
An introduction to the Linux command line

Prof. Andrew C.R. Martin, University College London

September, 2018
Updated April, 2020

This self-paced tutorial will take you through some of the key concepts of the
BASH command line shell. There are also many tutorials available on the Web or
in books. I use this style for commands you type, and this style for file-
names. In the command summary, I use this style for things that should be substi-
tuted with an appropriate filename or word.

Contents

1 Why do I care about this? 3

2 Introduction — what is the Linux/BASH command line? 3
2.1 What is Linux? . 3
2.2 What is the BASH command line? . 4

3 Accessing the BASH command line 5
3.1 If you are using Linux. 5
3.2 If you are using a Mac. 5
3.3 If you are using Windows. 5

4 Directories and Folders 6
4.1 Listing files . 6
4.2 Changing the current working directory 7

5 Finding out more about files 8

6 Using the shell 8
6.1 Recalling previous commands . 8
6.2 Typing less . 9
6.3 Cut and Paste . 9

7 Organizing files into subdirectories 9

8 Grabbing files from the Internet and moving files around 10
8.1 Grabbing files . 10
8.2 Moving files . 11

1

9 File archives 11

10 Looking at the content of a file 12
10.1 Displaying and concatenating . 12
10.2 Copying files . 13
10.3 Looking for differences in files . 14
10.4 Viewing big files . 14
10.5 Heads or tails. 14
10.6 Counting lines . 14
10.7 More or less. 15

11 Input and output: Redirection and pipes 16
11.1 Redirection . 16
11.2 Pipes . 17

12 Removing directories 18

13 Getting more clever 19
13.1 Extracting specific lines from a file: grep 19

14 Links or shortcuts 22

15 Printing on the screen and environment variables 22

16 Aliases 23

17 Doing more complex things with pipes 24

18 Programming in BASH 25
18.1 Creating multiple files . 26
18.2 Renaming a batch of files . 27

19 The ls long format and file permissions 27

20 Changing permissions 29

21 Creating a reusable script 29

22 Commands, programs and paths 30

23 Command Summary 31

24 Text Editors 33
24.1 Emacs . 33

25 Getting help 34

26 Other Tutorials 34

2

1 Why do I care about this?

Most of the programs you are used to on Windows or Mac computers use a ‘graphical
user interface’ (GUI). Software such as web browsers, word processors or image ma-
nipulation software (to name just a few) would be impossible to use without a GUI.
However, writing your own software that supports a GUI can be pretty difficult —
I’ve been programming for nearly 40 years and I still find it tough!

In many cases however, you don’t need a graphical interface and often a GUI can
hinder what you are trying to achieve. If you are starting out programming in a lan-
guage like Python, Perl or R, you don’t want to be bothered with writing code that
provides menus where you specify data files to process or provide boxes to tweak pa-
rameters1. This is where the ‘command line’ comes in: it lets you type commands (in-
cluding the names of programs you want to run) at a prompt2. Often those commands
(or programs) will take parameters such as the name of a file on which the command
needs to act. In addition, a command (or program) may allow you to specify optional
parameters to override default settings or to modify the process it performs in some
way. Often this is done via ‘switches’ — optional parameters introduced with a dash
(e.g. -v).

In addition to avoiding the complexity of having to write a GUI for your programs,
the command line has three great advantages:

1. it has dozens of little utilities built in (including searching for text in files, count-
ing the number of lines or words in a file, extracting specific columns from a file,
etc.) that would be much more tricky to use via a GUI;

2. it has the ability to take the output of one command (e.g. finding all the lines that
contain a certain word) and sending it into another command (e.g. counting the
number of lines) allowing you to do more complex things (in this case finding
how many lines contain a given word);

3. third it has a built in mini-programming language, letting you combine com-
mands (and programs) in much more complex ways.

2 Introduction — what is the Linux/BASH command

line?

2.1 What is Linux?

An ‘operating system’ is a set of software that runs on the hardware of your computer
to look after things like communicating with other computers, managing users and
security, storing files on disk, loading other programs from disk storage into memory
so that they can be run, displaying things on the screen, talking to printers, keyboards,
mice, etc., etc.

1Note that these languages (certain Python libraries and R in particular) provide you with graphical
output such as graphs in a popup window, but this is not the same as having to write your Python or R
script such that it provides you with menus, buttons, text boxes and so on.

2Actually pretty much every ‘command’ that you run is, in reality, a program — all will become clear
later!

3

Linux is a ‘flavour’ of a group of operating systems known as ‘unix’. Unix is a
true multi-tasking, multi-user operating system. ‘Multi-tasking’ means that it is able
to run multiple programs at the same time — if the computer has multiple CPU cores,
then it can actually do multiple things at once (otherwise it switches rapidly between
different tasks); ‘multi-user’ means that many users can log onto the same computer
at the same time from separate ‘terminals’. Each user is given an area of disk space in
which they can create their own files (a ‘home directory’).

These days, if you are a Mac user, then you are using a flavour of unix (perhaps
without knowing it) as OS/X is built on a version of unix called Darwin which, in turn,
is based on BSD unix. So unix-based operating systems can have beautiful graphical
user interfaces (GUIs).

The term ‘unix’ or ‘Linux’ actually refers to what is known as the ‘kernel’ of the
operating system — in other words all the deep and complicated things that go on to
allow a computer to run software, access files on disk or on a network, etc. Everything
else (including the graphical interface, or ‘window manager’ and even the command
line itself), is actually a program that runs on top of the operating system. This means
that people can package the Linux kernel with different sets of tools to produce a
different Linux ‘distribution’. There are several of these, some of the most popular
being Ubuntu, Fedora, RedHat and CentOS.

The beauty of this arrangement is that people have a huge amount of flexibility to
make a Linux-based system look and feel as they want it to. For example, you might
want a flashy Mac or Windows style GUI with windows that slurp down into an icon
when you shrink them or have 3D effects on your really powerful desktop computer,
but you might want something much simpler on the laptop that you bought 10 years
ago for £250.00. If you are running a server, then you probably don’t need a GUI at all
so you don’t install one! You don’t get that flexibility with Windows or a Mac.

2.2 What is the BASH command line?

You are almost certainly familiar with using ‘Explorer’ on Windows or ‘Finder’ on a
Mac. This is a graphical user interface that allows you to browse through the hierarchy
of folders that you have on your computer, create new folders, drag files from one
folder to another and view the contents of files by starting an appropriate program
(such as Microsoft Word when you click on a Word document). Linux has a whole host
of similar directory manager programs. However in all three environments (Windows,
Mac, Linux) you can carry out all the same functions from the command line.

The command line is a prompt at which you type commands (or the names of
programs) that you want to run, together with required and optional parameters to tell
the program what to process and to tweak the details of how it should be processed.

