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Abstract

abYsis is a web-based antibody research system that includes an integrated database of antibody sequence
and structure data. The system can be interrogated in numerous ways—from simple text and sequence
searches to sophisticated queries that apply 3D structural constraints. The publicly available version includes
pre-analyzed sequence data from the European Molecular Biology Laboratory European Nucleotide Archive
(EMBL-ENA) and Kabat as well as structure data from the Protein Data Bank. A researcher's own sequences
can also be analyzed through the web interface.
A defining characteristic of abYsis is that the sequences are automatically numbered with a series

of popular schemes such as Kabat and Chothia and then annotated with key information such as
complementarity-determining regions and potential post-translational modifications. A unique aspect of
abYsis is a set of residue frequency tables for each position in an antibody, allowing “unusual residues” (those
rarely seen at a particular position) to be highlighted and decisions to be made on which mutations may be
acceptable. This is especially useful when comparing antibodies from different species.
abYsis is useful for any researcher specializing in antibody engineering, especially those developing

antibodies as drugs.
abYsis is available at www.abysis.org.

© 2016 Published by Elsevier Ltd.
Introduction

Antibodies are among the most important classes
of proteins involved in the adaptive immune system.
They act as adapter molecules between the virtually
infinite range of possible antigens and the constant
effector molecules such as Fc receptors and C1q of
the complement system. Through the DNA-level
splicing of V and J gene segments in the light chain
and V, D, and J gene segments in the heavy chain,
they create a repertoire of around 1011 possible
sequences [1]. The fact that antibodies are capable of
binding to a virtually infinite set of antigens, generally
with high specificity and affinity, has led to a huge
interest in using them as drugs in the treatment of
human disease [2].
hed by Elsevier Ltd.
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Therapeutic antibodies can act through a variety of
mechanisms. First, they may act simply to bind to a
target in theway thatmost small-molecule drugswork.
For example, they may bind to receptors acting as
agonists or antagonists or to enzymes acting as
inhibitors or as allosteric activators. Since they have a
much larger interacting surface than typical small-
molecule drugs (which generally bind into pockets on
a protein surface), they can also interact with much
flatter protein surfaces and can therefore be used to
bind to hormones or disrupt protein–protein interac-
tions. Second, antibodies can be used to trigger the
immune system in the normal way to kill cells such as
tumor cells or virus-infected cells. For example, the
antibody, Palivizumab (Synergis), is used to prevent
respiratory syncytial virus infection in high-risk infants.
J Mol Biol (2016) xx, xxx–xxx
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2 abYsis: Integrated Antibody Sequence and Structure
Third, antibodies can be used as a delivery mecha-
nism, either through antibody–drug conjugates with
cytotoxic moieties or through “antibody-directed en-
zyme prodrug therapy”, which aims to restrict the
action of a cytotoxic drug to cancer sites [3]. Fourth,
more recent developments have led to bispecific
antibodies capable of binding two antigens, either for
convenience of having a single agent or for deliber-
ately cross-linking different molecules [4–6].
It has been estimated that around a third of all

drugs in development are monoclonal antibodies
[7 ,8], and as of May 2016, according to the Antibody
Society, 55 monoclonal antibody products had been
approved in the US or Europe with around 4 new
products being approved per year [9]. Therapeutic
antibodies have been used for a wide variety of
conditions such as cancer [10], transplant rejection
[11], rheumatoid arthritis [12], antiviral prophylaxis
[13], and Crohn's disease [14].
Despite the success of antibodies in the clinic, there

are a number of problems in developing successful
therapeutics. In addition to high affinity and specificity,
antibodies must be non-immunogenic and have
sufficiently high bioavailability. Moreover, stability is
important to avoid denaturation and aggregation, not
only for long shelf life and persistent bioavailability but
also because denaturation and aggregation can lead
to increased immunogenicity [15–17]. Consequently,
there is still room for improvement in building better
antibodies having higher affinity and lower immuno-
genicity [18].
Traditionally, producing fully human antibodies has

