ABSTRACT

Vascular endothelial growth factor (VEGF) is a major mediator of angiogenesis associated with tumors and other pathological conditions, including proliferative diabetic retinopathy and age-related macular degeneration. The murine anti-human VEGF monoclonal antibody (muMAb VEGF) A.4.6.1 has been shown to potently suppress angiogenesis and growth in a variety of human tumor cell lines transplanted in nude mice and also to inhibit neovascularization in a primate model of ischemic retinal disease. In this report, we describe the humanization of muMAb VEGF A.4.6.1, by site-directed mutagenesis of a human framework. Not only the residues involved in the six complementarity-determining regions but also several framework residues were changed from human to murine. Humanized anti-VEGF F(ab) and IgG variants bind VEGF with affinity very similar to that of the original murine antibody. Furthermore, recombinant humanized MAB VEGF inhibits VEGF-induced proliferation of endothelial cells in vitro and tumor growth in vivo with potency and efficacy very similar to those of muMAb VEGF A.4.6.1. Therefore, recombinant humanized MAB VEGF is suitable to test the hypothesis that inhibition of VEGF-induced angiogenesis is a valid strategy for the treatment of solid tumors and other disorders in humans.

INTRODUCTION

It is now well established that angiogenesis is implicated in the pathogenesis of a variety of disorders. These include solid tumors, intraocular neovascular syndromes such as proliferative retinopathies or AMD, rheumatoid arthritis, and psoriasis (1, 2, 3). In the case of solid tumors, the neovascularization allows the tumor cells to acquire a growth advantage and proliferative autonomy compared to the normal cells. Accordingly, a correlation has been observed between density of microvessels in tumor sections and patient survival in breast cancer as well as in several other tumors (4–6).

The search for positive regulators of angiogenesis has yielded several candidates, including acidic fibroblast growth factor (FGF), bFGF, transforming growth factor α, transforming growth factor β, hepatocyte growth factor, tumor necrosis factor-α, angiogenin, interleukin 8, and others (1, 2). However, in spite of extensive research, there is still uncertainty as to their role as endogenous mediators of angiogenesis. The negative regulators thus far identified include thrombospondin (7), the

M. 16,000 NH2-terminal fragment of prolactin (8), angiotensin (9), and endostatin (10).

Work done over the last several years has established the key role of VEGF in the regulation of normal and abnormal angiogenesis (11). The finding that the loss of even a single VEGF allele results in embryonic lethality points to an irreplaceable role played by this factor in the development and differentiation of the vascular system (11). Also, VEGF has been shown to be a key mediator of neovascularization associated with tumors and intraocular disorders (11). The VEGF mRNA is overexpressed by the majority of human tumors examined (12–16). In addition, the concentration of VEGF in eye fluids is highly correlated to the presence of active proliferation of blood vessels in patients with diabetic and other ischemia-related retinopathies (17). Furthermore, recent studies have demonstrated the localization of VEGF in choroidal neovascular membranes in patients affected by AMD (18).

The muMAb VEGF A.4.6.1 (19) has been used extensively to test the hypothesis that VEGF is a mediator of pathological angiogenesis in vivo. This high affinity MAb is able to recognize all VEGF isoforms (19) and has been shown to inhibit potently and reproducibly the growth of a variety of human tumor cell lines in nude mice (11, 20–23). Moreover, intraocular administration of muMAb VEGF A.4.6.1 resulted in virtually complete inhibition of iris neovascularization secondary to retinal ischemia in a primate model (24).

A major limitation in the use of murine antibodies in human therapy is the anti-globulin response (25, 26). Even chimeric molecules, where the variable (V) domains of rodent antibodies are fused to human constant (C) regions, are still capable of eliciting a significant immune response (27). A powerful approach to overcome these limitations in the clinical use of monoclonal antibodies is “humanization” of the murine antibody. This approach was pioneered by Jones et al. (28) and Riechman et al. (29), who first transplanted the CDRs of a murine antibody into human V domains antibody.

In the present article, we report on the humanization of muMAb VEGF A.4.6.1. Our strategy was to transfer the six CDRs, as defined by Kabat et al. (30), from muMAb VEGF A.4.6.1 to a consensus human framework used in previous humanizations (31–33). Seven framework residues in the humanized variable heavy (VH) domain and one framework residue in the humanized variable light (VL) domain were changed from human to murine to achieve binding equivalent to muMAb VEGF A.4.6.1. This humanized MAB is suitable for clinical trials to test the hypothesis that inhibition of VEGF action is an effective strategy for the treatment of cancer and other disorders in humans.