Under Linux, even the default command line can be slightly different between dis-
tributions (but you can choose the one you want). The ‘shell’ is the program that
provides a prompt and lets you type commands. It then interprets those commands
and runs other programs as required. When these programs have finished, the shell
shows the prompt again waiting for you to do something. Here we will introduce the
most common command line shell which is known as BASH. The BASH shell is also
the default command line on a Mac and can be used under Windows (as described
below).

4

3 Accessing the BASH command line

3.1 If you are using Linux. . .

Search for an application called ‘Terminal’. If you can’t find it then look for ‘xterm’,
‘Command Line’ or ‘Command Prompt’. The terminal is actually just a window that
runs the ‘shell’. It is most likely that your terminal will run the BASH shell and the
prompt may look like:

bash-4.2$

in which case you know you are using the BASH shell. If you don’t have a prompt
containing the word ‘bash’, then:

1: Type the following:

echo $SHELL

You should find that it says something like:

/bin/bash

If this doesn’t contain the word ‘bash’ then ask for some help in making BASH your
default shell3.

3.2 If you are using a Mac. . .

You can access the command line using the ‘Terminal’ application which lives in the
‘/Applications/Utilities/’ folder. To find it, go to your ‘Applications’ folder. Near the
bottom, there is a folder called ‘Utilities’. The terminal is actually just a window that
runs the ‘shell’, but the default shell is BASH which is what we want.

3.3 If you are using Windows. . .

Things are a bit more difficult4. The easiest way to access a BASH shell is to in-
stall a package called ‘git-bash’. First check to see if ‘git-bash’ is already installed:
type git-bash into the search box. If not, you can download this from https://

git-for-windows.github.io/

Task:

Install any necessary software and open a command line prompt.

3The command chsh bash may work for you; if not then you really do need to ask for help!
4If you are running Windows 10 with the ‘Anniversary Update’ then you can

run the ‘Windows Subsystem for Linux’ which provides you with a Linux BASH
environment running under Windows (see https://www.howtogeek.com/265900/

everything-you-can-do-with-windows-10s-new-bash-shell/). However, we have found this to
be unreliable and not to allow access to the internet or to files downloaded under the normal Windows
environment. At the time of writing, this is not recommended!

5

Figure 1: A typical unix filesystem.

4 Directories and Folders

In Linux, we tend to refer to ‘directories’ rather than ‘folders’, but it is exactly the
same thing. Your disk space is organized into directories each of which can have sub-
directories. You can also create sub-directories within the first level subdirectories and
so-on to create a tree-like structure. Under unix, all files live in a single hierarchical
directory tree (unlike Windows which has multiple trees beginning with C:, A:, D:,
etc). The root (also called the top!) of that tree is called ‘/’ as shown in Figure 1.

4.1 Listing files

The first command we will introduce is ls which is short for ‘LiSt’.

2: Type the following:

ls

Note! That is a lower-case letter L (i.e. ‘l’) not the digit one (1).
In the BASH shell, we have the concept of a ‘current directory’. The ls command

lists the files and directories in the current directory — it is like looking at a particular
folder in the file explorer of a GUI.

3: Type the following:

ls -a

You should now find that you have some extra files listed — at a minimum, you
will find one called ‘.’ and one called ‘..’. Any file that starts with a dot is a hidden
file. The -a ‘flag’ (which stands for ‘all’) is placed after the ls command to see these
files.

The directory called ‘.’, is simply the current directory so isn’t normally useful.
The directory called ‘..’ is the directory above (i.e. closer to the root).

Optionally you can follow the ls command by a directory which you wish to view
rather than the current directory.

6

4: Type the following:

ls /

In this example we are looking at the root (top) directory.

5: Type the following:

ls /etc

Now we are looking in the etc sub-directory of the root directory (this happens to
be where system configuration files live). Specifying a directory or file starting with
the root directory (‘/’) is known as specifying the ‘full path’. Each element of the full
path of directories is separated with a ‘/’, so we could refer to a file such as /etc/fstab
(see Figure 1).

4.2 Changing the current working directory

The cd (‘Change Directory’) command is used to change the current working direc-
tory.

6: Type the following:

cd /

ls

This has the same effect as ls / but this time you have changed the current direc-
tory to the root directory and then obtained a listing.

To return to your home directory, type cd by itself.

7: Type the following:

cd

ls

Note that the ∼ is an abbreviation for your home directory so you can also:

8: Type the following:

cd ~

ls

You will see why this is useful later.
You can find out which directory you are currently in by using the pwd command.

This stands for ‘Print Working Directory’ and can be thought of as a ‘where am I?’
command:

9: Type the following:

pwd

The name of the home directory will depend on the system you are using. It might
be something like /home/andrew or /c/Users/andrew or /n/ if you are on a network
drive.

7

Task:

Remembering that the directory above the current one is always available as ‘..’, how do you

think you can move up one level in the tree of directories? Give it a go and use pwd to check

where you are. Return to your home directory using cd.

5 Finding out more about files

We have already seen the ls command to list the files in a directory and the -a option
(also referred to as a ‘flag’ or ‘switch’) that allows us to see hidden files. There are also
other options to give more information.

-l Long format — give information about file sizes, permissions, etc. For the moment,
don’t worry about the details other than the file size (in the 5th column), the date
and time (in the 6th-8th columns) and the filename (at the end).

-t Sort by time — newest files first

-r Reverse the sort, so -t -r will give the newest file last which is often more useful

-h Give file sizes in a more human readable (kilobytes, gigabytes etc.)

These one-letter options can be combined into one as shown in this example:

10: Type the following:

ls -ltrh

Task:

Work out what the previous command has done. Play with cd and ls and its options to explore

the files on your computer.

6 Using the shell

6.1 Recalling previous commands

You have probably found yourself typing the same, or very similar commands several
times. Wouldn’t it be nice if you could recall those previous commands and modify
them if required? Well you can.

• You can use the up-arrow on the keyboard to recall previous commands (and the
down-arrow to step forward through previous commands),

8

• You can navigate through previous commands to edit them using the left- and
right-arrow keys,

• You can use Ctrl-a (hold down the Ctrl key and press ‘a’) to move to the
beginning of a line you have recalled or Ctrl-e to move to the end of a line.5

6.2 Typing less

The BASH shell has a feature known as ‘command and file completion’. When you
start to type a command, you can press the Tab key (typically an arrow with a vertical

bar: →|) to complete the command or filename. If you just type ‘l’ followed by Tab,

nothing will happen as there are probably lots of commands starting with ‘l’. If you
press Tab a second time, BASH will list all the commands that start with ‘l’. It may tell
you that there are hundreds of possibilities and ask if you really want to see them. If
there are so many that it can’t display them all in one screen, it may say --More-- at the
bottom of the page; if so, press the spacebar to see the next page. You can add letters
until you arrive at a unique start for a command. Obviously this isn’t very useful for
a 2-letter command like ls or cd, but with longer command names it can save a lot of
typing.

The same applies to file and directory names — we will see an example in a mo-
ment.