been difficult, while antibodies from other species are
likely to lead to an immune response (the “Human
Anti-Mouse Antibody” response [19,20] or, more
generally, the “Anti-Antibody Response” [21]). This
prevents the repetitive administration of the antibody
for treatment and may lead to anaphylactic shock.
Traditional methods for producing monoclonal anti-
bodies [22] do not work in humans [23,24]. Tech-
niques such as the Selected Lymphocyte Antibody
Method (SLAM) [25] allow the screening of B cells
harvested from peripheral blood, spleen, bone mar-
row, or lymph nodes and, in addition to being
applicable to nonhuman species, can be used to
identify therapeutic antibody candidates from human
peripheral blood. While this can be useful for creating
anti-infective agents, themajority of targets are human
proteins against which humans do not produce an
immune response. While the production of antibodies
from phage display libraries has been very popular
[26,27], the success of these agents in the clinic has
so far been limited. Another more recent development
is the production of fully human antibodies from
transgenic mice [23], where the antibody repertoire
is fully human, but this route is extremely expensive.
Consequently, murine (or other nonhuman) antibod-
ies are frequently engineered to make them appear
“more human”. The process of humanization aims to
Please cite this article as: M. B. Swindells, et al., abYsis: Integrate
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reduce the immunogenicity of nonhuman antibodies
by using human constant and variable regions as an
“acceptor” into which nonhuman complementarity-
determining regions (CDRs) from the “donor” antibody
with the required specificity are inserted [28,29].
However, in general, naïvely grafted antibodies do
not bind well, and some framework residues need to
be “back-mutated” to the equivalent donor residue in
order to restore the binding affinity [30].
Despite the interest in antibodies and the need to

engineer them, the range of freely available web-
based tools and resources to aid in this process is
limited. Probably the best known resource is the
Immunogenetics Database (IMGT) [31], a compre-
hensive collection of data and services available over
the web. There are a number of web-based antibody
modeling servers, the performance of which was
recently compared in the second antibody modeling
assessment (AMA‐II) [32]. These include PiGS† [33],
SAbPred‡ [34] Rosetta Antibody [35,36], Kotai Anti-
body Builder§ [37], and SmrtMolAntibody¶ [38].
SAbPred also includes antibody numbering [39] and
epitope and paratope prediction. Other resources
include SAbDab†† [40], a database of antibody
structures; Tabhu‡‡, a set of tools to aid with antibody
humanization [41]; and Digit§§ [42], a database of
antibody variable domain sequences.
For many years, we have offered a number of web-

based antibody tools including KabatMan [43], SACS
[44], AbNum [7], expressed-sequence-scored human-
ness [45], germline-scored humanness [46], VH/VL
packing-angle prediction [47], assignment of Chothia
canonical classes [48], and testing a sequence for
unusual residues [43]. These are all available via our
Website¶¶.
Here, wedescribe our abYsis system, a database of

antibody sequence and structure that also integrates
many of the analysis tools described above.
Results

abYsis contains antibody protein sequences from
EMBLIG, which contains antibody information extract-
ed from the EMBL-ENA databank (Couch, Porter,
Swindells, and Martin, in preparation), the Kabat
collection [49] (which has not been updated since
July 2000), and theProtein Data Bank (PDB) [50]. Data
from other sources such as IMGT can also be loaded,
but the vastmajority of sequence information in IMGT is
contained in EMBLIG or the PDB, which we handle
separately. In fact, EMBLIG contains many antibody
sequences that are not present in IMGT. Comparing
the two datasets as described in the Materials and
Methods, we found that the two datasets overlap by
28,388 sequences. EMBLIG contains 94.8% of the
sequences in IMGT, but 27.9% of sequences in
EMBLIG were not present in IMGT; EMBLIG contains
1.3 times more sequences than IMGT (see Table 1).
d Antibody Sequence and Structure—Management, Analysis,
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Table 1. Comparison of the data in IMGT (release 16 Jul
2016) and EMBLIG (release 18 Apr 2016). Sequences in
IMGT are filtered to include only antibody variable domain
sequences derived from EMBL-ENA. Both datasets were
filtered to ensure that translations were at least 50 residues
in length.