MATERIALS AND METHODS

Cloning of Murine Mab A.4.6.1 and Construction of Mouse-Human Chimeric Fab. Total RNA was isolated from hybridoma cells producing the anti-VEGF MAB A.4.6.1 using RNAsol (Tel-Test) and reverse-transcribed to cDNA using Oligo-dT primer and the SuperScript II system (Life Technologies, Inc., Gaithersburg, MD). Degenerate oligonucleotide primer pools, based of the NH2-terminal amino acid sequences of the light and heavy chains of the antibody, were synthesized and used as forward primers. Reverse primers were based on framework 4 sequences obtained from murine light chain subgroup eV and heavy chain subgroup II (30). After PCR amplification, DNA fragments were ligated to a TA cloning vector (Invitrogen, San Diego, CA). Eight clones each of the light and...
heavy chains were sequenced. One clone with a consensus sequence for the light chain VL domain and one with a consensus sequence for the heavy chain VH domain were subcloned, respectively, into the pEMX1 vector containing the human CL and CH1 domains (31), thus generating a mouse-human chimeric F(ab). This chimeric F(ab) consisted of the entire murine A.4.6.1 VH domain fused to a human CH1 domain at amino acid SerH133, and the entire murine A.4.6.1 VL domain fused to a human CL domain at amino acid LysL107. Expression and purification of the chimeric F(ab) were identical to those of the humanized F(ab)s. The chimeric F(ab) was used as the standard in the binding assays.

Computer Graphics Models of Murine and Humanized F(ab)s. Sequences of the VL and VH domains (Fig. 1) were used to construct a computer graphics model of the murine A.4.6.1 VL-VH domains. This model was used to determine which framework residues should be incorporated into the humanized antibody. A model of the humanized F(ab) was also constructed to verify correct selection of murine framework residues. Construction of models was performed as described previously (32, 33).

Construction of Humanized F(ab)s. The plasmid pEMX1 used for mutagenesis and expression of F(ab)s in *Escherichia coli* has been described previously (31). Briefly, the plasmid contains a DNA fragment encoding a consensus human κ subgroup I light chain (VLκ-CL) and a consensus human subgroup III heavy chain (VHIII-CH1) and an alkaline phosphatase promoter. The use of the consensus sequences for VL and VH have been described previously (32).

To construct the first F(ab) variant of humanized A.4.6.1, F(ab)-1, site-directed mutagenesis (34) was performed on a deoxyuridine-containing template of pEMX1. The six CDRs were changed to the murine A.4.6.1 sequence; the residues included in each CDR were from the sequence-based CDR definitions (30). F(ab)-1, therefore, consisted of a complete human framework (VL κ subgroup I and VH subgroup III) with the six complete murine CDR sequences. Plasmids for all other F(ab) variants were constructed from the plasmid template of F(ab)-1. Plasmids were transformed into *E. coli* strain XL1-Blue (Stratagene, San Diego, CA) for preparation of double- and single-stranded DNA. For each variant, DNA coding for the light and heavy chains was completely sequenced using the dideoxynucleotide sequencing method (Sequenase; U.S. Biochemical Corp., Cleveland, OH). Plasmids were transformed into *E. coli* strain 16C9, a derivative of MM294, to generate all heavy chains. For transient expression of variants, heavy and light chain plasmids were cotransfected into human 293 cells (36) using a high efficiency procedure (37). Media were changed to serum free and harvested daily for up to 5 days. Antibodies were purified from the pooled supernatants using protein A-Sepharose CL-4B (Pharmacia). The eluted antibody was buffer exchanged into PBS using a Centricon-30 (Amicon, Beverly, MA) and concentrated to 0.5 ml. SDS-PAGE gels of all F(ab)s were run to ascertain purity, and the molecular weight of each variant was verified by electrospray mass spectrometry.

Construction, Expression, and Purification of Chimeric and Humanized IgG Variants. For the generation of human IgG variants of chimeric (chlGl) and humanized (rhuMAb VEGF) A.4.6.1, the appropriate murine or humanized VL and VH (F(ab)-12; Table 1) domains were subcloned into separate previously described pRK vectors (35). The DNA coding for the entire light and the entire heavy chain of each variant was verified by dideoxynucleotide sequencing.

For transient expression of variants, heavy and light chain plasmids were cotransfected into human 293 cells (36) using a high efficiency procedure (37). Antibodies were purified from the pooled supernatants using protein A-Sepharose CL-4B (Pharmacia). The eluted antibody was buffer exchanged into PBS using a Centricon-30 (Amicon), concentrated to 0.5 ml, sterile filtered using a Millex-GV (Millipore, Bedford, MA), and stored at 4°C.

For stable expression of the final humanized IgG1 variant (rhuMAb VEGF), Chinese hamster ovary (CHO) cells were transfected with dicistronic vectors designed to coexpress both heavy and light chains (38). Plasmids were introduced into DP12 cells, a proprietary derivative of the CHO-K1 DUX B11 cell line developed by L. Chasen (Columbia University, New York, NY), via lipofection and selected for growth in glucose/hypoxanthine/thymidine (GHT)-free medium (39). Approximately 20 unamplified clones were randomly chosen and reseeded into 96-well plates. Relative specific productivity of each colony was monitored using an ELISA to quantitate the full-length human IgG accumulated in each well after 3 days and a fluorescent dye, Calcein AM, as a surrogate marker of viable cell number per well. Based on these data, several unamplified clones were chosen for further amplification in the presence of increasing concentrations of methotrexate. Individual clones surviving at 10, 50, and 100 μM methotrexate were chosen and transferred to 96-well plates for productivity screening. One clone, which reproducibly exhibited high specific productivity, was expanded in T-flasks and used to inoculate a spinner