6.3 Cut and Paste

Text can very easily be cut and paste between windows. Highlight a region of text by
pressing the left mouse button at the start of the region of text, holding it down and
dragging to the end of the region before releasing the button. To paste the text into
another window, move the pointer to that window and click the right mouse button
under Windows (git-bash) or the middle button on other systems. If your mouse (or
trackpad) has only two buttons, pressing them both at once generally has the same
effect as pressing the middle button.

7 Organizing files into subdirectories

Just as you probably have folders in your GUI file browser to organize your files, you
can (and should) do the same from the command line creating directories and sub-
directories.

Create a sub-directory called ‘cli’ in your home directory. The mkdir command is
short for6 ‘MaKe DIRectory’:

11: Type the following:

cd

mkdir cli

5Using git-bash under Windows, these may not work correctly. Right-click in the top of
the git-bash window to see the menu. Select Properties and then Options. Uncheck the
Enable Ctrl key shortcuts option.

6When I say ‘short for’, I do not mean that you can also type the full piece of text.

9

Task:

Use ls to see your new sub-directory within your home directory. Navigate to your new directory

using cd but try specifying the sub-directory name by just typing c and using the Tab key. Then

look to see what is in there using ls. Are there any hidden files? Finally move back up to your

home directory. What are the different ways of getting back to your home directory?

You may remember that ∼ is an abbreviation for your home directory, so to get to
the cli directory, rather than typing cd followed by cd cli, you can simply:

12: Type the following:

cd ~/cli

8 Grabbing files from the Internet and moving files

around

8.1 Grabbing files

Let’s grab a file to look at from the Internet. Note that this file (pdbs.tgz) is only an
example file. There are three ways of grabbing a file:

1. We do not recommend this method, but you can use your web browser to
navigate to www.bioinf.org.uk/teaching/splats/ and then download the file
pdbs.tgz by clicking the Example files button and save it to the cli directory
that you created from the command line — you should be able to navigate to this
in the usual way in the file browser that appears when saving a file,

2. Using curl,

3. Using wget.

Depending on the system you are using you will have one (or both) of curl and
wget installed — they are equivalent command line tools that allow you to grab files
from the internet.

To use curl:

13: Type the following:

cd

curl -O http://www.bioinf.org.uk/teaching/splats/pdbs.tgz

Note! That is a capital letter ‘O’, not the digit zero (0).
To use wget:

14: Type the following:

cd

wget http://www.bioinf.org.uk/teaching/splats/pdbs.tgz

10

Task:

Having downloaded the file, do a directory listing to check that it is there and how big it is.

8.2 Moving files

When you looked at the directory listing you should have realized we made a (de-
liberate) mistake. We should have put the file in our cli directory not in our home
directory.

We can use the mv (short for ‘MoVe’) command to move the file into that directory:

15: Type the following:

mv pdbs.tgz cli

The mv command can also be used to rename files — if the second parameter is a
name that isn’t a directory, the file (given in the first parameter) will be renamed to the
name you specified. Be careful! If this second parameter is the name of another file
that exists already, then that file will be over-written!

9 File archives

The file you have downloaded is in a format known as a ‘gzipped tar file’. This is very
similar to a ZIP file with which you are probably familiar. It is a compressed archive
containing several other files all bundled together.

tar stands for ‘Tape ARchiver’ — it was originaly used for performing backups to
tape, but can also create (or unpack) archive files on disk.

Navigate to your cli directory and unpack the archive file.

16: Type the following:

cd ~/cli

tar xvzf pdbs.tgz

The four letters after the tar command tell it what to do:

x Extract files

v Be verbose (the program tells you what it’s doing)

z The tar file has been compressed with a program called gzip

f The archive is a file (the name of which follows) rather than coming from a tape

These options can appear in any order except that the ‘f’ must come last.

Task:

Find out what files or directories you have now. You should find a new directory called pdbs has

been created, so change to that directory and see what is in there.

11

10 Looking at the content of a file

Make sure you are in the new directory that you have created by unpacking the
archive. If you aren’t there already:

17: Type the following:

cd ~/cli/pdbs

10.1 Displaying and concatenating

You should have a number of PDB files in the directory that you have just created.
PDB files are used to store the structures of proteins and DNA, generally derived from
X-ray crystallography or NMR.

The command to view a file is called cat — not the most obvious name, but there
is a good reason for it as it can be used to ‘conCATenate’ (or join) two or more files
together.

18: Type the following:

cat pdb9aat.ent

The content of the file should have been displayed (very quickly) on the screen. If
we give more than one filename then it will display each file on the screen.

19: Type the following:

cat pdb9aat.ent pdb9abp.ent

This happens so fast that you don’t really notice the two files.
If we wanted to join the two files together into a new file, we can use a > symbol

to ‘redirect’ the output that went to the screen so it goes into a file instead:

20: Type the following:

cat pdb9aat.ent pdb9abp.ent > both.pdb

ls

When you do ls you should find that you now have a new file called both.pdb

which will contain the content of the two files concatenated together.

Task:

Use the appropriate option to ls to obtain the sizes of the files and verify that the both.pdb file

is the size of the other two files added together. (The file sizes may not add up exactly as the

values may be rounded — particularly if you are using the human-readble format.)

Now we have finished with the both.pdb file, so we can delete or ‘ReMove’ it with
the rm command:

21: Type the following:

rm both.pdb

12

Be very careful with the rm command — unlike a graphical file browser it doesn’t put
the file into a ‘trashcan’ from which it can be recovered. Once it’s gone, it’s gone!

If we wished to concatenate all the files that end in .ent we can use a ‘*’ which
matches any characters to save typing all the filenames7.

22: Type the following:

cat *.ent > all.pdb

Task:

Use ls to verify that the all.pdb file is of an appropriate size that it includes all the files and

then remove the all.pdb file.

We won’t look at it now, but you can also append to an existing file using redirec-
tion. In this case we simply use >> rather than >.

10.2 Copying files

Once you have a file, you often need to copy it — perhaps so you can keep a version
before you make some changes. You may not realise it, but you have already seen a
way you can do this using cat and redirection.

Task:

Think about how you could use cat to copy the pdb9aat.ent file to another name and give it

a try. Delete the copied file once you have finished.

However there is an easier way of copying a file using the cp (‘CoPy’) command:

23: Type the following:

cp pdb9aat.ent 9aat.pdb

ls

Note that file extensions are not as important in Linux as they are in Windows.
More precisely, file extensions are not so important when you are using the command
line rather than a GUI to access files. When you click on a Word document in Windows
or on a Mac, the GUI looks at the extension of the file (.doc or .docx) and knows to
use the Word software to open the document. The file extension doesn’t really say
anything about the content of the file; rather it tells the GUI which program to use to
open the file. In contrast, when you use the command line you always have to specify
which program to use to access a file.

7We could also do something like pdb*a*.ent if we wanted only those files that have an ‘a’ in the
PDB code and more complex patterns are also possible.