Total sequences in EMBLIG 127,450

Total sequences in IMGT 96,970
Total sequences present in both datasets 91,898
Total missing from EMBLIG that are present in IMGT 5072
Total missing from IMGT that are present in EMBLIG 35,552

3abYsis: Integrated Antibody Sequence and Structure
The ability to integrate data from other sources is
particularly useful for peoplewhodecide to haveabYsis
in-house as they can include their own sequence data
in the resource. Table 2 shows the processed content
of the latest release of abYsis (V2.7.3) as of May 2015.
Automated numbering of sequences using abnum [7]
is key to the annotation of sequences—the current
release successfully numbers 122,134 sequences.
The system also provides automated pairing of light
and heavy chains. Resources such as EMBL-ENA
(and therefore EMBLIG) and Kabat do not contain a
clear pairing field to link data for light and heavy chains,
although a “DR/partner” field is being populated in
IMGT, and we exploit this when reading IMGT data.
Consequently, as described in the Materials and
Methods, we attempt to take a cautious approach to
pairing for other data sources. For EMBLIG data, we
use the clone information to perform the pairing: 7110
chainsare paired into 3555antibodies,while antibodies
containing a single chain occur 119,312 times
because this clone information is only present for
~56% of chains in EMBLIG. The most highly
represented species are Homo sapiens (88,662),
Mus musculus (41,254), Macaca mulatta (3561),
Oryctolagus cuniculus (2668), Equus caballus (1138),
Oncorhynchus mykiss (979), Lama glama (955),
Camelus dromedarius (930), and Ginglymostoma
cirratum (893), with synthetic constructs coming in
fourth place with 2968 entries.
The reason that numbering is key to the annotation

is that it enables us to identify regions of the
sequences (CDRs and frameworks). It provides an
implicit sequence alignment (which can be displayed
in abYsis using the Javascript Sequence Alignment
Table 2. Processed content of the abYsis database as of May
from EMBLIG and Kabat. The National Center for Biotech
information from V-BASE are also included.

Data Protein Sequences

Sources Sequences ≥70 aa Numbered

EMBLIG 126,422 119,422 101,969
Kabat 19,399 14,114 12,631
PDB 7712 7712 7534
Total 153,533 141,248 122,134

Please cite this article as: M. B. Swindells, et al., abYsis: Integrate
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Viewer [51]) and the mapping of sequence to
structure, allowing us to look at the frequency of
residue types at each position and to identify key
residues that define the conformation of theCDRs [52]
or which are important in antibody humanization
[30,53].
abYsis can be used in three main ways: (a) by

searching the database to find information about
sequences (and structures) including detailed anno-
tations, identification of unusual residues, post-
translational modification sites, etc.; (b) by analyzing
trends across sequences in the database; and (c) by
entering your own sequences for analysis. These
three approaches are described below.

Searching the database

The main search page allows searches based on
identifiers, names, antigens (where described and
parsable in the source data), references, authors,
organisms, etc., and searches can be restricted to
a given dataset (PDB, Kabat, EMBLIG, or other
datasets that have been included) or a given class of
chain. In addition, searches can be structure-based by
requiring CDRs tomatch specific canonical classes or
by specifying residues within a given distance of a
particular position; for example, one could find all
antibodies with a lysine within 4 Å of residue L23. This
can be done either in known structures or by using
averaged distances calculated across all known
structures to extrapolate these constraints to se-
quences for which no structure is available. Finally,
one can also search on the basis of sequence.
Searches can specify motifs (either exact or using
regular expressions) present throughout the se-
quence or within particular regions (CDRs or frame-
works), region lengths, or residues present or not
present at particular positions.
A simple example search is shown in Fig. 1,

together with two views of the results—as a simple
table or as a sequence alignment. The results come
from searching for “hyhel” and therefore display the
HyHEL set of antibodies binding to hen egg-white
lysozyme described by Smith-Gill and colleagues
[54].
Having selected a particular sequence of interest,

we provide much more detailed information in what
2016. In addition, DNA data are available for sequences
nology Information (NCBI) Germline data and germline

Classified

Total Heavy Light Paired

122,745 92,179 30,566 3555
19,399 11,842 7557 2572
7534 3820 3714 3397
149,678 107,841 41,837 9524

d Antibody Sequence and Structure—Management, Analysis,
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Fig. 1. Simple searches of abYsis. On the left is the main search page showing the default, simple options. Searching
for “hyhel” in the Name field results in a table of hits shown on the upper right. For clarity, this has been truncated—the full
view would show the complete information for the light chains to the right of the heavy chains, where paired sequences
have been found. Bottom right shows the alignment view of the sequences.