<table>
<thead>
<tr>
<th>Variant</th>
<th>Template</th>
<th>Changesa</th>
<th>Purpose</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>chim-F(ab)</td>
<td>Chimeric F(ab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F(ab)-1</td>
<td>Human FR</td>
<td></td>
<td>Straight CDR swap</td>
<td>>1450</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>F(ab)-2</td>
<td></td>
<td></td>
<td>Chimera light chain</td>
<td>>145</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>F(ab)-3</td>
<td></td>
<td></td>
<td>F(ab)-1 heavy chain</td>
<td>2</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>F(ab)-4</td>
<td></td>
<td></td>
<td>F(ab)-1 light chain</td>
<td>>295</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>F(ab)-5</td>
<td></td>
<td></td>
<td>Chimera heavy chain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F(ab)-6</td>
<td></td>
<td></td>
<td>Framework</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F(ab)-7</td>
<td></td>
<td></td>
<td>VL-VH interface</td>
<td>80.9</td>
<td>6.5</td>
<td>2</td>
</tr>
<tr>
<td>F(ab)-8</td>
<td></td>
<td></td>
<td>CDR-H1 conformation</td>
<td>36.4</td>
<td>4.2</td>
<td>2</td>
</tr>
<tr>
<td>F(ab)-9</td>
<td></td>
<td></td>
<td>CDR-H2 conformation</td>
<td>45.2</td>
<td>2.3</td>
<td>4</td>
</tr>
<tr>
<td>F(ab)-10</td>
<td></td>
<td></td>
<td>CDR-H1 conformation</td>
<td>>150</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>F(ab)-11</td>
<td></td>
<td></td>
<td>CDR-H2 conformation</td>
<td>6.4</td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>F(ab)-12</td>
<td></td>
<td></td>
<td>CDR-H3 conformation</td>
<td>3.3</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Anti-VEGF F(ab) variants were incubated with biotinylated VEGF and then transferred to ELISA plates coated with KDR-IgG (40).

b Murine residues are underlined; residue numbers are according to Kabat et al. (30).

Mean and SD are the average of the ratios calculated for each of the independent assays; the EC50 for chimeric F(ab) was 0.049 ± 0.013 mg/ml (1.0 nM). 4594
culture. After several passages, the suspension-adapted cells were used to inoculate production cultures in GHT-containing, serum-free media supplemented with various hormones and protein hydrolysates. Harvested cell culture fluid containing rhuMAB VEGF was purified using protein A-Sepharose CL-4B. The purity after this step was ~99%. Subsequent purification to homogeneity was carried out using an ion exchange chromatography step. The endotoxin content of the final purified antibody was <0.10 eu/mg.

F(ab) and IgG Quantitation. For quantitation of F(ab) molecules, ELISA plates were coated with 2 μg/ml goat anti-human IgG Fab (Organon Teknika, Durham, NC) in 50 mM carbonate buffer, pH 9.6, at 4°C overnight and blocked with PBS-0.5% BSA (blocking buffer) at room temperature for 1 h. Standards [0.78–50 ng/ml human F(ab)] were purchased from Chemicon (Temecula, CA). Serial dilutions of samples in PBS-0.5% BSA-0.05% poly-sorbate 20 (assay buffer) were incubated on the plates for 2 h. Bound F(ab) was detected using horseradish peroxidase-labeled goat anti-human IgG F(ab) (Organon Teknika), followed by 3,3',5,5'-tetramethylbenzidine (Kirkegaard & Perry Laboratories, Gaithersburg, MD) as the substrate. Plates were washed between steps. Absorbance was read at 450 nm on a Vmax plate reader (Molecular Devices, Menlo Park, CA). The standard curve was fit using a four-parameter nonlinear regression curve-fitting program developed at Genentech. Data points that fell in the range of the standard curve were used for calculating the F(ab) concentrations of samples.

The concentration of full-length antibody was determined using goat anti-human IgG Fc (Cappel, Westchester, PA) for capture and horseradish peroxidase-labeled streptavidin (Zymed, South San Francisco, CA or Sigma) followed by 3,3',5,5'-tetramethylbenzidine as the substrate. Titration curves were fit with a four-parameter nonlinear regression curve-fitting program (Kaleidagraph; Synergy Software, Reading, PA). Concentrations of F(ab) variants corresponding to the midpoint absorbance of the titration curve of the standard were calculated and then divided by the concentration of the standard corresponding to the midpoint absorbance of the standard titration curve. Assays for full-length IgG were the same as for the F(ab) except that the assay buffer contained 10% human serum.