13

10.3 Looking for differences in files

Now we have two copies of the same file: one called pdb9aat.ent and one called
9aat.pdb. If we have two files and want to know if they are the same, or perhaps we
have modified one of them and want to know what the differences between the two
versions are, we can use the diff (‘DIFFerences’) command to compare them.

24: Type the following:

diff pdb9aat.ent 9aat.pdb

This command should return nothing. This indicates that there are no differences
between the files. If there had been differences, these would have been displayed; we
will see and example in a moment.

10.4 Viewing big files

cat is all very well, but it’s not very useful for big files as the content zooms past on
the screen too quickly to see.

10.5 Heads or tails. . .

Often it is useful just to be able to see the top of a file where there might be some
comments or identifying information. Suppose we are interested in the first 20 lines of
the file pdb9aat.ent or the ‘head’ of the file:

25: Type the following:

head -20 pdb9aat.ent

The -20 part says that we want the first 20 lines.
Similarly to see the end of the file, or its ‘tail’, we use the tail command:

26: Type the following:

tail -20 pdb9aat.ent

Task:

Remembering what you learned about using > for redirection, create a file called pdb9aat.top

containing just the top 25 lines of pdb9aat.ent. Use cat to verify that this file contains what

you expect.

10.6 Counting lines

Let’s verify that there really are 25 lines in the file you just created. There is a command
for doing a ‘Word Count’ with the rather unfortunate name wc.

27: Type the following:

wc pdb9aat.top

14

This provides three numbers representing the number of lines, number of words
and number of characters. If you are only interested in the number of lines you can
use the -l flag:

28: Type the following:

wc -l pdb9aat.top

There are equivalent -c and -w flags to display only the number of characters or
words.

Task:

Extract the top 25 lines from pdb9abp.ent into a file. Use the diff command to look at the

differences compared with the first 25 lines of pdb9aat.ent that you already stored in a file.

You should find a block of lines starting with a < — this means that these lines
must be deleted from the first file you specified to create the second file; you will then
see another block starting with a > which means that these lines must be added to the
first file to create the second file.

10.7 More or less. . .

Even more useful would be to see a page of the file and then see some more by pressing
a key. Surprisingly enough the command to do this is called more:

29: Type the following:

more pdb9aat.ent

(note that if you are using ‘git-bash’ on Windows, this may not work — the more

command isn’t available.)
Press the spacebar to move through the file and press the ‘q’ key to quit.
The problem with more is that you can only move forward through the file. A

better command is less which allows you to move in both directions:

30: Type the following:

less pdb9aat.ent

Press the spacebar to move forwards through the file a page at a time and ‘b’ to
move back up a page. Press the ‘>’ sign to move to the end of the file or the ‘<’ sign
to move to the start.

You can also search for the next line containing some text using the ‘/’ key. For
example, /ATOM will take you to a line containg the word ‘ATOM’. You can repeat the
search and move to the next line containing the word of interest just by pressing the
‘/’ key again.

Task:

Play with less to explore the file. Once you are finished, press ‘q’ to quit.

15

11 Input and output: Redirection and pipes

11.1 Redirection

When you did the diff between the two files that you created each containing the top
20 lines of one of the PDB files, you should again have found that the results rushed
past and you couldn’t see the top of the file. You should already know one solution to
that problem.

Task:

Run the diff command again, but use the > symbol to redirect the output to a file called

differences.txt. Now use less to look at the file.

However this is not altogether convenient as you end up creating files that you will
then delete almost immedately. Unix-like operating systems provide a concept known
as ‘pipes’ that allow the output of one program (such as diff) to be fed directly into
another program (such as less).

We have already seen the idea of ‘redirection’ of the output from a program. Many
programs default to sending their output to what is known as ‘standard output’ (or
stdout) and, by default this is the screen. In examples you have seen previously, you
used > to redirect standard output to a file instead.

Many commands such as less will take input from a file specified on the com-
mand line, but if no file is specified, input will be taken from ‘standard input’ (stdin).
By default, standard input is the keyboard, but we can use the < operator to redirect
standard input to be a file.

For example, we previously saw the command cat to display a whole file on the
screen:

31: Type the following:

cat pdb9aat.ent

The cat program has seen that there is a filename specified on the command line so
knows that it should take its input from there. If you try typing cat by itself, it will
expect input from standard input (the keyboard) instead.

32: Type the following:

cat

The cat program is now sitting waiting for input from the keyboard. So let’s type a
couple of lines and finish with Ctrl-d (press and hold the Ctrl key, press and release
‘d’, then release Ctrl) which is used to indicate the end of a file (i.e. no more text is
coming from standard input).

33: Type the following:

hello

world

Ctrl-d

16

(Remember Ctrl-d does not mean that you type the letters C,t,r,l,-,d !)
Note what happened: cat reads from standard input (the keyboard) and writes to

standard output (the screen).
A little variation of that is a very quick way of creating a file. Let’s create a file

called helloworld.txt containing the two lines: Hello and World:

34: Type the following:

cat > helloworld.txt

Hello

World

Ctrl-d

Task:

Check the file has been created and check its content with cat. Once you are done, remove

the helloworld.txt file.

This is actually a very useful way of creating very small files quickly. To create
larger files or modify the content of files, you use what is known as a ‘text editor’
which is like a word processor, but just creates simple plain text files without being
able to change fonts, sizes, bold, italics, etc. We will not look at text editors in this
session although Section 24.1 gives you a brief introduction to emacs, one of the most
powerful text editors.

We can use the < operator to redirect standard input so that it comes from a file
instead of from the keyboard.

35: Type the following:

cat < pdb9aat.ent

In practice this is exactly the same as typing cat pdb9aat.ent (without the <),
but underneath something slightly different is happening.

11.2 Pipes

You can probably see how redirection to a file is very useful, but are probably won-
dering why redirection from a file is useful. In general it isn’t used very much, but the
concept of standard input is very important. Wouldn’t it be wonderful if we could take
the output of our diff program that created too much to see on the screen in one go
and send it to the less program directly to be able to page through it rather than hav-
ing to go via an intermediate file. In other words, we want to send the standard output
of one program (which would normally go the screen) directly to the standard input
(which would normally be the keyboard) of another program. Pipes let us do that. A
pipe is created using the symbol | (which is probably bottom left on your keyboard,
next to the left shift button).

Let’s take a simple example first:

17

36: Type the following:

cat pdb9aat.ent | less

Here we are taking the standard output of cat and sending it to the standard
input of less. This has exactly the same effect as typing less pdb9aat.ent or
less < pdb9aat.ent, so is not particularly useful.

Here is a much more useful example where we have solved the problem of looking
at the differences between the two files a page at a time without having to create an
intermediate file:

37: Type the following:

diff pdb9aat.top pdb9abp.top | less

12 Removing directories

We have already seen how to create a directory using the mkdir command. How do
we remove a directory?

