allow for greater penetration into tissues for binding to deeply situated targets. When camelid and shark molecules are used in human therapy, it would be desirable to minimize their immunogenicity. If a sufficiently similar human sequence could be found, humanization by CDR-grafting might suffice. Otherwise, veneering/resurfacing may be more appropriate. Indeed, the veneering of a camel VHH has been attempted (Conrath et al. 2005). In this regard, the judicious replacement of the exposed residues with amino acids that are expected not to change the overall structure of the molecule (Padlan 2008, 2010) would be particularly useful, especially in the case of the shark IgNAR VH which is significantly more different from human domains than the camelid VHH.

CONCLUSION

The availability of more high-resolution structures on antibodies allows for a better assessment of antibody structure and function. However, the picture is far from complete. As of this writing, no structure of a whole antibody molecule has been done to high resolution. Further, the various antibody types and subtypes are sufficiently different and have different functions, so that high-resolution structures for all of them would be desirable. A complete analysis should also include the interaction of the Fc fragments of the various antibody types (and subtypes) with their receptors. More high-resolution data on antibody molecules and their interactions with specific ligand and other molecules are eagerly anticipated.

CONFLICT OF INTEREST STATEMENT

There is no conflict of interest relating to this work.

CONTRIBUTION OF INDIVIDUAL AUTHORS

All the authors participated in gathering the crystallographic data from the Protein Data Bank; Eduardo A. Padlan performed the calculations; Jo Erika T. Narciso and Eduardo A. Padlan prepared the tables; Iris Diana C. Uy prepared the figures; Jo Erika T. Narciso, Eduardo A. Padlan, and Gisela P. Padilla-Concepcion wrote the manuscript; Gisela P. Padilla-Concepcion provided overall supervision.

Table 7c. Contacts between the two heavy chains in human IgG1 Fc [PDB entry 2DTQ]

Chain1:	Tyr 349																		Ser 400						
Chain2:																	000			100			102		
Gln347								4																	
Tyr349					3	2	8	1																	
Thr350					1																				
Leu351			1	1	2					1															
Pro352			1																						
Ser354	6	1	2																						
Asp 356	2																						3		
Glu357	9											2													
Lys360	1																								
Ser364											2	2													
Thr366			1																		7				
Leu368									2													1			
Lys 370									1																
Asn 390																			1						
Lys 392																	3	1		3					
Thr 394															4	3									
Pro395																1									
Val397															2										
Leu398														2											
Asp 399														2								4			
Ser400													2	1											
Phe 405														3								3			
Tyr407										8											14	5			
Lys409																		4		3	4				
Lys439						1																			
BMA 3																									1
MAN 4																								1	7

The residues along the horizontal are from the first chain of the Fc; those along the vertical are from the second chain. The residues, which are in contact by only their main chain, are italicized. In this matrix of contacts also, the element c(i,j) represents the number of atom pairs, one from residue *I* and the other from residue *j*. The numbering scheme follows that in PDB Entry 2DTQ. BMA is β -D-mannose; MAN is α -D-mannose.