VEGF Binding Assays. For measuring the VEGF binding activity of F(ab)\(^{-}\)s, ELISA plates were coated with 2 μg/ml rabbit F(ab')\(^{-}\)2 to human IgG Fc (Jackson ImmunoResearch, West Grove, PA) and blocked with blocking buffer (described above). Diluted conditioned medium containing 3 ng/ml of KDR-IgG (40) in blocking buffer were incubated on the plate for 1 h. Standards [6.9–440 ng/ml chimeric F(ab)] and 2-fold serial dilutions of samples were incubated with 2 nM biotylated VEGF for 1 h in tubes. The solutions from the tubes were then transferred to the ELISA plates and incubated for 1 h. After washing, biotylated VEGF bound to KDR was detected using horseradish peroxidase-labeled streptavidin (Zymed, South San Francisco, CA or Sigma) followed by 3,3',5,5'-tetramethylbenzidine as the substrate. Titration curves were fit with a four-parameter nonlinear regression curve-fitting program (Kaleidagraph; Synergy Software, Reading, PA). Concentrations of F(ab) variants corresponding to the midpoint absorbance of the titration curve of the standard were calculated and then divided by the concentration of the standard corresponding to the midpoint absorbance of the standard titration curve. Assays for full-length IgG were the same as for the F(ab)\(^{-}\)s except that the assay buffer contained 10% human serum.

BIACore Biosensor Assays. VEGF binding of the humanized and chimeric F(ab)\(^{-}\)s were compared using a BIACore biosensor (41). Concentrations of F(ab)\(^{-}\)s were determined by quantitative amino acid analysis. VEGF was coupled to a CM-5 biosensor chip through primary amine groups according to manufacturer's instructions (Pharmacia). Off-rate kinetics were measured by saturating the chip with F(ab)\(^{-}\)s (35 μL of 2 μM F(ab)\(^{-}\)) at a flow rate of 20 μL/min and then switching to buffer (PBS-0.05% poly-sorbate 20). Data points from 0–4500 s were used for off-rate kinetic analysis. The dissociation rate constant (k\(_{\text{diss}}\)) was obtained from the slope of the plot of K) versus time, where R is the signal at t = 0 and R is the signal at each time point.

On-rate kinetics were measured using 2-fold serial dilutions of F(ab)\(^{-}\)s (0.0625–2 μM). The slope, K\(_{\text{on}}\), was obtained from the plot of ln(-dR/dt) versus time for each F(ab)\(^{-}\) by using the BIACore kinetics evaluation software as described in the Pharmacia Biosensor manual. R is the signal at time t. Data between 80 and 168, 148, 128, 114, 102, and 92 s were used for 0.0625, 0.125, 0.25, 0.5, 1, and 2 mM F(ab)\(^{-}\), respectively. The association rate constant (k\(_{\text{ass}}\)) was obtained from the slope of the K\(_{\text{on}}\) versus F(ab)\(^{-}\) concentration. At the end of each cycle, bound F(ab)\(^{-}\) was removed by injecting 5 μL of 50 mM HCl at a flow rate of 20 μL/min to regenerate the chip.

Endothelial Cell Growth Assay. Bovine adrenal cortex-derived capillary endothelial cells were cultured in the presence of low glucose DMEM (Life Technologies, Inc.) supplemented with 10% calf serum, 2 mM glutamine, and antibiotics (growth medium), essentially as described previously (42). For mitogenic assays, endothelial cells were seeded at a density of 6 × 10\(^{4}\) cells/well in 6-well plates in growth medium. Either muMAB VEGF A.4.6.1 or rhuMAB VEGF was then added at concentrations ranging between 1 and 5000 ng/ml. After 2–3 h, purified E. coli-expressed rhVEGF\(_{165}\) was added to a final concentration of 3 ng/ml. For specificity control, each antibody was added to endothelial cells at the concentration of 5000 ng/ml, either alone or in the presence of 2 ng/ml bFGF. After 5 or 6 days, cells were dissociated by exposure to trypsin, and duplicate wells were counted in a Coulter counter (Coulter Electronics, Hialeah, FL). The variation from the mean did not exceed 10%. Data were analyzed by a four-parameter curve fitting program (KaleiGraph).

In Vivo Tumor Studies. Human A673 rhadomyosarcoma cells (American Type Culture Collection; CRL 1598) were cultured as described previously in DMEM/F12 supplemented with 10% fetal bovine serum, 2 mM glutamine, and antibiotics (20, 22). Female BALB/c nude mice, 6–10 weeks old, were injected s.c. with 2 × 10\(^{6}\) tumor cells in the dorsal area in a volume of 200 μl. Animals were then treated with muMAB VEGF A.4.6.1, rhuMAB VEGF, or a control murine MAb directed against the gp120 protein. Both anti-VEGF MAbs were administered at the doses of 0.5 and 5 mg/kg; the control MAb was given at the dose of 5 mg/kg. Each MAb was administered twice weekly i.p. in a volume of 100 μl, starting 24 h after tumor cell inoculation. Each group consisted of 10 mice. Tumor size was determined at weekly intervals. Four weeks after tumor cell inoculation, animals were euthanized, and the tumors were removed and weighed. Statistical analysis was performed by ANOVA.