4 abYsis: Integrated Antibody Sequence and Structure
we term the “Key Annotation” page, which provides a
set of tabs with different information. The initial
summary page provides the sequence with Chothia
numbering applied and the Chothia structural loops
highlighted. Unusual residues occurring in b1% of
sequences across all species are highlighted, as are
a range of predicted post-translational modification
sites. Information about the sequence (accession
code, data source, dates, name, organism, chain type,
partner chain, and references) is also provided. A
button at the bottom of the page allows the sequence
to be searched against all the other sequences using
BLAST.
The “Numbering & Regions” tab (part of which is

shown in Fig. 2a) gives more control over numbering
schemes, allowing Kabat, Chothia, or Martin
(Enhanced Chothia) [7] schemes and displaying
CDRs/structural loops according to definitions pro-
vided by Kabat, Chothia, AbM (useful for modeling
purposes), and contacts [55]. On the right of the
panel, a residue distribution graph for the currently
selected residue—in this case, residue H1—is
shown. As the graph shows, the most common
residues (across all species) are glutamate (E) and
glutamine (Q); the amino acid present in this particular
sequence is highlighted with an arrow above the
relevant bar.
The “Unusual Residues” tab allows the same

information to be provided but allows the comparison
to be restricted to a specific species, while the
“Humanization” tab gives a much more detailed view
of this information. Again, clicking on an amino acid
Please cite this article as: M. B. Swindells, et al., abYsis: Integrate
and Prediction, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2
will show a graph of its distribution, which can be
restricted to a particular species. The “heatmap”,
which is part of the humanization tab and shown in
part in Fig. 2b, gives a summary of the graphical view
of residue frequencies for each position in the
sequence. Two thresholds are defined using sliders
at the bottom of the page; for each position, amino
acid types with a frequency below the lower
threshold (i.e., unusual residues) are shown in red,
those above the higher threshold (i.e., common) are
shown in green, with the remaning residues shown in
yellow, the CDRs being shown in darker shades. At
the top of the heatmap, the sequence is shown with
colors based on a first reference sequence and then
with colors against a second reference sequence,
which is also used for the rest of the heatmap.
Clicking on a residue in the middle of the heatmap
will update the sequence shown at the bottom, which
can then be exported. Typically, one might set
mouse as the first reference and human as the
second reference, thus allowing the identification of
unusual human residues.
Other tabs provided include (a) assignment of

Chothia conformational canonical classes based on
sequence; (b) a “Structure” tab, which is only
displayed if the selected sequence comes from a
PDB file, in which the structure can be viewed and
rotated; (c) a “Germline” tab, which maps a
sequence to the closest germline sequences; and
(d) a “Humanness” tab, which implements the
method of Abhinandan and Martin for assessing
how human-like a sequence is [45].
d Antibody Sequence and Structure—Management, Analysis,
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Fig. 2. Key annotation results for the heavy chain of antibody HyHEL-5. (a) the “Numbering & Regions” tab—unusual
residues are highlighted with an upwards arrow; predicted CK2 phosphorylation sites with a gear wheel and predicted PKC
phosphorylation sites with a lightning symbol. (b) The “Humanize” tab which shows the sequence horizontally and the
summarized residue frequency information for a chosen species vertically below each residue.

5abYsis: Integrated Antibody Sequence and Structure
Analyzing trends

The distributions search page allows the distribu-
tions of residues at particular positions to be
analyzed outside the context of a particular se-
quence. It also allows the distributions of the lengths
of regions (CDRs and frameworks) to be analyzed.
This has been an area of some considerable
previous interest. For example, Wu et al. [56]
analyzed the distribution of the lengths of CDR-H3
loops in humans and other species and concluded
that “human sequences vary from 2 to 26 amino
acids residues, but less extensively in other spe-
cies”. They updated their analysis in 1993 [57],
Please cite this article as: M. B. Swindells, et al., abYsis: Integrate
and Prediction, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2
refining the analysis in an attempt to look at defined
specficities. Similar detailed analyses of length
distributions were performed by Collis et al. [58]
and Barrios et al. [59].
Such analyses become straightforward using

abYsis, and in Fig. 3, we show the length distributions
of CDR-H3 in humans, mice, rats, camel, rabbit, and
chicken. The graph confirms earlier observations that
mouse antibodies tend to have shorter CDR-H3
lengths than humans, but it also shows that this
trend extends to rat antibodies. Despite the recent
popularity of rabbit antibodies in generating potential
clinical antibodies, the CDR-H3 lengths still tend to be
shorter than human antibodies, but camels and
d Antibody Sequence and Structure—Management, Analysis,
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Fig. 3. Distributions of CDR-H3 lengths in (a) humans, (b) mice, (c) rats, (d) camel, (e) rabbit, and (f) chicken.