REFERENCES

- Acchione M, Lipschultz CA, DeSantis ME, Shanmuganathan A, Li M, Wlodawer A, Tarasov S, Smith-Gill SJ. Light chain somatic mutations change thermodynamics of binding and water coordination in the HyHEL-10 family of antibodies. Mol Immunol 2009; 47:457-464.
- Acierno JP, Braden BC, Klinke S, Goldbaum FA, Cauerhff A. Affinity maturation increases the stability and plasticity of the Fv domain of anti-protein antibodies. J Mol Biol 2007; 374:130-146.
- Alzari PM, Lascombe M-B, Poljak RJ. Three-dimensional structure of antibodies. Annu Rev Immunol 1988; 6:555-580.
- Amzel LM, Poljak RJ. Three-dimensional structure of immunoglobulins. Annu Rev Biochem 1979; 48:961-997.
- Argiriadi MA, Xiang T, Wu C, Ghayur T, Borhani DW. Unusual water-mediated antigenic recognition of the proinflammatory cytokine interleukin-18. J Biol Chem 2009; 284:24478-24489.
- Basi GS, Feinberg H, Oshidari F, Anderson J, Barbour R, Baker J, Comery TA, Diep L, Gill D, Johnson-Wood K, Goel A, Grantcharova K, Lee M, Li J, Partridge A, Griswold-Prenner I, Piot N, Walker D, Widom A, Pangalos MN, Seubert P, Jacobsen JS, Schenk D, Weis WI. Structural correlates of antibodies associated with acute reversal of amyloid beta-related behavioral deficits in a mouse model of Alzheimer disease. J Biol Chem 2010; 285:3417-3427.
- Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall'Acqua W, Souchon H, Schwarz FP, Mariuzza RA, Poljak RJ. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci USA 1994; 91:1089-1093.
- Bhat TN, Bentley GA, Fischmann TO, Boulot G, Poljak RJ. Small rearrangements in structures of Fv and Fab fragments of antibody D1.3 on antigen binding. Nature 1990; 347:483-485.
- Bhat TN, Padlan EA, Davies DR. Refined Crystal Structure of the Galactan-Binding Immunoglobulin Fab J539 at 1.95-Angstroms Resolution. (To be published) cited in PDB Entry 2FBJ.
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucl Acids Res 2000; 28:235-242.
- Beyer BM, Ingram R, Ramanathan L, Reichert P, Le HV, Madison V, Orth P. Crystal structures of the pro-inflammatory cytokine interleukin-23 and its complex with a high-affinity neutralizing antibody. J Mol Biol 2008; 382:942-955.
- Brams P, Black A, Padlan EA, Hariharan K, Leonard J, Chambers-Slater K, Noelle RJ, Newman R. A humanized anti-human CD154 monoclonal antibody blocks CD154-CD40 mediated human B cell activation. Int Immunopharmacol 2001; 1:277-294.
- Capra JD, Edmundson AB. The antibody combining site. Sci Am 1977; 236(1):50-59.

- Cohen GH, Silverton EW, Padlan EA, Dyda F, Wibbenmeyer JA, Willson RC, Davies DR. Water molecules in the antibody-antigen interface of the structure of the Fab HyHEL-5-lysozyme complex at 1.7 Å resolution: comparison with results from isothermal titration calorimetry. Acta Crystallogr D Biol Crystallogr 2005; 61:628-633.
- Colman PM. Structure of antibody-antigen complexes: implications for immune recognition. Adv Immunol 1988; 43:99-132.
- Connolly ML. Analytical molecular surface calculation. J Appl Crystallogr 1983; 16:548-558.
- Conrath K, Vincke C, Stijlemans B, Schymkowitz J, Decanniere K, Wyns L, Muyldermans S, Loris R. Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic a VH. J Mol Biol 2005; 350:112-125.
- Davies DR, Padlan EA, Segal DM. Three-dimensional structure of immunoglobulins. Annu Rev Biochem 1975a; 44:639-667.
- Davies DR, Padlan EA, Segal DM. Immunoglobulin structures at high resolution. Contemp Top Mol Immunol 1975b; 4:127-153.
- Davies DR, Padlan EA, Sheriff S. Antibody-antigen complexes. Annu Rev Biochem 1990; 59:439-73.
- Davies DR, Sheriff S, Padlan EA. Antibody-antigen complexes. J Biol Chem 1988; 263:10541-10544.
- Debler EW, Kaufmann GF, Meijler MM, Heine A, Mee JM, Pljevaljcic G, Di Bilio AJ, Schultz PG, Millar DP, Janda KD, Wilson IA, Gray HB, Lerner RA. Deeply inverted electron-hole recombination in a luminescent antibody-stilbene complex. Science 2008; 319:1232-1235.
- Decanniere K, Transue TR., Desmyter A, Maes D, Muyldermans S, Wyns L. Degenerate interfaces in antigen-antibody complexes. J Mol Biol 2001; 313:473-478.
- De Pascalis R, Iwahashi M, Tamura M, Padlan EA, Gonzales NR, Santos AD, Giuliano M, Schuck P, Schlom J, Kashmiri SV. Grafting of "abbreviated" complementarity-determining regions containing specificity-determining residues essential for ligand contact to engineer a less immunogenic humanized monoclonal antibody. J Immunol 2002; 169:3076-3084.
- Desmyter A, Decanniere K, Muyldermans S, Wyns L. Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody. J Biol Chem 2001; 276:26285-26290.
- Desmyter A, Spinelli S, Payan F, Lauwereys M, Wyns L, Muyldermans S, Cambillau C. Three camelid VHH domains in complex with porcine pancreatic α -amylase. J Biol Chem 2002; 277:23645-23650.
- Dooley H, Stanfield RL, Brady RA, Flajnik MF. First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci USA 2006; 103:1846-1851.
- Dumoulin M, Last AM, Desmyter A, Decanniere K, Canet D,

Larsson G, Spencer A, Archer DB, Sasse J, Muyldermans S, Wyns L, Redfield C, Matagne A, Robinson CV, Dobson CM. A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature 2003; 424:783-788.