RESULTS

Humanization. The consensus sequence for the human heavy chain subgroup III and the light chain subgroup κ (37) were used as the framework for the humanization (Ref. 30; Fig. 1). This framework has been successfully used in the humanization of other murine antibodies (31, 32, 43, 44). All humanized variants were initially made and screened for binding as F(ab)\(^{-}\)s expressed in E. coli. Typical yields from 500-ml shake flasks were 0.1–0.4 mg F(ab)\(^{-}\).

Two definitions of CDR residues have been proposed. One is based on sequence hypervariability (30) and the other on crystal structures of F(ab)-antigen complexes (45). The sequence-based CDRs are larger than the structure-based CDRs, and the two definitions are in agreement except for CDR-H1: CDR-H1 includes residues H31–H35 according to the sequence-based definition, and residues H26–H32 according to the structure-based definition (light chain residue numbers are prefixed with L; heavy chain residue numbers are prefixed with H). We, therefore, defined CDR-H1 as a combination of the two, i.e., including residues H26–H35. The other CDRs were defined using the sequence-based definition (30).

The chimeric F(ab)\(^{-}\) was used as the standard in the binding assays. In the initial variant, F(ab)-1, the CDR residues were transferred from the murine antibody to the human framework and, based on the models of the murine and humanized F(ab)\(^{-}\)s, the residue at position H49 (Ala in humans) was changed to the murine Gly. In addition, F(ab)\(^{-}\)s that consisted of the chimeric heavy chain/F(ab)-1 light chain [F(ab)\(^{-}\)-2] and F(ab)-1 heavy chain/chimeric light chain [F(ab)-3] were generated and tested for binding. F(ab)-1 exhibited a binding affinity greater than 1000-fold reduced from the chimeric F(ab) (Table 1). Comparing the binding affinities of F(ab)-2 and F(ab)-3 suggested that framework residues in the F(ab)-1 VH domain needed to be altered to increase binding.

Previous humanizations (31, 32, 43, 44) as well as studies of F(ab)\(^{-}\)-antigen crystal structures (45, 47) have shown that residues H71 and H73 can have a profound effect on binding, possibly by influencing the conformations of CDR-H1 and CDR-H2. Changing the human residues to their murine counterparts in F(ab)-4 improved binding by 4-fold (Table 1). Inspection of the models of the murine
HUMANIZATION OF AN ANTI-VEGF MONOCLONAL ANTIBODY

Variable Heavy

<table>
<thead>
<tr>
<th></th>
<th>A.4.6.1</th>
<th>F(ab)-12</th>
<th>humIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acid</td>
<td>EQLVQLSPEKQGPGETVACSAAGTTNYGMNVRQQAPGGKLGWGM</td>
<td>EQLVQLSPEKQGPGETVACSAAGTTNYGMNVRQQAPGGKLGWGM</td>
<td>EQLVQLSPEKQGPGETVACSAAGTTNYGMNVRQQAPGGKLGWGM</td>
</tr>
<tr>
<td></td>
<td>* * * * *</td>
<td>* * * * *</td>
<td>* * * * *</td>
</tr>
<tr>
<td></td>
<td>F(ab)-12</td>
<td>EVQLVESGGGLVQPSGSLRLSCAASGTYTNYMGWQRQPGRSLWNGG</td>
<td>EVQLVESGGGLVQPSGSLRLSCAASGTYTNYMGWQRQPGRSLWNGG</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Variable Light

<table>
<thead>
<tr>
<th></th>
<th>A.4.6.1</th>
<th>F(ab)-12</th>
<th>humIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acid</td>
<td>DIOMTQTTSSLASGDLVVR1SCASGDSISNYWQFFDPTKQVRIY</td>
<td>DIOMTQTTSSLASGDLVVR1SCASGDSISNYWQFFDPTKQVRIY</td>
<td>DIOMTQTTSSLASGDLVVR1SCASGDSISNYWQFFDPTKQVRIY</td>
</tr>
<tr>
<td></td>
<td>* * * * *</td>
<td>* * * * *</td>
<td>* * * * *</td>
</tr>
<tr>
<td></td>
<td>F(ab)-12</td>
<td>FTSSLHSGVPFSRSGSGDTVD5ILTLNV1FDYQY5Y5YPTPTF</td>
<td>FTSSLHSGVPFSRSGSGDTVD5ILTLNV1FDYQY5Y5YPTPTF</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 1. Amino acid sequence of variable heavy and light domains of muMAb VEGF A.4.6.1, humanized Fab with optimal VEGF binding (Fab)-12 and human consensus frameworks (humIII, heavy subgroup III; humL, light subgroup I). Asterisks, differences between humanized Fab-12 and the murine MAb or between Fab-12 and the human framework. CDRs are underlined.