First we will ensure we are in our cli directory and create a directory called foo8:

38: Type the following:

cd ~/cli

mkdir foo

ls

You should see your foo directory has been created.
To delete the directory we use rmdir (‘ReMove DIRectory’):

39: Type the following:

rmdir foo

Now let’s do the same but put a file in the directory:

40: Type the following:

cd ~/cli

mkdir foo

cp pdbs/pdb9aat.ent foo

rmdir foo

This time you will find that the system will refuse to delete a directory that has some-
thing in it. If you want to delete a directory and its contents, you use rm with the flag
-r which means to delete recursively — i.e. work all the way down the directory tree
from the foo directory deleting any files that are found and deleting the directories
once they are empty. Obviously this is a very dangerous command so you must use
with caution!

41: Type the following:

rm -r foo

8foo and bar are commonly used in the computing world as random names for junk or test files that
we are going to delete quickly. If you want to know why, Google ‘fubar’.

18

13 Getting more clever

In the associated lecture we talked about a basic algorithm for counting the number
of amino acids in a PDB file. If we understand the power of BASH we don’t actually
need a program to do this; we can do it all using standard BASH commands. This is
the real power of unix-like command-line shells rather than GUIs.

13.1 Extracting specific lines from a file: grep

The slightly oddly named grep command (‘Globally search a Regular Expression and
Print’) allows us to search a file for lines that match a specified pattern and print them.

Let’s look at one of our PDB files and see what it contains:

42: Type the following:

cd ~/cli/pdbs

less pdb9aat.ent

Page through the file using the space-bar and press ‘q’ to quit when you are done. You
will see that each record (line) starts with a field (e.g. HEADER. REMARK, SEQRES) that says
what the record contains. As you move through the file, you will find that the records
that start with ATOM are the atomic coordinates. These are the records we need if we
want to count the amino acids.

Using grep we can find all the records that contain the word ATOM:

43: Type the following:

grep ATOM pdb9aat.ent

Task:

Use your knowledge of ‘pipes’ to send the output of this grep command into less or into

head to view the first 20 lines.

Looking at the beginning of the output from grep, you should notice that the first
few lines do indeed contain ATOM, but not at the start of the line. We are only interested
in lines that start with ATOM, so we tell grep to anchor the search to the start of a line
using the ‘caret’ or ‘hat’ character (^):

44: Type the following:

grep ^ATOM pdb9aat.ent

Task:

Again, use your knowledge of pipes to send the output of this grep command into less or

head

19

You should find that the command is now doing the right thing and only returning
lines that start with ATOM.

Sending this output into less is all well and good, but what we eventually want
to know is the number of amino acids. As a step towards that we can use the word
count program that we used before (wc) to obtain the number of ATOM records which
will be the total number of atoms in the file.

Task:

Use a pipe to send the output of this grep command into wc to count the lines.

You should find there are 6322 atoms.
Remembering from the lecture that we can count the amino acids by looking for

the Cα atom (which is called CA in the PDB files), we can send the output of our first
grep command (that found the word ATOM) via a pipe into another grep command that
looks for CA and then send that via another pipe into wc to count the number of amino
acids. grep is another of these programs that will take input from standard input if a
filename isn’t specified, so your second grep command will simply be grep CA (with
a pipe symbol either side of it).

Task:

Give it a try:

• Use the grep command to extract lines that start with ATOM

• Use a pipe to send the output into another grep command that finds lines containing CA

• Use a pipe to send the output into the wc command to count the lines.

You should find you have 802 amino acids.
If you wanted to find out the total number of amino acids in all the PDB files, you

could simply replace the pdb9aat.ent with *.ent

Task:

Give it a try — you should find there are 2117 amino acids in total.

20

More advanced topics

21

14 Links or shortcuts

You are probably familiar with the concept of ‘shortcuts’ in Windows. These, for ex-
ample, allow you to place an icon on your Desktop which links to a file that lives
somewhere else on your computer.

In BASH you create a shortcut using the ln -s command (ln means ‘LiNk’ - the
-s flag makes it a ‘symbolic’ link — don’t worry about what this means, just know
that it’s pretty much the only sort you’ll ever need!). It is used in just the same way as
the copy command (cp), but simply creates another name for the same file. Typically
you would do this to create the same file in two different directories.

45: Type the following:

cd ~/cli

ln -s pdbs/pdb9aat.ent .

Here we have gone to the main cli directory and made a symbolic link from the
file pdb9aat.ent in the pdbs sub-directory to a file of the same name in the current
directory (remember that ‘.’ represents the current directory and ‘..’ the directory
above the current directory).

Note that the second parameter can be either a filename or a directory name. What
we did here was the same as typing:
ln -s pdbs/pdb9aat.ent pdbs9aat.ent

because if you specify a directory name without a filename then the same filename as
the input file will be assumed. We could also have typed:
ln -s pdbs/pdb9aat.ent ./pdbs9aat.ent

which would have had exactly the same effect.

15 Printing on the screen and environment variables

The echo command is used simply to type something on the screen. For example

46: Type the following:

echo "Hello world"

and you will see the text appear on the screen.
Like a normal programming language, BASH has a concept of variables where

you can store information. In a shell like BASH these are known as ‘environment
variables’ because they can be used to pass information about the environment in
which a program is running into a program. The environment variable $HOME contains
the location of your home directory, so you can use echo to find what this is:

47: Type the following:

echo $HOME

Note that the rule with environment variables is that you do not put a $ in front of
them when you are setting them, but you do put a $ in front of them when you want
the value they contain.

22

16 Aliases

Aliases allow us to create abbreviations for commonly used commands. For example
we often find ourselves wanting to type ls -ltrh (i.e. a directory listing in ‘long’
format sorted by date in reverse order with file sizes in ‘human’ format). To reduce
the number of characters we have to type, we often set up an alias of ll:

48: Type the following:

alias ll=’ls -ltrh’

ll

However, we would have to do this every time we open a command line terminal
which is not very convenient. BASH provides us with a mechanism to allow us to
store a set of commands such as aliases that are executed every time we open a new
BASH shell. Depending on the exact setup of your system, BASH reads a file called
either .bashrc or .profile in your home directory9. Go to your home directory and
see if either file exists:

49: Type the following:

cd

ls -a

If .bashrc exists then, being very careful about the single and double inverted
commas and spaces:

50: Type the following:

cd

echo "alias ll=’ls -ltrh’ " >>.bashrc

Here we have used the redirect-and-append symbol (>>) to add this alias command
onto the end of the .bashrc file.

If .profile exists then we simply specify this file instead of .bashrc:

51: Type the following:

cd

echo "alias ll=’ls -ltrh’ " >>.profile

If neither exists and since we don’t know which is required by your system, we
will put the command into .bashrc and then create .profile as a symbolic link to
.bashrc

52: Type the following:

cd

echo "alias ll=’ls -ltrh’ " >>.bashrc

ln -s .bashrc .profile

Note that here is no harm in using >> even if the file does not exist already.
We might also want to add some other aliases. For example, if you are prone

to deleting files by mistake, you might want to make rm an alias for rm -i which
prompts to check you really want to delete a file:

9Remember that filenames starting with a ‘.’ are hidden files and only seen when we do ls -a

23

53: Type the following:

cd

echo "alias rm=’rm -i’ " >>.bashrc

(Replace .bashrc with .profile if appropriate for your system.)
NOTE! The commands in your .bashrc or .profile file will not be run until you

open a new terminal10.