- Foote J, Winter G. Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 1992; 224:487-499.
- Fotinou C, Beauchamp J, Emsley P, deHaan A, Schielen WJ, Bos E, Isaacs NW. Structure of an Fab fragment against a C-terminal peptide of hCG at 2.0 Å resolution. J Biol Chem 1998; 273:22515-22518.
- Gigant B, Charbonnier JB, Eshhar Z, Green BS, Knossow M. Xray structures of a hydrolytic antibody and of complexes elucidate catalytic pathway from substrate binding and transition state stabilization through water attack and product release. Proc Natl Acad Sci USA 1997; 94:7857-7861.
- Girardi E, Holdom MD, Davies AM, Sutton BJ, Beavil AJ. The crystal structure of rabbit IgG-Fc. Biochem J 2009; 417:77-83.
- Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997; 18:2714-2723.
- Harris LJ, Larson SB, Hasel KW, McPherson A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 1997; 36:1581-1597.
- Haupt C, Morgado I, Kumar ST, Parthier C, Bereza M, Hortschansky P, Stubbs MT, Horn U, Fändrich M. Amyloid fibril recognition with the conformational B10 antibody fragment depends on electrostatic interactions. J Mol Biol 2011; 405:341-348.
- Heine A, Stura EA, Yli-Kauhaluoma JT, Gao C, Deng Q, Beno BR, Houk KD, Janda KD, Wilson IA. An antibody exo Diels-Alderase inhibitor complex at 1.95 Angstrom resolution. Science 1998; 279:1934-1940.
- Hinz A, Lutje Hulsik D, Forsman A, Koh WW, Belrhali H, Gorlani A, de Haard H, Weiss RA, Verrips T, Weissenhorn W. Crystal structure of the neutralizing Llama V(HH) D7 and its mode of HIV-1 gp120 interaction. PLoS One 2010; 5(5):e10482.
- Holdom MD, Davies AM, Nettleship JE, Bagby SC, Dhaliwal B, Girardi E, Hunt J, Gould HJ, Beavil AJ, McDonnell JM, Owens RJ, Sutton BJ. Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FccRI. Nat Struct Mol Biol 2011; 18:571-576.
- Hsieh-Wilson LC, Schultz PG, Stevens RC. Insights into antibody catalysis: structure of an oxygenation catalyst at 1.9-Å resolution. Proc Natl Acad Sci USA 1996; 93:5363-5367.
- Huber R. Antibody structure. Trends Biochem Sci 1976; 1:174-178.
- Huber R, Deisenhofer J, Colman PM, Matsushima M, Palm W. Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature 1976; 264:415-420.

- Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 1989; 246:1275-1281.
- Jencks WP. Catalysis In Chemistry And Enzymology. New York: McGraw-Hill, 1969.
- Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321:522-525.
- Jordan JL, Arndt JW, Hanf K, Li G, Hall J, Demarest S, Huang F, Wu X, Miller B, Glaser S, Fernandez EJ, Wang D, Lugovskoy A. Structural understanding of stabilization patterns in engineered bispecific Ig-like antibody molecules. Proteins 2009; 77:832-841.
- Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C. Sequences of Proteins of Immunological Interest. 5th ed. US Department of Health and Human Services, Public Health Service, National Institutes of Health (NIH Publication No. 91-3242) 1991.
- Kodandapani R, Veerapandian B, Kunicki TJ, Ely KR. Crystal structure of the OPG2 Fab. An antireceptor antibody that mimics an RGD cell adhesion site. J Biol Chem 1995; 270:2268-2273.
- Koide A, Tereshko V, Uysal S, Margalef K, Kossiakoff AA, Koide S. Exploring the capacity of minimalist protein interfaces: interface energetics and affinity maturation to picomolar KD of a single-domain antibody with a flat paratope. J Mol Biol 2007; 373:941-953.
- Koehler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256:495-497.
- Koshland DE Jr, Némethy G, Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 1966; 5:365-385.
- Li M, Gustchina A, Glesner J, Wünschmann S, Vailes LD, Chapman MD, Pomés A, Wlodawer A. Carbohydrates contribute to the interactions between cockroach allergen Bla g 2 and a monoclonal antibody. J Immunol 2011; 186:333-340.
- Luo J, Obmolova G, Huang A, Strake B, Teplyakov A, Malia T, Muzammil S, Zhao Y, Gilliland GL, Feng Y. Coevolution of antibody stability and Vκ CDR-L3 canonical structure. J Mol Biol 2010; 402:708-719.
- Matsumiya S, Yamaguchi Y, Saito J, Nagano M, Sasakawa H, Otaki S, Satoh M, Shitara K, Kato K. Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol 2007; 368:767-779.
- McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348:552-554.
- McLellan JS, Chen M, Chang JS, Yang Y, Kim A, Graham BS, Kwong PD. Structure of a major antigenic site on the

respiratory syncytial virus fusion glycoprotein in complex with neutralizing antibody 101F. J Virol 2010; 84:12236-12244.