DISCUSSION

The murine MAb A.4.6.1, directed against human VEGF (42), was humanized using the same consensus frameworks for the light and heavy chains used in previous humanizations (31, 32, 43, 44), i.e., Vκ1 and VHIII (30). Simply transferring the CDRs from the murine antibody to the human framework resulted in a Fab that exhibited binding to VEGF reduced by over 1000-fold compared to the parent murine antibody. Seven non-CDR, framework residues in the VH domain and one in the VL domain were altered from human to murine to achieve binding equivalent to the parent murine antibody.

In the VH domain, residues at positions H49, H69, H71, and H78 are buried or partially buried and probably effect binding by influencing the conformation of the CDR loops. Residues H73 and H76 should be solvent exposed (Fig. 2) and hence may interact directly with the VEGF; these two residues are in a non-CDR loop adjacent to CDRs H1 and H2 and have been shown to play a role in binding in previous humanizations (31, 32, 44). The requirement for lysine at position H94 was surprising given that this residue is arginine in the human framework (Fig. 1). In some crystal structures of Fab(s), ArgH94 forms a hydrogen-bonded salt-bridge with H94, human and murine sequences most often have an Arg (30). In F(ab)-12, this Arg was replaced by the rare Lys found in the murine antibody (Fig. 1), and this resulted in binding that was less than 2-fold from the chimeric F(ab) (Table 1). F(ab)-12 was also compared to the chimeric F(ab) using the BIAcore system (Pharmacia). Using this technique, the Kd of the humanized F(ab)-12 was 2-fold weaker than that of the chimeric F(ab) due to both a slower Kon and faster koff (Table 2).

Full-length MAb were constructed by fusing the VL and VH domains of the chimeric F(ab) and variant F(ab)-12 to the constant domains of human κ light chain and human IgG1 heavy chain. The full-length 12-IgG1 [Fab(ab)-12 fused to human IgG1] exhibited binding that was 1.7-fold weaker than the chimeric IgG1 (Table 3). Both 12-IgG1 and the chimeric IgG1 bound slightly less well than the original muMAb VEGF A.4.6.1 (Table 3).

Biological Studies. rhuMAb VEGF and muMAb VEGF A.4.6.1 were compared for their ability to inhibit bovine capillary endothelial cell proliferation in response to a near maximally effective concentration of VEGF165 (3 ng/ml). In several experiments, the two MAb were found to be essentially equivalent, both in potency and efficacy. The ED50’s were, respectively, 50 ± 5 and 48 ± 8 ng/ml (~0.3 nm). In both cases, 90% inhibition was achieved at the concentration of 500 ng/ml (~3 nm). Fig. 3 illustrates a representative experiment. Neither muMAb VEGF A.4.6.1 nor rhuMAb VEGF had any effect on basal or bFGF-stimulated proliferation of capillary endothelial cells (data not shown), confirming that the inhibition is specific for VEGF.

To determine whether similar findings could be obtained also in an in vivo system, we compared the two antibodies for their ability to suppress the growth of human A673 rhabdomyosarcoma cells in nude mice. Previous studies have shown that muMAb VEGF A.4.6.1 has a dramatic inhibitory effect in this tumor model (20, 22). As shown in Fig. 4, at both doses tested (0.5 and 5 mg/kg), the two antibodies markedly suppressed tumor growth as assessed by tumor weight measurements 4 weeks after cell inoculation. The decreases in tumor weight compared to the control group were, respectively, 85 and 93% at each dose in the animals treated with muMAb VEGF A.4.6.1 versus 90 and 95% in those treated with rhuMAb VEGF. Similar results were obtained with the breast carcinoma cell line MDA-MB 435 (data not shown).

and humanized Fab(s) suggested that residue L46, buried at the VL-VH interface and interacting with CDR-H3 (Fig. 2), might also play a role either in determining the conformation of CDR-H3 and/or affecting the relationship of the VL and VH domains. When the murine Val was exchanged for the human Leu at L46 [Fab(ab)-5], the binding affinity increased by almost 4-fold (Table 1). Three other buried framework residues were evaluated based on the molecular models: H49, H69, and H78. Position H69 may affect the conformation of CDR-H2, whereas position H78 may affect the relationship of the VL and VH domains. When each was individually mutated to Arg, human and murine sequences most often have an Arg (30). In Fab(ab)-12, this Arg was replaced by the rare Lys found in the murine antibody (Fig. 1), and this resulted in binding that was less than 2-fold from the chimeric Fab(ab) (Table 1). Fab(ab)-12 was also compared to the chimeric Fab(ab) using the BIAcore system (Pharmacia). Using this technique, the Kd of the humanized Fab(ab)-12 was 2-fold weaker than that of the chimeric Fab(ab) due to both a slower Kon and faster koff (Table 2).

Full-length MAb were constructed by fusing the VL and VH domains of the chimeric Fab(ab) and variant Fab(ab)-12 to the constant domains of human κ light chain and human IgG1 heavy chain. The full-length 12-IgG1 [Fab(ab)-12 fused to human IgG1] exhibited binding that was 1.7-fold weaker than the chimeric IgG1 (Table 3). Both 12-IgG1 and the chimeric IgG1 bound slightly less well than the original muMAb VEGF A.4.6.1 (Table 3).