17 Doing more complex things with pipes

Suppose we want a list of the amino acids used in a particular protein instead of count-
ing the number of atoms, or the number of amino acids, as we did earlier. If we look
at a PDB file we find that the amino acid name appears as the fourth field in the ATOM

records11. Do as we did before and extract the ATOM records for Cα atoms to confirm
this:

54: Type the following:

grep ^ATOM pdb9aat.ent | grep CA | less

If we want a simple list of the amino acids used in a particular protein, we want to
look at this fourth field.

Unix-like systems provide a mini-programming language called awk (the letters
stand for the three people who designed it: Aho, Weinberg and Kernigan). This is a
very powerful language for doing simple things with files such as extracting fields,
counting things, etc. Like the other commands we have seen it will take input from
standard input if a file isn’t specified, but we also need to give it instructions of what
to do on the command line. These instructions have to be enclosed in single inverted
commas.

Taking the output of our two piped grep commands, we can feed these into an
awk command to extract the 4th field:

55: Type the following:

grep ^ATOM pdb9aat.ent | grep CA | awk ’{print $4}’

In awk you have to put the command you want to be run on each line in curly brackets
({}) and the $4 refers to the 4th field in a line. Consequently, in this case, we are
printing the 4th field12.

10Strictly it is the shell that needs to start not the terminal, so you could simply type bash to
start another BASH shell in order to read the file. You could also type source ∼/.bashrc (or
source ∼/.profile as appropriate) to read the commands in your current shell.

11Actually this won’t work for every PDB file as the PDB format uses fixed columns rather than space-
separated fields. Thus it allows fields to expand so that they are touching each other without a separat-
ing space. For example, the third field of the ATOM records is the atom name which, stricly speaking is
4 characters wide, with the first character normally a space; the next field is also normally a space, but
can sometimes be a letter A or B, so when the atom name is a space followed by 3 characters and the
next field contains a letter, those two fields will be touching and also will touch the amino acid name in
the next column.

12In the previous footnote it was pointed out that using awk wouldn’t work on every PDB file since
awk works with space-separated fields and sometimes the fields in a PDB file can merge into one.
Another command, cut, can work with rigid columns that represent the characters across a line. The
amino acid name is in columns 18–20, so we could replace the awk command with cut -c 18-20

24

While this gives us a list of all the amino acids in the sequence they are used, what
we want is just a list of which amino acids are used. To achieve this we want to know
which unique entries appear in the output. The first thing we can do is sort the output,
using the sort command:

56: Type the following:

grep ^ATOM pdb9aat.ent | grep CA | awk ’{print $4}’ | sort

If we add the -u option to sort then it will produce a uniquely sorted list — i.e. if an
entry in the list is repeated, it will show it only once:

57: Type the following:

grep ^ATOM pdb9aat.ent | grep CA | awk ’{print $4}’ | sort -u

Adding -u to sort is actually equivalent to sending the output from sort into an-
other command uniq:

58: Type the following:

grep ^ATOM pdb9aat.ent | grep CA | awk ’{print $4}’ | sort | uniq

uniq is normally used when you have a list of items and want to remove repeats that
are next to each other in the list, but you want to retain repeats that are separated by
other items.

Task:

Send the output of this into wc to check whether all 20 amino acids have been used in

pdb9aat.ent.

18 Programming in BASH

BASH itself is also a simple programming language that lets us automate tasks. Sup-
pose we want to count the number of atoms in all of the PDB files — you already know
how to do that for one PDB file at a time, so how would you do it for all of them?

We could count the number of lines in all the files very easily:

59: Type the following:

cd ~/cli/pdbs

wc -l *.ent

We could also count all the atoms across all the files very easily:

60: Type the following:

cd ~/cli/pdbs

cat *.ent | grep ^ATOM | wc -l

However, we want to do grep ˆATOM xxxxxxx.ent | wc -l on each file in
turn. We can use a for loop within BASH to repeat one or more commands on each
of a set of files:

25

61: Type the following:

for file in *.ent

do

echo -n "$file "

grep ^ATOM $file | wc -l

done

Breaking this down:

1. The for loop steps through each file that matches the pattern *.ent in turn.
For each one, it sets the environment variable file (note no $ sign used at this
stage13) to the name of the file and then runs the code between do and done

2. The do line simply marks the start of a set of commands to run on the current
file

3. The echo command prints the name of the file (the content of the $file environ-
ment variable) followed by a space to the screen. We have seen echo before, but
here have used a new flag -n which tells it not to add a newline after printing.
In other words the next thing printed will appear on the same line.

4. The grep piped into wc counts the number of ATOM records in the file.

5. The done marks the end of the block of commands so that the for loop can step
onto the next file.

Task:

Modify the code to count the number of amino acids in each file instead.

18.1 Creating multiple files

We can extend this idea to process a set of files in any way required. Using redirection
we can send the output of each command to a file. For example:

62: Type the following:

for file in *.ent

do

grep ^ATOM $file | wc -l > $file.atomcount

done

This version creates a file with the extension .atomcount for each .ent file. Here we
are simply doing a trivial example of counting atoms — in a real problem, you would
probably be running some more complex program, perhaps finding genes in a stretch
of DNA and taking several minutes to run. When you do ls you will find that there
are filenames like pdb9aat.ent.atomcount. As mentioned earlier, when using the com-
mand line, file extensions are arbitrary and you should choose something that is mean-
ingful to you.

13Remember the rule with environment variables is that you do not put a $ in front of them when
you are setting them, but you do put a $ in front of them when you want the value they contain.

26

18.2 Renaming a batch of files

However you might want to rename all the files so that they are called, for example,
pdb9aat.atomcount rather than pdb9aat.ent.atomcount. We have already seen the mv
command for renaming files, and we could do this for each file one at a time, but how
can we rename a whole batch of files? Again we can use a for loop, but we need to
introduce a new command to create the new filename. The basename command lets
us do that. It is followed by a filename and an extension that you wish to remove.

63: Type the following:

basename pdb9aat.ent.atomcount .ent.atomcount

This will simply print pdb9aat. Somehow we wish to step through each file and do a
mv of (for example) pdb9aat.ent.atomcount to the result of this basename command
with new extension (.atomcount) appended. What we need to do is use the output
of a command (basename) as a parameter to another command (mv). We can do
that by enclosing the basename command in back-ticks (also known as an opening
single inverted comma: ‘) — note that both the character before basename and before
.atomcount in this example must be a back-tick.