- Menez R, Bossus M, Muller BH, Sibai G, Dalbon P, Ducancel F, Jolivet-Reynaud C, Stura EA. Crystal structure of a hydrophobic immunodominant antigenic site on hepatitis C virus core protein complexed to monoclonal antibody 19D9D6. J Immunol 2003; 170:1917-1924.
- Murase T, Zheng RB, Joe M, Bai Y, Marcus SL, Lowary TL, Ng KK. Structural insights into antibody recognition of mycobacterial polysaccharides. J Mol Biol 2009; 392:381-392.
- Mylvaganam SE, Paterson Y, Getzoff ED. Structural basis for the binding of an anti-cytochrome c antibody to its antigen: crystal structures of FabE8-cytochrome c complex to 1.8 A resolution and FabE8 to 2.26 A resolution. J Mol Biol 1998; 281:301-322.
- Narciso JET, Uy IDC, Cabang AB, Chavez JFC, Pablo JLB, Padilla-Concepcion GP, Padlan EA. Analysis of the antibody structure based on high-resolution crystallographic studies. New BIOTECHNOLOGY 2011; 28(5):435-447.
- Nogi T, Sangawa T, Tabata S, Nagae M, Tamura-Kawakami K, Beppu A, Hattori M, Yasui N, Takagi J. Novel affinity tag system using structurally defined antibody-tag interaction: application to single-step protein purification. Protein Science 2008; 17:2120-2126.
- Ofek G, Guenaga FJ, Schief WR, Skinner J, Baker D, Wyatt R, Kwong PD. Elicitation of structure-specific antibodies by epitope scaffolds. Proc Natl Acad Sci USA 2010; 107:17880-17887.
- Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R, Kwong PD. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J Virol 2004; 78:10724-10737.
- Padlan EA. Structural basis for the specificity of antibodyantigen reactions and structural mechanisms for the diversification of antigen-binding specificities. Q Rev Biophys 1977; 10:35-65.
- Padlan EA. On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. PROTEINS: Struc Funct Genet 1990; 7:112-124.
- Padlan EA. A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol 1991; 28:489-498.
- Padlan EA. Anatomy of the antibody molecule. Mol Immunol 1994; 31:169-217.
- Padlan EA. A Novel Method for Designing Vaccines Against Constantly Mutating Pathogens. Phil J Sci 2008; 137:39-51.
- Padlan EA. A method for designing molecules for use in directing the antibody response to a chosen region of a protein antigen. Phil Sci Letts 2010; 3(2):36-47.