Biological Studies. rhuMAb VEGF and muMAb VEGF A.4.6.1 were compared for their ability to inhibit bovine capillary endothelial cell proliferation in response to a near maximally effective concentration of VEGF165 (3 ng/ml). In several experiments, the two MAb were found to be essentially equivalent, both in potency and efficacy. The ED50’s were, respectively, 50 ± 5 and 48 ± 8 ng/ml (~0.3 nm). In both cases, 90% inhibition was achieved at the concentration of 500 ng/ml (~3 nm). Fig. 3 illustrates a representative experiment. Neither muMAb VEGF A.4.6.1 nor rhuMAb VEGF had any effect on basal or bFGF-stimulated proliferation of capillary endothelial cells (data not shown), confirming that the inhibition is specific for VEGF.

To determine whether similar findings could be obtained also in an in vivo system, we compared the two antibodies for their ability to suppress the growth of human A673 rhabdomyosarcoma cells in nude mice. Previous studies have shown that muMAb VEGF A.4.6.1 has a dramatic inhibitory effect in this tumor model (20, 22). As shown in Fig. 4, at both doses tested (0.5 and 5 mg/kg), the two antibodies markedly suppressed tumor growth as assessed by tumor weight measurements 4 weeks after cell inoculation. The decreases in tumor weight compared to the control group were, respectively, 85 and 93% at each dose in the animals treated with muMAb VEGF A.4.6.1 versus 90 and 95% in those treated with rhuMAb VEGF. Similar results were obtained with the breast carcinoma cell line MDA-MB 435 (data not shown).

DISCUSSION

The murine MAb A.4.6.1, directed against human VEGF (42), was humanized using the same consensus frameworks for the light and heavy chains used in previous humanizations (31, 32, 43, 44), i.e., Vκ1 and VHIII (30). Simply transferring the CDRs from the murine antibody to the human framework resulted in a Fab(ab) that exhibited binding to VEGF reduced by over 1000-fold compared to the parent murine antibody. Seven non-CDR, framework residues in the VH domain and one in the VL domain were altered from human to murine to achieve binding equivalent to the parent murine antibody.

In the VH domain, residues at positions H49, H69, H71, and H78 are buried or partially buried and probably effect binding by influencing the conformation of the CDR loops. Residues H73 and H76 should be solvent exposed (Fig. 2) and hence may interact directly with the VEGF; these two residues are in a non-CDR loop adjacent to CDRs H1 and H2 and have been shown to play a role in binding in previous humanizations (31, 32, 44). The requirement for lysine at position H94 was surprising given that this residue is arginine in the human framework (Fig. 1). In some crystal structures of Fab(s), ArgH94 forms a hydrogen-bonded salt-bridge with...
The humanized version with optimal binding, 12-IgG1, exhibited only a 2-fold reduction in binding compared to the parent murine antibody (Table 3). An analysis of the binding kinetics of the humanized and chimeric F(ab)ṣ showed that both had similar off-rates but that the humanized F(ab) had a 2-fold slower on-rate (Table 2), which accounts for the 2-fold reduction in binding. However, this modest reduction in on-rate did not result in any decreased ability to antagonize VEGF bioactivity. The two anti-VEGF IgG variants were incubated with biotinylated VEGF and then transferred to ELISA plates coated with KDR-IgG (40).

In the VL domain, only one framework residue had to be changed to murine to optimize the humanization. Position L46 is at the VL-VH interface, where it is buried and interacts directly with CDR-H3 (Fig. 2). The requirement for murine valine (as opposed to human leucine) implies that this residue plays an important role in the conformation of CDR-H3. The necessity of retaining LysH94 in VH, which is also adjacent to CDR-H3, suggests that CDR-H3 plays a major role in the binding of the antibody to VEGF.

AspH101 (33, 48). Substitution of lysine for arginine might conceivably alter this salt-bridge and perturb the conformation of CDR-H3.

In the VL domain, only one framework residue had to be changed to murine to optimize the humanization. Position L46 is at the VL-VH interface, where it is buried and interacts directly with CDR-H3 (Fig. 2). The requirement for murine valine (as opposed to human leucine) implies that this residue plays an important role in the conformation of CDR-H3. The necessity of retaining LysH94 in VH, which is also adjacent to CDR-H3, suggests that CDR-H3 plays a major role in the binding of the antibody to VEGF.