64: Type the following:

for file in *.ent.atomcount

do

mv $file ‘basename $file .ent.atomcount‘.atomcount

done

Do an ls to check the output.

Task:

Delete the .atomcount files and modify the code in Section 18.1 to generate the files

with the .atomcount extension directly rather than generating them with the extension

.ent.atomcount and then renaming them.

19 The ls long format and file permissions

When you did ls -lh, you obtained output that looked something like:

total 1.7M

-rw-r--r-- 1 localuser localuser 69K Jan 21 2016 pdb9ame.ent

-rw-r--r-- 1 localuser localuser 238K Jan 21 2016 pdb9abp.ent

-rw-r--r-- 1 localuser localuser 597K Jan 21 2016 pdb9aat.ent

-rw-r--r-- 1 localuser localuser 315K Jan 21 2016 pdb9atc.ent

-rw-r--r-- 1 localuser localuser 297K Jan 21 2016 pdb9api.ent

-rw-r--r-- 1 localuser localuser 212K Jan 21 2016 pdb9ant.ent

The first line shows the total size of the files. After that the lines are divided into 9
columns:

27

Column 1: These are the file ‘permissions’ — we will return to this in a moment

Column 2: This is the ‘link count’; it’s exact meaning is system and context dependent,
but in general it will be 1 for a normal file. For a directory containing other
directories it will be one plus the number of contained directories. In general
you can ignore it!

Column 3: This is your user name (or a number representing you as a user).

Column 4: This is your group name (or a number representing your group). Each user
is assigned to a group allowing several users to share files, but restrict access to
other users.

Column 5: This is the file size. Since we used -h this is in a ‘human readable’ format;
the default if you don’t use -h is the number of ‘blocks’ which is the minimum
chunk of a disk that can be accessed (usually 512 bytes, but system dependent).

Column 6–8: The date on which the file was created. The last of these three fields will
be the year if the file wasn’t created recently or the time if it was created recently.

Column 9: The filename

The file permissions are divided into 4 blocks:

Character 1: This is a dash for a normal file, the character ‘d’ for a directory, or the
character ‘l’ for a symbolic link.

Characters 2–4: These are permissions for the ‘user’; in other words the owner of the
file. They consist of three flags (or ‘bits’) which are the letters ‘rwx’ (in that order)
where any of the characters may be replaced by a dash. If the r flag is set, then
the owner of the file can read the file. If the w flag is set, then the owner of the
file can write to the file. If the x flag is set, then the owner of the file can execute
the file — in other words the file is a program or a script that can be run as a
program.

Characters 5–7: These are permissions for the group to which the file belongs. The
meanings are the same as for characters 2–4.

Characters 8–10: These are permissions for other people (i.e. anyone who isn’t the
owner and isn’t in the file’s group). The meanings are the same as for characters
2–4.

The default permissions are system dependent, but usually the owner of a normal file
(‘user’) can read and write to it while the group and ‘other’ permissions are generally
read only. For a directory, the meaning of the ‘execute bit’ is slightly different — if it is
set it allows people to do an ls in that directory14.

14There are also other special permission bits outside the scope of this tutorial.

28

20 Changing permissions

The chmod (‘CHange MODe’) command allows you to change the permissions on a
file. For example, if you wish to stop other users from reading your PDB files, you
would:

65: Type the following:

cd ~/cli/pdbs

ls -lh

chmod og-r *.ent

ls -lh

You should see that the permissions shown by the second ls have changed. In the
chmod command, the og means ‘others’ and ‘group’ (u represents you, the user), the -
means ‘remove permissions’ (+ means ‘add permissions’) and the r refers to the ‘read’
permission.

Task:

1. Change the permissions to add back the read permission for others and the group.

2. Change the permissions to remove write permissions for yourself — this allows you to

protect files so you can’t delete or overwrite them accidentally.

21 Creating a reusable script

One of the permission flags we have just seen is the execute permission (x). This allows
us to put a set of commands into a file and then type the name of this file to execute the
commands it contains. These files are known as ‘shell scripts’. Suppose we regularly
need to check the number of amino acids in a set of PDB files in the current directory.
We already saw how to count the number of atoms in a set of files in Section 18. We
could easily modify that to count amino acids instead of atoms:

66: Type the following:

cd ~/cli/pdbs

for file in *.ent

do

echo -n "$file "

grep ^ATOM $file | grep CA | wc -l

done

We already know an easy way of putting commands into a file, so we will create
file called countaa.sh — .sh is conventionally used as file extension for shell scripts.
You need to be careful not to make any mistakes, so you might want to cut-and-paste
this (but remember Ctrl-d is not typed as letters!):

29

67: Type the following:

cat >countaa.sh

for file in *.ent

do

echo -n "$file "

grep ^ATOM $file | grep CA | wc -l

done

Ctrl-d

We now need to set the execute bit on this script:

68: Type the following:

chmod a+x countaa.sh

The ‘a’ in a+x means that the execute bit should be set for all users.
You can now run the script:

69: Type the following:

./countaa.sh

Note that you need to tell the shell where to find the script — the ‘./’ part of the
command tells the shell to look in the current directory. We will see how to get aroud
this so we can just type countaa.sh in the next section.

22 Commands, programs and paths

Under Unix/Linux/Mac — and for that matter under Windows as well — commands
issued at the command line are all programs that can live in pretty much any directory
(folder) on the computer. When you type a command, the shell interprets what you
write, finds the program and runs it. A few of the key commands are built into the
shell, but most are separate programs.

Obviously you can have hundreds, or thousands, of different directories and it
would take the shell ages to search all of them to find a command. Therefore the shell
exploits an environment variable called $PATH to store a set of directories where it will
look for commands. To find out what your path is:

70: Type the following:

echo $PATH

Typically this is something like:

/usr/bin:/bin:/usr/local/bin

(the : is used to separate each different directory in the path). In other words, if
it doesn’t find the command you gave is a built-in command, it will first look in
/usr/bin, then in /bin, then in /usr/local/bin, etc.

You can modify the path using
export PATH="$PATH:/directory/I/want/to/add"

(where /directory/I/want/to/add is replaced by an actual directory and generally
needs to be a full path including the full directory specification obtained by typing

30

pwd in that directory). Note that there must not be any spaces around the equals sign.
You can put this command in your $HOME/.bashrc (or $HOME/.profile) file so that it
works whenever you open a shell.

Often people will create a bin (for ‘binary’) directory within their home directory,
add that to their path and put all their programs in there, ensuring that $HOME/bin
is in their path. Consequently, we could put our count.sh shell script developed in
Section 21 into our $HOME/bin directory and then simply type countaa.sh to run the
script whatever directory we happen to be in.