- Padlan EA, Abergel C, Tipper JP. Identification of specificitydetermining residues in antibodies. FASEB J 1995; 9:133-139.
- Poljak RJ. X-ray crystallographic studies of immunoglobulins. Contemp Top Mol Immunol 1973; 2:1-26.
- Poljak RJ. X-ray diffraction studies of immunoglobulins. Adv Immunol 1975; 21:1-33.
- Poljak RJ, Amzel LM, Phizackerley RP. Studies on the threedimensional structure of immunoglobulins. Prog Biophys Mol Biol 1976; 31:67-93.
- Pozharski E, Hewagama A, Shanafelt A, Petsko G, Ringe D. Carving a Binding Site: Structural Study of an Anti-Cocaine Antibody in Complex with Three Cocaine Analogs. (To be published) cited in PDB Entry 1RIU.
- Pozharski E, Moulin A, Hewagama A, Shanafelt AB, Petsko GA, Ringe D. Diversity in hapten recognition: structural study of an anti-cocaine antibody M82G2. J Mol Biol 2005; 349:570-582.
- Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghaus RP, Waldmann TA. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 1989; 86:10029-10033.
- Riboldi-Tunnicliffe A, Isaacs NW. Antibody Structure. (To be published) cited in PDB Entry 3175.
- Rini JM, Schulze-Gahmen U, Wilson IA. Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science 1992; 255:959-965.
- Roguska MA, Pedersen JT, Keddy CA, Henry AH, Searle SJ, Lambert JM, Goldmacher VS, Blaettler WA, Rees AR, Guild BC. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Natl Acad Sci USA 1994; 91:969-973.
- Sanguineti S, Centeno Crowley JM, Lodeiro Merlo MF, Cerutti ML, Wilson IA, Goldbaum FA, Stanfield RL, de Prat-Gay G. Specific recognition of a DNA immunogen by its elicited antibody. J Mol Biol 2007; 370:183-195.
- Sevcik J, Skrabana R, Dvorsky R, Csokova N, Iqbal K, Novak M. X-ray structure of the PHF core C-terminus: insight into the folding of the intrinsically disordered protein tau in Alzheimer's disease. FEBS Lett 2007; 581:5872-5878.
- Skrabana R, Dvorsky R, Sevcik J, Novak M. Monoclonal antibody MN423 as a stable mold facilitates structure determination of disordered tau protein. J Struct Biol. 2010 Feb 23. (Epub ahead of print) cited in PDB Entry 3L1O.
- Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228:1315-1317.
- Staelens S, Hadders MA, Vauterin S, Platteau C, De Maeyer M, Vanhoorelbeke K, Huizinga EG, Deckmyn H. Paratope determination of the antithrombotic antibody 82D6A3 based on the crystal structure of its complex with the von Willebrand factor A3-domain. J Biol Chem 2006; 281:2225-2231.
- Stanfield R, Cabezas E, Satterthwait A, Stura E, Profy A, Wilson

I. Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing fabs. Structure 1999; 7:131-142.

- Stanfield RL, Calarese DA, Jiang S, Wilson IA. Crystal Structure of anti-gp41 Fab NC-1. (To be published) cited in PDB Entry 30Z9.
- Stanfield RL, Dooley H, Flajnik MF, Wilson IA. Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 2004; 305:1770-1773.
- Stanfield RL, Dooley H, Verdino P, Flajnik MF, Wilson IA. Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding. J Mol Biol 2007; 367:358-372.
- Stanfield RL, Takimoto-Kamimura M, Rini JM, Profy AT, Wilson IA. Major antigen-induced domain rearrangements in an antibody. Structure 1993; 1:83-93.
- Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE. Protein Data Bank (PDB): database of threedimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr 1998; 54(Pt 6 Pt 1):1078-1084.
- Taylor AI, Fabiane SM, Sutton BJ, Calvert RA. The crystal structure of an avian IgY-Fc fragment reveals conservation with both mammalian IgG and IgE. Biochemistry 2009; 48:558-562.
- Theillet FX, Saul FA, Vulliez-Le Normand B, Hoos S, Felici F, Weintraub A, Mulard LA, Phalipon A, Delepierre M, Bentley GA. Structural mimicry of O-antigen by a peptide revealed in a complex with an antibody raised against *Shigella flexneri* serotype 2a. J Mol Biol 2009; 388:839-850.
- Uysal H, Bockermann R, Nandakumar KS, Sehnert B, Bajtner

E, Engstrom A, Serre G, Burkhardt H, Thunnissen MMGM, Holmdahl R. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J Exp Med 2009; 206:449-462.

- Verhoeyen M, Milstein C, Winter G. Reshaping human antibodies: grafting an antilysozyme activity. Science 1988; 239:1534-1536.
- Vulliez-Le Normand B, Saul FA, Phalipon A, Belot F, Guerreiro C, Mulard LA, Bentley GA. Structures of synthetic Oantigen fragments from serotype 2a *Shigella flexneri* in complex with a protective monoclonal antibody. Proc Natl Acad Sci USA 2008; 105:9976-9981.
- Wu TT, Kabat EA. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 1970; 132:211-250.
- Zheng Y, Shopes B, Holowka D, Baird B. Conformations of IgE bound to its receptor Fc epsilon RI and in solution. Biochemistry 1991; 30:9125-9132.
- Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 2007; 445:732-737.
- Zhu X, Dickerson TJ, Rogers CJ, Kaufmann GF, Mee JM, McKenzie KM, Janda KD, Wilson IA. Complete reaction cycle of a cocaine catalytic antibody at atomic resolution. Structure 2006; 14:205-216.
- Zhu X, Heine A, Monnat F, Houk KN, Janda KD, Wilson IA. Structural basis for antibody catalysis of a cationic cyclization reaction. J Mol Biol 2003; 329:69-83.