Table 2 Binding of anti-VEGF F(ab) variants to VEGF using the BLAcore system

<table>
<thead>
<tr>
<th>Variant</th>
<th>Amount of (Fab) bound (RU)</th>
<th>(k_{\text{off}}) (s⁻¹)</th>
<th>(k_{\text{on}}) (M⁻¹s⁻¹)</th>
<th>(K_d) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chim-F(ab)</td>
<td>4250</td>
<td>5.9 x 10⁻⁵</td>
<td>6.5 x 10⁴</td>
<td>0.91</td>
</tr>
<tr>
<td>chim-F(ab)</td>
<td>3740</td>
<td>6.3 x 10⁻⁵</td>
<td>3.5 x 10⁴</td>
<td>1.8</td>
</tr>
</tbody>
</table>

The amount of F(ab) bound, in resonance units (RU), was measured using a BLAcore system when 2 μg F(ab) was injected onto a chip containing 2480 RU of immobilized VEGF. Off-rate kinetics (\(k_{\text{off}} \)) were measured by saturating the chip with F(ab) and then monitoring dissociation after switching to buffer. On-rate kinetics (\(k_{\text{on}} \)) were measured using 2-fold serial dilutions of F(ab). \(K_d \), the equilibrium dissociation constant, was calculated as \(k_{\text{on}}/k_{\text{off}} \).

Table 3 Binding of anti-VEGF IgG variants to VEGF

<table>
<thead>
<tr>
<th>Variant</th>
<th>IgG1/chIgG1chemical properties</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>chIgG1</td>
<td>1.0</td>
<td>0.759</td>
<td>0.001</td>
<td>2</td>
</tr>
<tr>
<td>murIgG1</td>
<td>1.71</td>
<td>0.03</td>
<td>0.03</td>
<td>2</td>
</tr>
</tbody>
</table>

Anti-VEGF IgG variants were incubated with biotinylated VEGF and then transferred to ELISA plates coated with KDR-IgG (40).

chIgG1 is chimeric IgG1 with murine VL and VH domains fused to human CL and IgG1 heavy chains; the EC₅₀ for chIgG1 was 0.113 ± 0.013 μg/ml (0.75 nm).
murIgG1 is murIgG1 purified from ascites.

12-IgG1 is F(ab)–12 VL and VH domains fused to human CL and IgG1 heavy chains.
bodies had essentially identical activity, both in an endothelial cell proliferation assay and in an in vivo tumor model.

Interestingly, an alternative approach using monovalent phage display has been also applied to the humanization of muMAb VEGF A.4.6.1. (49). Random mutagenesis of framework residues resulted in selection of variants with significantly improved affinity compared to the initial humanized MAb with no framework changes. However, the best variant obtained by this method had a less complete restoration of the binding affinity of muMAb VEGF A.4.6.1 compared to that reported in this study (49). Clearly, this does not rule out the possibility that other applications of phage display, such as affinity maturation of the CDRs (50), may result in variants with even higher affinity.

In conclusion, protein engineering techniques resulted in virtually complete acquisition by a human immunoglobulin framework of the binding properties and biological activities of a high-affinity murine anti-VEGF MAb. In view of the nearly ubiquitous up-regulation of VEGF mRNA in human tumors (12-16) and the ability of muMAb VEGF A.4.6.1 to inhibit the in vivo growth of a broad spectrum of tumor cell lines (20-23), VEGF is a major target of anticancer therapy. Clinical trials using rhuMAb VEGF should allow us to test the hypothesis that inhibition of VEGF-mediated angiogenesis is an effective strategy for the treatment of several solid tumors in humans. Such trials are already under way. Other important clinical applications of rhuMAb VEGF include the prevention of blindness secondary to proliferative diabetic retinopathy (17) or AMD (18). Clearly, the success of the humanization can be ultimately judged by the degree of anti-human globulin response and by the clinical response in patients. However, the recent report of a Phase II study where rhuMAb HER2, a humanized MAB with the same framework as rhuMAb VEGF, did not induce any anti-globulin response in breast cancer patients and also demonstrated clinical efficacy (51), makes one optimistic. The results of this (51) as well as other (52) trials raise hope that, after many disappointing results (53), progress in antibody technology, coupled with selection of better targets, will bring therapy with MAbs closer to fulfilling its promises.

Fig. 4. Inhibition of tumor growth in vivo. A673 rhadomyosarcoma cells were injected in BALB/c nude mice at the density of 10^6 per mouse. Starting 24 h after tumor cell inoculation, animals were injected with a control MAb, muMAb VEGF A.4.6.1, or rhuMAb VEGF (IgG1) twice weekly, i.p. The dose of the control MAb was 5 mg/kg; the anti-VEGF MABs were given at 0.5 or 5 mg/kg, as indicated (n = 10). Four weeks after tumor cell injection, animals were euthanized, and tumors were removed and weighed. * significant difference when compared to the control group by ANOVA (P < 0.05).

ACKNOWLEDGMENTS

We thank K. Garcia for performing the VEGF binding ELISA, W. Henzel for protein microsequencing, A. Padua for amino acid analysis, J. Bourell for animal studies. We are grateful to the DNA synthesis and the DNA sequencing groups at Genentech. We also thank C. Adams, J. Kim, B. Fendly, B. Keyt, and M. Beresini for helpful comments and advice.

REFERENCES

4599
Humanization of an Anti-Vascular Endothelial Growth Factor Monoclonal Antibody for the Therapy of Solid Tumors and Other Disorders

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/57/20/4593

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.