23 Command Summary

awk instructions filename A special language for processing files including extracting
fields from each line. If the filename is not specified, then input is taken from
standard input.

basename filename extension Strip the extension from a filename.

cat filename Types a file to the screen. Can also be used to concatenate files.

cd dir ‘Change Directory’. Typing cd on its own will take you back to your home di-
rectory. If you have created a sub-directory called, for example, alignments, you
would move into that sub-directory by typing cd alignments. (See mkdir on
how to create a sub-directory.) To move up a level in the hierarchy, type cd ..

chmod mode filename Change the permissions on a file

cp file1 file2 Copy a file. file1 must be the name of a file; file2 may be another filename
or a directory name.

curl -O url Grab a file from the internet.

cut -c col1-col2 filename Extract a column from a file. If the filename is not speci-
fied, then input is taken from standard input.

diff file1 file2 View the differences between two files.

echo text Print text to the screen. The -n flag stops it starting a new line after print-
ing.

grep pattern filename Search for a pattern in a file. If the filename is not specified,
then input is taken from standard input.

gzip filename Used to compress a file.

gunzip filename Used to uncompress a file.

head filename Display the start of a file. Use a minus sign and a number to specify
the number of lines. If the filename is not specified, then input is taken from
standard input.

31

less filename Types a file to the screen, but pauses at the end of each screen full of
text. Press the space-bar to view the next page or the b key to move back a page.
Press the q key to quit without viewing the whole file. If the filename is not
specified, then input is taken from standard input.

ls directory List the files in the specified directory. If no directory is specified, then
list the files in the current directory. Options include -l to obtain a ‘long’ format
listing, -h to have file sizes in ‘human readable’ format, -t to sort by time, -r to
reverse the sort, -a to list all files (including hidden files)

mkdir dir Create a new sub-directory. For example, to create a sub-directory called
alignments, use the command mkdir alignments. (See cd on how to navi-
gate between sub-directories.)

more filename Page through a file. An older version of less, but only allows you
to move forward through the file. If the filename is not specified, then input is
taken from standard input.

mv file1 file2 Moves or renames a file or directory. file1 is the name of the file or di-
rectory to be moved or renamed; file2 may be a new filename or a directory to
which you wish to move the first file or directory.

pwd ‘Print Working Directory’. Shows you which directory/sub-directory you are
currently in.

rm filename Removes (deletes) a file. Use with the -r flag to delete a directory and all
its contents recursively.

rmdir directory Remove an empty directory.

sort filename Sorts a file. Various options include -n to do a numeric rather than an
alphabetical sort and -k to specify a column on which to sort. If the filename is
not specified, it reads from standard input.

ssh machine Allows you to log into another machine. The connection is secure so
that passwords, etc., are not passed around the network in plain text.

tail filename Display the end of a file. Use a minus sign and a number to specify
the number of lines. If the filename is not specified, then input is taken from
standard input.

tar Used to create or unpack an archive containing several files. Typical usage:
tar zcvf filename.tgz directory to create an archive called filename.tgz
of the directory, directory and its contents; tar zxvf filename.tgz to unpack
an archive called filename.tgz

uniq filename Remove repeated lines from a file. If the filename is not specified, then
input is taken from standard input.

wc filename Count the lines, words and characters in a file. -l only count lines; -w
only could words; -c only count characters. If the filename is not specified, then
input is taken from standard input.

wget url Grab a file from the internet.

32

24 Text Editors

24.1 Emacs

Emacs is an incredibly powerful text editor. It is not a wordprocessor so does not
embed formatting information in the document, just plain simple text. You start emacs
by typing

emacs filename

where filename is the file to be edited.
Emacs allows you to move around using the arrow keys and to type to insert char-

acters at cursor location. Anything more complex is handled through ‘control-key’
sequences, ‘extended control-key’ sequences, or ‘meta’ key sequences.

‘Control-key’ sequences are of the form Ctrl-s (i.e. press and hold the Ctrl key
and simultaneously press the letter ‘s’). These are used for the most common com-
mands.

‘Meta’ key sequences require you first to press the Esc key and then to press a let-
ter. On some terminals you can use the Alt key instead and this then works like the
Ctrl key (i.e. hold it down while you press the other key. These are generally either
‘bigger’ versions of control-key sequence (e.g. move forward a word rather than a let-
ter) or to reverse a control-key sequence (e.g. move up a screen rather than down a
screen). In descriptions below these will be described as Meta-x which means press
and release the Esc key then press and release the ‘x’ key. Alternatively, if your termi-
nal supports it you may press and hold the Alt key and simultaneously press the ‘x’
key.

‘Extended control-key’ sequences are always of the form Ctrl-x followed by some
other control-key sequence. These are used for the more uncommon commands such
as saving a file and exiting from emacs.

As a last resort some commands are not bound to keys at all (the whole system is
configurable and you can map any key combination to do anything — you can even
remap all the normal letter keys to insert different letters!). These are accessed by
doing Meta-x followed by the command name.

Here is a summary of some of the most useful commands:

Exit emacs: Ctrl-x Ctrl-c

Save the contents of the buffer: Ctrl-x Ctrl-s

Move down a page: Ctrl-v

Move up a page: Meta-v

Search for a string: Ctrl-s Note that this is an ‘incremental search’ — it will start to
find matches as soon as you type any characters. To search again, press Ctrl-s
again.

Search backwards for a string: Ctrl-r

Delete character to the right of the cursor: Ctrl-d

33

Kill (remove) a line: Ctrl-kKills the line from under the cursor to the end of the line
on the right, press a second time to remove the end-of-line marker and move the
following line up. If you repeatedly press Ctrl-k more lines will be killed. All
lines are saved in a buffer and can be ‘yanked’ back.

Yank back a set of deleted text: Ctrl-y

Delete a block of text: Of course you can use Ctrl-k and the delete key, but it is
often easier to delete a marked block — especially if you have a lot to delete or
you want to yank it back later. First you set a ‘mark’ at one end of the block — do
this with Ctrl-@. Now move to where you want to end the block. You can use
a combination of screen-at-a-time moves, searches, etc. Finally press Ctrl-w to
‘wipe’ the marked block. (You can yank it back as before with Ctrl-y.

Interactive Tutorial: New users may find it useful to work though the emacs interac-
tive tutorial. This can be accessed by pressing Ctrl-h t.

25 Getting help

Manual pages for all commands should be available on your computer. Just type
man command (short for ‘manual’) to read the manual page for command. If you don’t
know what command you are looking for you can use man -k keyword to list all man-
ual pages containing keyword. For example, to read the man pages for the text editor
emacs type:

man emacs

If they aren’t available on your computer, you can search online for man pages. For
example, search for ‘emacs man page’.

26 Other Tutorials

You are also recommended to look at some of these for more information:

• https://www.youtube.com/watch?v=w97NDZEf-yA

— A video of my 2016 lecture/tutorial session on computing for Bioinformatics
and using the Bash command line

• http://www.ee.surrey.ac.uk/Teaching/Unix/

— An excellent set of tutorials from the University of Surrey

• http://linuxcommand.org/

— Linux Command Line tutorial

• https://www.codecademy.com/learn/learn-the-command-line

— Linux Command Line tutorial

34