6 abYsis: Integrated Antibody Sequence and Structure
chickens tend to have CDR-H3s that are even longer
than humans.

Entering your own sequences

The sequence input pages allow one or more
protein and/or DNA sequences to be entered. These
are numbered and analyzed in exactly the same way
as sequences that are stored in the database.
Consequently, all the “key annotation” information
described above is also available for these. Se-
quences can also be searched against the database
using BLAST to find the most similar antibodies.
The “Humanization” tab is of particular interest since

it allows one to upload a naïvely humanized antibody
(i.e., where the CDRs have been grafted from a donor
species onto a human acceptor framework) and
compare this with unusual residues identified in the
mouse framework, which may be functionally impor-
tant. One can also look for unusual residues in the
human acceptor, whichmay have an effect on binding
or lead to immunogenicity.
The locally installed version of abYsis also allows

sequences to be uploaded and added to the
database.
Materials and methods

abYsis is based around a PostgreSQL relational
databasepopulatedwith sequenceandstructuredata.
All sequences are numbered using Kabat, Chothia,
and Martin numbering schemes using abnum [7],
Please cite this article as: M. B. Swindells, et al., abYsis: Integrate
and Prediction, J. Mol. Biol. (2016), http://dx.doi.org/10.1016/j.jmb.2
and the database is populated using scripts written in
Perl. The web interface is implemented using Perl and
Mason, and the Javascript Sequence Alignment
Viewer [51] is used to display sequence alignments.
JSmol [60] is used for structure display.

Comparison of EMBLIG and IMGT

A Perl script was written to compare the content of
EMBLIG and IMGT. The IMGT data file contains
sequences that are not antibodies and, while mostly
coming from EMBL-ENA, also comes from sources
such as the PDB (that we treat separately).
Consequently the IMGT data were filtered to ensure
that the sequence (a) was present in EMBL-ENA,
(b) was labeled as IG-Light or IG-Heavy, (c)
contains a variable domain, (d) has a translation of
at least 50 residues provided, and (e) is not a
pseudogene. EMBLIG data were also filtered to
include only sequences with translations of at least
50 residues.

Pairing antibody chains

For Kabat data, we pair antibody chains based on
the provided “name” field and author information to
pair light and heavy chains as described by Martin
[43]. For pairing chains within PDB files, we examine
theproximity of residuesnormally found in the interface
between light and heavy chains. For EMBLIG data
derived from EMBL-ENA, there is no clear name field
so we currently use the clone name given in the “FT/
source/clone=” field. In addition to matching the clone
d Antibody Sequence and Structure—Management, Analysis,
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name, pairs of light and heavy chains must also share
publication data.
Conclusion

abYsis provides a unique, integrated web-based
environment for exploring antibody sequence and
structure, bringing together data from different public
sources. In addition, users who install the system
locally are able to integrate their own sequence data.
A key advantage of abYsis is that we try to pair light
and heavy chain sequences. However, we take a
cautious approach to this, and in the case of EMBLIG
data derived from EMBL-ENA, we use clone
information that is only present for ~56% of chains.
Consequently, future work will include exploiting the
information in the “FT/CDS/product=” information,
which is used to provide a “Name” in abYsis.However,
this will require cleanup to remove uninformative text
(such as “immunoglobulin”, “gamma”, “heavy”, “light”,
or “chain”) and, for safety, would need to be combined
with author and/or publication information. The system
provides annotation of sequences stored in the
system, or which a user uploads, and allows individual
sequences to be compared with those in the
underlying database. Integration of sequence and
structure data allows the analysis of sequence data in
a structural context, and the systemprovides tools that
can aid with antibody engineering.
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